embodied ai - 2021_12
Navigation
Home / Papers / embodied ai
- Part 1
Papers
We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation. TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments. Unique properties include: real-time near-photo-realistic image rendering; a library of objects and environments, and routines for their customization; generative procedures for efficiently building classes of new environments; high-fidelity audio rendering; realistic physical interactions for a variety of material types, including cloths, liquid, and deformable objects; customizable agents that embody AI agents; and support for human interactions with VR devices. TDW's API enables multiple agents to interact within a simulation and returns a range of sensor and physics data representing the state of the world. We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science, including multi-modal physical scene understanding, physical dynamics predictions, multi-agent interactions, models that learn like a child, and attention studies in humans and neural networks.
Autonomous experimentation enabled by artificial intelligence (AI) offers a new paradigm for accelerating scientific discovery. Non-equilibrium materials synthesis is emblematic of complex, resource-intensive experimentation whose acceleration would be a watershed for materials discovery and development. The mapping of non-equilibrium synthesis phase diagrams has recently been accelerated via high throughput experimentation but still limits materials research because the parameter space is too vast to be exhaustively explored. We demonstrate accelerated synthesis and exploration of metastable materials through hierarchical autonomous experimentation governed by the Scientific Autonomous Reasoning Agent (SARA). SARA integrates robotic materials synthesis and characterization along with a hierarchy of AI methods that efficiently reveal the structure of processing phase diagrams. SARA designs lateral gradient laser spike annealing (lg-LSA) experiments for parallel materials synthesis and employs optical spectroscopy to rapidly identify phase transitions. Efficient exploration of the multi-dimensional parameter space is achieved with nested active learning (AL) cycles built upon advanced machine learning models that incorporate the underlying physics of the experiments as well as end-to-end uncertainty quantification. With this, and the coordination of AL at multiple scales, SARA embodies AI harnessing of complex scientific tasks. We demonstrate its performance by autonomously mapping synthesis phase boundaries for the Bi$_2$O$_3$ system, leading to orders-of-magnitude acceleration in establishment of a synthesis phase diagram that includes conditions for kinetically stabilizing $\delta$-Bi$_2$O$_3$ at room temperature, a critical development for electrochemical technologies such as solid oxide fuel cells.