embodied ai - 2022_05
Navigation
Home / Papers / embodied ai
- Part 1
Papers
Recent advances in the areas of multimodal machine learning and artificial intelligence (AI) have led to the development of challenging tasks at the intersection of Computer Vision, Natural Language Processing, and Embodied AI. Whereas many approaches and previous survey pursuits have characterised one or two of these dimensions, there has not been a holistic analysis at the center of all three. Moreover, even when combinations of these topics are considered, more focus is placed on describing, e.g., current architectural methods, as opposed to also illustrating high-level challenges and opportunities for the field. In this survey paper, we discuss Embodied Vision-Language Planning (EVLP) tasks, a family of prominent embodied navigation and manipulation problems that jointly use computer vision and natural language. We propose a taxonomy to unify these tasks and provide an in-depth analysis and comparison of the new and current algorithmic approaches, metrics, simulated environments, as well as the datasets used for EVLP tasks. Finally, we present the core challenges that we believe new EVLP works should seek to address, and we advocate for task construction that enables model generalizability and furthers real-world deployment.
We introduce Housekeep, a benchmark to evaluate commonsense reasoning in the home for embodied AI. In Housekeep, an embodied agent must tidy a house by rearranging misplaced objects without explicit instructions specifying which objects need to be rearranged. Instead, the agent must learn from and is evaluated against human preferences of which objects belong where in a tidy house. Specifically, we collect a dataset of where humans typically place objects in tidy and untidy houses constituting 1799 objects, 268 object categories, 585 placements, and 105 rooms. Next, we propose a modular baseline approach for Housekeep that integrates planning, exploration, and navigation. It leverages a fine-tuned large language model (LLM) trained on an internet text corpus for effective planning. We show that our baseline agent generalizes to rearranging unseen objects in unknown environments. See our webpage for more details: https://yashkant.github.io/housekeep/