embodied ai - 2024_08
Navigation
Home / Papers / embodied ai
- Part 1
Papers
The burgeoning fields of robot learning and embodied AI have triggered an increasing demand for large quantities of data. However, collecting sufficient unbiased data from the target domain remains a challenge due to costly data collection processes and stringent safety requirements. Consequently, researchers often resort to data from easily accessible source domains, such as simulation and laboratory environments, for cost-effective data acquisition and rapid model iteration. Nevertheless, the environments and embodiments of these source domains can be quite different from their target domain counterparts, underscoring the need for effective cross-domain policy transfer approaches. In this paper, we conduct a systematic review of existing cross-domain policy transfer methods. Through a nuanced categorization of domain gaps, we encapsulate the overarching insights and design considerations of each problem setting. We also provide a high-level discussion about the key methodologies used in cross-domain policy transfer problems. Lastly, we summarize the open challenges that lie beyond the capabilities of current paradigms and discuss potential future directions in this field.
Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List.
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in embodied AI. It is crucial for advancing next-generation intelligent robots and has garnered significant interest recently. Unlike data-driven machine learning methods, embodied learning focuses on robot learning through physical interaction with the environment and perceptual feedback, making it especially suitable for robotic manipulation. In this paper, we provide a comprehensive survey of the latest advancements in this field and categorize the existing work into three main branches: 1) Embodied perceptual learning, which aims to predict object pose and affordance through various data representations; 2) Embodied policy learning, which focuses on generating optimal robotic decisions using methods such as reinforcement learning and imitation learning; 3) Embodied task-oriented learning, designed to optimize the robot's performance based on the characteristics of different tasks in object grasping and manipulation. In addition, we offer an overview and discussion of public datasets, evaluation metrics, representative applications, current challenges, and potential future research directions. A project associated with this survey has been established at https://github.com/RayYoh/OCRM_survey.
All Robots in One: A New Standard and Unified Dataset for Versatile, General-Purpose Embodied Agents
Embodied AI is transforming how AI systems interact with the physical world, yet existing datasets are inadequate for developing versatile, general-purpose agents. These limitations include a lack of standardized formats, insufficient data diversity, and inadequate data volume. To address these issues, we introduce ARIO (All Robots In One), a new data standard that enhances existing datasets by offering a unified data format, comprehensive sensory modalities, and a combination of real-world and simulated data. ARIO aims to improve the training of embodied AI agents, increasing their robustness and adaptability across various tasks and environments. Building upon the proposed new standard, we present a large-scale unified ARIO dataset, comprising approximately 3 million episodes collected from 258 series and 321,064 tasks. The ARIO standard and dataset represent a significant step towards bridging the gaps of existing data resources. By providing a cohesive framework for data collection and representation, ARIO paves the way for the development of more powerful and versatile embodied AI agents, capable of navigating and interacting with the physical world in increasingly complex and diverse ways. The project is available on https://imaei.github.io/project_pages/ario/
Sociotechnical requirements shape the governance of artificially intelligent (AI) systems. In an era where embodied AI technologies are rapidly reshaping various facets of contemporary society, their inherent dynamic adaptability presents a unique blend of opportunities and challenges. Traditional regulatory mechanisms, often designed for static -- or slower-paced -- technologies, find themselves at a crossroads when faced with the fluid and evolving nature of AI systems. Moreover, typical problems in AI, for example, the frequent opacity and unpredictability of the behaviour of the systems, add additional sociotechnical challenges. To address these interconnected issues, we introduce the concept of dynamic certification, an adaptive regulatory framework specifically crafted to keep pace with the continuous evolution of AI systems. The complexity of these challenges requires common progress in multiple domains: technical, socio-governmental, and regulatory. Our proposed transdisciplinary approach is designed to ensure the safe, ethical, and practical deployment of AI systems, aligning them bidirectionally with the real-world contexts in which they operate. By doing so, we aim to bridge the gap between rapid technological advancement and effective regulatory oversight, ensuring that AI systems not only achieve their intended goals but also adhere to ethical standards and societal values.
XR devices running chat-bots powered by Large Language Models (LLMs) have tremendous potential as always-on agents that can enable much better productivity scenarios. However, screen based chat-bots do not take advantage of the the full-suite of natural inputs available in XR, including inward facing sensor data, instead they over-rely on explicit voice or text prompts, sometimes paired with multi-modal data dropped as part of the query. We propose a solution that leverages an attention framework that derives context implicitly from user actions, eye-gaze, and contextual memory within the XR environment. This minimizes the need for engineered explicit prompts, fostering grounded and intuitive interactions that glean user insights for the chat-bot. Our user studies demonstrate the imminent feasibility and transformative potential of our approach to streamline user interaction in XR with chat-bots, while offering insights for the design of future XR-embodied LLM agents.
The generalization of the end-to-end deep reinforcement learning (DRL) for object-goal visual navigation is a long-standing challenge since object classes and placements vary in new test environments. Learning domain-independent visual representation is critical for enabling the trained DRL agent with the ability to generalize to unseen scenes and objects. In this letter, a target-directed attention network (TDANet) is proposed to learn the end-to-end object-goal visual navigation policy with zero-shot ability. TDANet features a novel target attention (TA) module that learns both the spatial and semantic relationships among objects to help TDANet focus on the most relevant observed objects to the target. With the Siamese architecture (SA) design, TDANet distinguishes the difference between the current and target states and generates the domain-independent visual representation. To evaluate the navigation performance of TDANet, extensive experiments are conducted in the AI2-THOR embodied AI environment. The simulation results demonstrate a strong generalization ability of TDANet to unseen scenes and target objects, with higher navigation success rate (SR) and success weighted by length (SPL) than other state-of-the-art models. TDANet is finally deployed on a wheeled robot in real scenes, demonstrating satisfactory generalization of TDANet to the real world.
Large-scale generative models are shown to be useful for sampling meaningful candidate solutions, yet they often overlook task constraints and user preferences. Their full power is better harnessed when the models are coupled with external verifiers and the final solutions are derived iteratively or progressively according to the verification feedback. In the context of embodied AI, verification often solely involves assessing whether goal conditions specified in the instructions have been met. Nonetheless, for these agents to be seamlessly integrated into daily life, it is crucial to account for a broader range of constraints and preferences beyond bare task success (e.g., a robot should grasp bread with care to avoid significant deformations). However, given the unbounded scope of robot tasks, it is infeasible to construct scripted verifiers akin to those used for explicit-knowledge tasks like the game of Go and theorem proving. This begs the question: when no sound verifier is available, can we use large vision and language models (VLMs), which are approximately omniscient, as scalable Behavior Critics to catch undesirable robot behaviors in videos? To answer this, we first construct a benchmark that contains diverse cases of goal-reaching yet undesirable robot policies. Then, we comprehensively evaluate VLM critics to gain a deeper understanding of their strengths and failure modes. Based on the evaluation, we provide guidelines on how to effectively utilize VLM critiques and showcase a practical way to integrate the feedback into an iterative process of policy refinement. The dataset and codebase are released at: https://guansuns.github.io/pages/vlm-critic.
Visual language navigation (VLN) is one of the important research in embodied AI. It aims to enable an agent to understand the surrounding environment and complete navigation tasks. VLN instructions could be categorized into coarse-grained and fine-grained commands. Fine-grained command describes a whole task with subtasks step-by-step. In contrast, coarse-grained command gives an abstract task description, which more suites human habits. Most existing work focuses on the former kind of instruction in VLN tasks, ignoring the latter abstract instructions belonging to daily life scenarios. To overcome the above challenge in abstract instruction, we attempt to consider coarse-grained instruction in VLN by event knowledge enhancement. Specifically, we first propose a prompt-based framework to extract an event knowledge graph (named VLN-EventKG) for VLN integrally over multiple mainstream benchmark datasets. Through small and large language model collaboration, we realize knowledge-enhanced navigation planning (named EventNav) for VLN tasks with coarse-grained instruction input. Additionally, we design a novel dynamic history backtracking module to correct potential error action planning in real time. Experimental results in various public benchmarks show our knowledge-enhanced method has superiority in coarse-grained-instruction VLN using our proposed VLN-EventKG with over $5\%$ improvement in success rate. Our project is available at https://sites.google.com/view/vln-eventkg