Skip to the content.

embodied ai - 2025_05

Home / Papers / embodied ai

Papers

📅 2025-05-01 | 💬 8 pages, 3 figures
We introduce the In Real Life (IRL) Ditto, an AI-driven embodied agent designed to represent remote colleagues in shared office spaces, creating opportunities for real-time exchanges even in their absence. IRL Ditto offers a unique hybrid experience by allowing in-person colleagues to encounter a digital version of their remote teammates, initiating greetings, updates, or small talk as they might in person. Our research question examines: How can the IRL Ditto influence interactions and relationships among colleagues in a shared office space? Through a four-day study, we assessed IRL Ditto's ability to strengthen social ties by simulating presence and enabling meaningful interactions across different levels of social familiarity. We find that enhancing social relationships depended deeply on the foundation of the relationship participants had with the source of the IRL Ditto. This study provides insights into the role of embodied agents in enriching workplace dynamics for distributed teams.
📅 2025-05-01
Navigation and manipulation are core capabilities in Embodied AI, yet training agents with these capabilities in the real world faces high costs and time complexity. Therefore, sim-to-real transfer has emerged as a key approach, yet the sim-to-real gap persists. This survey examines how physics simulators address this gap by analyzing their properties overlooked in previous surveys. We also analyze their features for navigation and manipulation tasks, along with hardware requirements. Additionally, we offer a resource with benchmark datasets, metrics, simulation platforms, and cutting-edge methods-such as world models and geometric equivariance-to help researchers select suitable tools while accounting for hardware constraints.