Skip to the content.

embodied ai - 2025_10

Home / Papers / embodied ai

Papers

📅 2025-10-09 | 💬 Work in process
Affordance segmentation aims to parse 3D objects into functionally distinct parts, bridging recognition and interaction for applications in robotic manipulation, embodied AI, and AR. While recent studies leverage visual or textual prompts to guide this process, they often rely on point cloud encoders as generic feature extractors, overlooking the intrinsic challenges of 3D data such as sparsity, noise, and geometric ambiguity. As a result, 3D features learned in isolation frequently lack clear and semantically consistent functional boundaries. To address this bottleneck, we propose a semantic-grounded learning paradigm that transfers rich semantic knowledge from large-scale 2D Vision Foundation Models (VFMs) into the 3D domain. Specifically, We introduce Cross-Modal Affinity Transfer (CMAT), a pre-training strategy that aligns a 3D encoder with lifted 2D semantics and jointly optimizes reconstruction, affinity, and diversity to yield semantically organized representations. Building on this backbone, we further design the Cross-modal Affordance Segmentation Transformer (CAST), which integrates multi-modal prompts with CMAT-pretrained features to generate precise, prompt-aware segmentation maps. Extensive experiments on standard benchmarks demonstrate that our framework establishes new state-of-the-art results for 3D affordance segmentation.
📅 2025-10-09 | 💬 22 pages
Developing speaking proficiency in a second language can be cognitively demanding and emotionally taxing, often triggering fear of making mistakes or being excluded from larger groups. While current learning tools show promise for speaking practice, most focus on dyadic, scripted scenarios, limiting opportunities for dynamic group interactions. To address this gap, we present ConversAR, a Mixed Reality system that leverages Generative AI and XR to support situated and personalized group conversations. It integrates embodied AI agents, scene recognition, and generative 3D props anchored to real-world surroundings. Based on a formative study with experts in language acquisition, we developed and tested this system with a user study with 21 second-language learners. Results indicate that the system enhanced learner engagement, increased willingness to communicate, and offered a safe space for speaking. We discuss the implications for integrating Generative AI and XR into the design of future language learning applications.
📅 2025-10-09
Enabling robots to perform precise and generalized manipulation in unstructured environments remains a fundamental challenge in embodied AI. While Vision-Language Models (VLMs) have demonstrated remarkable capabilities in semantic reasoning and task planning, a significant gap persists between their high-level understanding and the precise physical execution required for real-world manipulation. To bridge this "semantic-to-physical" gap, we introduce GRACE, a novel framework that grounds VLM-based reasoning through executable analytic concepts (EAC)-mathematically defined blueprints that encode object affordances, geometric constraints, and semantics of manipulation. Our approach integrates a structured policy scaffolding pipeline that turn natural language instructions and visual information into an instantiated EAC, from which we derive grasp poses, force directions and plan physically feasible motion trajectory for robot execution. GRACE thus provides a unified and interpretable interface between high-level instruction understanding and low-level robot control, effectively enabling precise and generalizable manipulation through semantic-physical grounding. Extensive experiments demonstrate that GRACE achieves strong zero-shot generalization across a variety of articulated objects in both simulated and real-world environments, without requiring task-specific training.
📅 2025-10-09 | 💬 9 pages, 4 figures, submitted for ICLR 2026 conference
3D scene understanding is fundamental for embodied AI and robotics, supporting reliable perception for interaction and navigation. Recent approaches achieve zero-shot, open-vocabulary 3D semantic mapping by assigning embedding vectors to 2D class-agnostic masks generated via vision-language models (VLMs) and projecting these into 3D. However, these methods often produce fragmented masks and inaccurate semantic assignments due to the direct use of raw masks, limiting their effectiveness in complex environments. To address this, we leverage SemanticSAM with progressive granularity refinement to generate more accurate and numerous object-level masks, mitigating the over-segmentation commonly observed in mask generation models such as vanilla SAM, and improving downstream 3D semantic segmentation. To further enhance semantic context, we employ a context-aware CLIP encoding strategy that integrates multiple contextual views of each mask using empirically determined weighting, providing much richer visual context. We evaluate our approach on multiple 3D scene understanding tasks, including 3D semantic segmentation and object retrieval from language queries, across several benchmark datasets. Experimental results demonstrate significant improvements over existing methods, highlighting the effectiveness of our approach.
📅 2025-10-09 | 💬 20 pages, 13 figures
Recently spatial-temporal intelligence of Visual-Language Models (VLMs) has attracted much attention due to its importance for Autonomous Driving, Embodied AI and General Artificial Intelligence. Existing spatial-temporal benchmarks mainly focus on egocentric perspective reasoning with images/video context, or geographic perspective reasoning with graphics context (eg. a map), thus fail to assess VLMs' geographic spatial-temporal intelligence with both images/video and graphics context, which is important for areas like traffic management and emergency response. To address the gaps, we introduce Geo-Temporal Reasoning benchmark (GTR-Bench), a novel challenge for geographic temporal reasoning of moving targets in a large-scale camera network. GTR-Bench is more challenging as it requires multiple perspective switches between maps and videos, joint reasoning across multiple videos with non-overlapping fields of view, and inference over spatial-temporal regions that are unobserved by any video context. Evaluations of more than 10 popular VLMs on GTR-Bench demonstrate that even the best proprietary model, Gemini-2.5-Pro (34.9%), significantly lags behind human performance (78.61%) on geo-temporal reasoning. Moreover, our comprehensive analysis on GTR-Bench reveals three primary deficiencies of current models for geo-temporal reasoning. (1) VLMs' reasoning is impaired by an imbalanced utilization of spatial-temporal context. (2) VLMs are weak in temporal forecasting, which leads to worse performance on temporal-emphasized tasks than on spatial-emphasized tasks. (3) VLMs lack the proficiency to comprehend or align the map data with multi-view video inputs. We believe GTR-Bench offers valuable insights and opens up new opportunities for research and applications in spatial-temporal intelligence. Benchmark and code will be released at https://github.com/X-Luffy/GTR-Bench.
📅 2025-10-09
Vision Language Action (VLA) models are widely used in Embodied AI, enabling robots to interpret and execute language instructions. However, their robustness to natural language variability in real-world scenarios has not been thoroughly investigated. In this work, we present a novel systematic study of the robustness of state-of-the-art VLA models under linguistic perturbations. Specifically, we evaluate model performance under two types of instruction noise: (1) human-generated paraphrasing and (2) the addition of irrelevant context. We further categorize irrelevant contexts into two groups according to their length and their semantic and lexical proximity to robot commands. In this study, we observe consistent performance degradation as context size expands. We also demonstrate that the model can exhibit relative robustness to random context, with a performance drop within 10%, while semantically and lexically similar context of the same length can trigger a quality decline of around 50%. Human paraphrases of instructions lead to a drop of nearly 20%. To mitigate this, we propose an LLM-based filtering framework that extracts core commands from noisy inputs. Incorporating our filtering step allows models to recover up to 98.5% of their original performance under noisy conditions.
📅 2025-10-09
Artificial intelligence has advanced significantly through deep learning, reinforcement learning, and large language and vision models. However, these systems often remain task specific, struggle to adapt to changing conditions, and cannot generalize in ways similar to human cognition. Additionally, they mainly focus on mimicking brain structures, which often leads to black-box models with limited transparency and adaptability. Inspired by the structure and function of biological cognition, this paper introduces the concept of "Neurocognitive-Inspired Intelligence (NII)," a hybrid approach that combines neuroscience, cognitive science, computer vision, and AI to develop more general, adaptive, and robust intelligent systems capable of rapid learning, learning from less data, and leveraging prior experience. These systems aim to emulate the human brain's ability to flexibly learn, reason, remember, perceive, and act in real-world settings with minimal supervision. We review the limitations of current AI methods, define core principles of neurocognitive-inspired intelligence, and propose a modular, biologically inspired architecture that emphasizes integration, embodiment, and adaptability. We also discuss potential implementation strategies and outline various real-world applications, from robotics to education and healthcare. Importantly, this paper offers a hybrid roadmap for future research, laying the groundwork for building AI systems that more closely resemble human cognition.
📅 2025-10-09
Human Label Variation (HLV) refers to legitimate disagreement in annotation that reflects the genuine diversity of human perspectives rather than mere error. For decades, HLV in NLP was dismissed as noise to be discarded, and only slowly over the last decade has it been reframed as a signal for improving model robustness. With the rise of large language models (LLMs), where post-training on human feedback has become central to model alignment, the role of HLV has become increasingly consequential. Yet current preference-learning datasets routinely aggregate multiple annotations into a single label, thereby flattening diverse perspectives into a false universal agreement and erasing precisely the pluralism of human values that alignment aims to preserve. In this position paper, we argue that preserving HLV as an embodiment of human pluralism must be treated as a Selbstzweck - a goal it self when designing AI systems. We call for proactively incorporating HLV into preference datasets and outline actionable steps towards it.
📅 2025-10-09
As industrial robots move into shared human spaces, their opaque decision making threatens safety, trust, and public oversight. This artwork, Airy, asks whether complex multi agent AI can become intuitively understandable by staging a competition between two reinforcement trained robot arms that snap a bedsheet skyward. Building on three design principles, competition as a clear metric (who lifts higher), embodied familiarity (audiences recognize fabric snapping), and sensor to sense mapping (robot cooperation or rivalry shown through forest and weather projections), the installation gives viewers a visceral way to read machine intent. Observations from five international exhibitions indicate that audiences consistently read the robots' strategies, conflict, and cooperation in real time, with emotional reactions that mirror the system's internal state. The project shows how sensory metaphors can turn a black box into a public interface.
📅 2025-10-09 | 💬 Work in process
Affordance segmentation aims to parse 3D objects into functionally distinct parts, bridging recognition and interaction for applications in robotic manipulation, embodied AI, and AR. While recent studies leverage visual or textual prompts to guide this process, they often rely on point cloud encoders as generic feature extractors, overlooking the intrinsic challenges of 3D data such as sparsity, noise, and geometric ambiguity. As a result, 3D features learned in isolation frequently lack clear and semantically consistent functional boundaries. To address this bottleneck, we propose a semantic-grounded learning paradigm that transfers rich semantic knowledge from large-scale 2D Vision Foundation Models (VFMs) into the 3D domain. Specifically, We introduce Cross-Modal Affinity Transfer (CMAT), a pre-training strategy that aligns a 3D encoder with lifted 2D semantics and jointly optimizes reconstruction, affinity, and diversity to yield semantically organized representations. Building on this backbone, we further design the Cross-modal Affordance Segmentation Transformer (CAST), which integrates multi-modal prompts with CMAT-pretrained features to generate precise, prompt-aware segmentation maps. Extensive experiments on standard benchmarks demonstrate that our framework establishes new state-of-the-art results for 3D affordance segmentation.
📅 2025-10-09 | 💬 22 pages
Developing speaking proficiency in a second language can be cognitively demanding and emotionally taxing, often triggering fear of making mistakes or being excluded from larger groups. While current learning tools show promise for speaking practice, most focus on dyadic, scripted scenarios, limiting opportunities for dynamic group interactions. To address this gap, we present ConversAR, a Mixed Reality system that leverages Generative AI and XR to support situated and personalized group conversations. It integrates embodied AI agents, scene recognition, and generative 3D props anchored to real-world surroundings. Based on a formative study with experts in language acquisition, we developed and tested this system with a user study with 21 second-language learners. Results indicate that the system enhanced learner engagement, increased willingness to communicate, and offered a safe space for speaking. We discuss the implications for integrating Generative AI and XR into the design of future language learning applications.
📅 2025-10-09
Enabling robots to perform precise and generalized manipulation in unstructured environments remains a fundamental challenge in embodied AI. While Vision-Language Models (VLMs) have demonstrated remarkable capabilities in semantic reasoning and task planning, a significant gap persists between their high-level understanding and the precise physical execution required for real-world manipulation. To bridge this "semantic-to-physical" gap, we introduce GRACE, a novel framework that grounds VLM-based reasoning through executable analytic concepts (EAC)-mathematically defined blueprints that encode object affordances, geometric constraints, and semantics of manipulation. Our approach integrates a structured policy scaffolding pipeline that turn natural language instructions and visual information into an instantiated EAC, from which we derive grasp poses, force directions and plan physically feasible motion trajectory for robot execution. GRACE thus provides a unified and interpretable interface between high-level instruction understanding and low-level robot control, effectively enabling precise and generalizable manipulation through semantic-physical grounding. Extensive experiments demonstrate that GRACE achieves strong zero-shot generalization across a variety of articulated objects in both simulated and real-world environments, without requiring task-specific training.
📅 2025-10-09 | 💬 9 pages, 4 figures, submitted for ICLR 2026 conference
3D scene understanding is fundamental for embodied AI and robotics, supporting reliable perception for interaction and navigation. Recent approaches achieve zero-shot, open-vocabulary 3D semantic mapping by assigning embedding vectors to 2D class-agnostic masks generated via vision-language models (VLMs) and projecting these into 3D. However, these methods often produce fragmented masks and inaccurate semantic assignments due to the direct use of raw masks, limiting their effectiveness in complex environments. To address this, we leverage SemanticSAM with progressive granularity refinement to generate more accurate and numerous object-level masks, mitigating the over-segmentation commonly observed in mask generation models such as vanilla SAM, and improving downstream 3D semantic segmentation. To further enhance semantic context, we employ a context-aware CLIP encoding strategy that integrates multiple contextual views of each mask using empirically determined weighting, providing much richer visual context. We evaluate our approach on multiple 3D scene understanding tasks, including 3D semantic segmentation and object retrieval from language queries, across several benchmark datasets. Experimental results demonstrate significant improvements over existing methods, highlighting the effectiveness of our approach.
📅 2025-10-08
Vision Language Action (VLA) models are widely used in Embodied AI, enabling robots to interpret and execute language instructions. However, their robustness to natural language variability in real-world scenarios has not been thoroughly investigated. In this work, we present a novel systematic study of the robustness of state-of-the-art VLA models under linguistic perturbations. Specifically, we evaluate model performance under two types of instruction noise: (1) human-generated paraphrasing and (2) the addition of irrelevant context. We further categorize irrelevant contexts into two groups according to their length and their semantic and lexical proximity to robot commands. In this study, we observe consistent performance degradation as context size expands. We also demonstrate that the model can exhibit relative robustness to random context, with a performance drop within 10%, while semantically and lexically similar context of the same length can trigger a quality decline of around 50%. Human paraphrases of instructions lead to a drop of nearly 20%. To mitigate this, we propose an LLM-based filtering framework that extracts core commands from noisy inputs. Incorporating our filtering step allows models to recover up to 98.5% of their original performance under noisy conditions.
📅 2025-10-08
Large language models leverage internet-scale text data, yet embodied AI remains constrained by the prohibitive costs of physical trajectory collection. Desktop environments -- particularly gaming -- offer a compelling alternative: they provide rich sensorimotor interactions at scale while maintaining the structured observation-action coupling essential for embodied learning. We present D2E (Desktop to Embodied AI), a framework that demonstrates desktop interactions can serve as an effective pretraining substrate for robotics embodied AI tasks. Unlike prior work that remained domain-specific (e.g., VPT for Minecraft) or kept data proprietary (e.g., SIMA), D2E establishes a complete pipeline from scalable desktop data collection to verified transfer in embodied domains. Our framework comprises three components: (1) the OWA Toolkit that unifies diverse desktop interactions into a standardized format with 152x compression, (2) the Generalist-IDM that achieves strong zero-shot generalization across unseen games through timestamp-based event prediction, enabling internet-scale pseudo-labeling, and (3) VAPT that transfers desktop-pretrained representations to physical manipulation and navigation. Using 1.3K+ hours of data (259 hours of human demonstrations, and 1K+ hours of pseudo-labeled gameplay), we achieve a total of 96.6% success rate on LIBERO manipulation and 83.3% on CANVAS navigation benchmarks. This validates that sensorimotor primitives in digital interactions exhibit sufficient invariance to transfer meaningfully to physical embodied tasks, establishing desktop pretraining as a practical paradigm for robotics. We will make all our work public, including the OWA toolkit, datasets of human-collected and pseudo-labeled, and VAPT-trained models available at https://worv-ai.github.io/d2e/
📅 2025-10-08
Vision Language Action (VLA) models are widely used in Embodied AI, enabling robots to interpret and execute language instructions. However, their robustness to natural language variability in real-world scenarios has not been thoroughly investigated. In this work, we present a novel systematic study of the robustness of state-of-the-art VLA models under linguistic perturbations. Specifically, we evaluate model performance under two types of instruction noise: (1) human-generated paraphrasing and (2) the addition of irrelevant context. We further categorize irrelevant contexts into two groups according to their length and their semantic and lexical proximity to robot commands. In this study, we observe consistent performance degradation as context size expands. We also demonstrate that the model can exhibit relative robustness to random context, with a performance drop within 10%, while semantically and lexically similar context of the same length can trigger a quality decline of around 50%. Human paraphrases of instructions lead to a drop of nearly 20%. To mitigate this, we propose an LLM-based filtering framework that extracts core commands from noisy inputs. Incorporating our filtering step allows models to recover up to 98.5% of their original performance under noisy conditions.
📅 2025-10-07
The rapid progress in embodied artificial intelligence has highlighted the necessity for more advanced and integrated models that can perceive, interpret, and predict environmental dynamics. In this context, World Models (WMs) have been introduced to provide embodied agents with the abilities to anticipate future environmental states and fill in knowledge gaps, thereby enhancing agents' ability to plan and execute actions. However, when dealing with embodied agents it is fundamental to ensure that predictions are safe for both the agent and the environment. In this article, we conduct a comprehensive literature review of World Models in the domains of autonomous driving and robotics, with a specific focus on the safety implications of scene and control generation tasks. Our review is complemented by an empirical analysis, wherein we collect and examine predictions from state-of-the-art models, identify and categorize common faults (herein referred to as pathologies), and provide a quantitative evaluation of the results.
📅 2025-10-07
Large language models leverage internet-scale text data, yet embodied AI remains constrained by the prohibitive costs of physical trajectory collection. Desktop environments -- particularly gaming -- offer a compelling alternative: they provide rich sensorimotor interactions at scale while maintaining the structured observation-action coupling essential for embodied learning. We present D2E (Desktop to Embodied AI), a framework that demonstrates desktop interactions can serve as an effective pretraining substrate for robotics embodied AI tasks. Unlike prior work that remained domain-specific (e.g., VPT for Minecraft) or kept data proprietary (e.g., SIMA), D2E establishes a complete pipeline from scalable desktop data collection to verified transfer in embodied domains. Our framework comprises three components: (1) the OWA Toolkit that unifies diverse desktop interactions into a standardized format with 152x compression, (2) the Generalist-IDM that achieves strong zero-shot generalization across unseen games through timestamp-based event prediction, enabling internet-scale pseudo-labeling, and (3) VAPT that transfers desktop-pretrained representations to physical manipulation and navigation. Using 1.3K+ hours of data (259 hours of human demonstrations, and 1K+ hours of pseudo-labeled gameplay), we achieve a total of 96.6% success rate on LIBERO manipulation and 83.3% on CANVAS navigation benchmarks. This validates that sensorimotor primitives in digital interactions exhibit sufficient invariance to transfer meaningfully to physical embodied tasks, establishing desktop pretraining as a practical paradigm for robotics. We will make all our work public, including the OWA toolkit, datasets of human-collected and pseudo-labeled, and VAPT-trained models available at https://worv-ai.github.io/d2e/
📅 2025-10-07 | 💬 51 pages, 17 figures, 9 tables
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
📅 2025-10-07
Large language models leverage internet-scale text data, yet embodied AI remains constrained by the prohibitive costs of physical trajectory collection. Desktop environments -- particularly gaming -- offer a compelling alternative: they provide rich sensorimotor interactions at scale while maintaining the structured observation-action coupling essential for embodied learning. We present D2E (Desktop to Embodied AI), a framework that demonstrates desktop interactions can serve as an effective pretraining substrate for robotics embodied AI tasks. Unlike prior work that remained domain-specific (e.g., VPT for Minecraft) or kept data proprietary (e.g., SIMA), D2E establishes a complete pipeline from scalable desktop data collection to verified transfer in embodied domains. Our framework comprises three components: (1) the OWA Toolkit that unifies diverse desktop interactions into a standardized format with 152x compression, (2) the Generalist-IDM that achieves strong zero-shot generalization across unseen games through timestamp-based event prediction, enabling internet-scale pseudo-labeling, and (3) VAPT that transfers desktop-pretrained representations to physical manipulation and navigation. Using 1.3K+ hours of data (259 hours of human demonstrations, and 1K+ hours of pseudo-labeled gameplay), we achieve a total of 96.6% success rate on LIBERO manipulation and 83.3% on CANVAS navigation benchmarks. This validates that sensorimotor primitives in digital interactions exhibit sufficient invariance to transfer meaningfully to physical embodied tasks, establishing desktop pretraining as a practical paradigm for robotics. We will make all our work public, including the OWA toolkit, datasets of human-collected and pseudo-labeled, and VAPT-trained models available at https://worv-ai.github.io/d2e/
📅 2025-10-07
The rapid progress in embodied artificial intelligence has highlighted the necessity for more advanced and integrated models that can perceive, interpret, and predict environmental dynamics. In this context, World Models (WMs) have been introduced to provide embodied agents with the abilities to anticipate future environmental states and fill in knowledge gaps, thereby enhancing agents' ability to plan and execute actions. However, when dealing with embodied agents it is fundamental to ensure that predictions are safe for both the agent and the environment. In this article, we conduct a comprehensive literature review of World Models in the domains of autonomous driving and robotics, with a specific focus on the safety implications of scene and control generation tasks. Our review is complemented by an empirical analysis, wherein we collect and examine predictions from state-of-the-art models, identify and categorize common faults (herein referred to as pathologies), and provide a quantitative evaluation of the results.
📅 2025-10-07 | 💬 Project page: https://rajghugare19.github.io/builderbench and Code: https://github.com/rajghugare19/builderbench
Today's AI models learn primarily through mimicry and sharpening, so it is not surprising that they struggle to solve problems beyond the limits set by existing data. To solve novel problems, agents should acquire skills for exploring and learning through experience. Finding a scalable learning mechanism for developing agents that learn through interaction remains a major open problem. In this work, we introduce BuilderBench, a benchmark to accelerate research into agent pre-training that centers open-ended exploration. BuilderBench requires agents to learn how to build any structure using blocks. BuilderBench is equipped with $(1)$ a hardware accelerated simulator of a robotic agent interacting with various physical blocks, and $(2)$ a task-suite with over 42 diverse target structures that are carefully curated to test an understanding of physics, mathematics, and long-horizon planning. During training, agents have to explore and learn general principles about the environment without any external supervision. During evaluation, agents have to build the unseen target structures from the task suite. Solving these tasks requires a sort of \emph{embodied reasoning} that is not reflected in words but rather in actions, experimenting with different strategies and piecing them together. Our experiments show that many of these tasks challenge the current iteration of algorithms. Hence, we also provide a ``training wheels'' protocol, in which agents are trained and evaluated to build a single target structure from the task suite. Finally, we provide single-file implementations of six different algorithms as a reference point for researchers.
📅 2025-10-06 | 💬 51 pages, 17 figures, 9 tables
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
📅 2025-10-06
Vision-Language Models (VLMs) have become a central focus of today's AI community, owing to their impressive abilities gained from training on large-scale vision-language data from the Web. These models have demonstrated strong performance across diverse tasks, including image understanding, video understanding, complex visual reasoning, and embodied AI. Despite these noteworthy successes, a fundamental question remains: Can VLMs count objects correctly? In this paper, we introduce a simple yet effective benchmark, VLMCountBench, designed under a minimalist setting with only basic geometric shapes (e.g., triangles, circles) and their compositions, focusing exclusively on counting tasks without interference from other factors. We adopt strict independent variable control and systematically study the effects of simple properties such as color, size, and prompt refinement in a controlled ablation. Our empirical results reveal that while VLMs can count reliably when only one shape type is present, they exhibit substantial failures when multiple shape types are combined (i.e., compositional counting). This highlights a fundamental empirical limitation of current VLMs and motivates important directions for future research.
📅 2025-10-06 | 💬 In proceedings of UKCI 2025
The integration of Large Language Models (LLMs) into multiagent systems has opened new possibilities for collaborative reasoning and cooperation with AI agents. This paper explores different prompting methods and evaluates their effectiveness in enhancing agent collaborative behaviour and decision-making. We enhance CoELA, a framework designed for building Collaborative Embodied Agents that leverage LLMs for multi-agent communication, reasoning, and task coordination in shared virtual spaces. Through systematic experimentation, we examine different LLMs and prompt engineering strategies to identify optimised combinations that maximise collaboration performance. Furthermore, we extend our research by integrating speech capabilities, enabling seamless collaborative voice-based interactions. Our findings highlight the effectiveness of prompt optimisation in enhancing collaborative agent performance; for example, our best combination improved the efficiency of the system running with Gemma3 by 22% compared to the original CoELA system. In addition, the speech integration provides a more engaging user interface for iterative system development and demonstrations.
📅 2025-10-06 | 💬 51 pages, 17 figures, 9 tables
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
📅 2025-10-06 | 💬 Project website: https://toddlerbot.github.io/
Learning-based robotics research driven by data demands a new approach to robot hardware design-one that serves as both a platform for policy execution and a tool for embodied data collection to train policies. We introduce ToddlerBot, a low-cost, open-source humanoid robot platform designed for scalable policy learning and research in robotics and AI. ToddlerBot enables seamless acquisition of high-quality simulation and real-world data. The plug-and-play zero-point calibration and transferable motor system identification ensure a high-fidelity digital twin, enabling zero-shot policy transfer from simulation to the real world. A user-friendly teleoperation interface facilitates streamlined real-world data collection for learning motor skills from human demonstrations. Utilizing its data collection ability and anthropomorphic design, ToddlerBot is an ideal platform to perform whole-body loco-manipulation. Additionally, ToddlerBot's compact size (0.56m, 3.4kg) ensures safe operation in real-world environments. Reproducibility is achieved with an entirely 3D-printed, open-source design and commercially available components, keeping the total cost under 6,000 USD. Comprehensive documentation allows assembly and maintenance with basic technical expertise, as validated by a successful independent replication of the system. We demonstrate ToddlerBot's capabilities through arm span, payload, endurance tests, loco-manipulation tasks, and a collaborative long-horizon scenario where two robots tidy a toy session together. By advancing ML-compatibility, capability, and reproducibility, ToddlerBot provides a robust platform for scalable learning and dynamic policy execution in robotics research.
📅 2025-10-06
Vision-Language Models (VLMs) have become a central focus of today's AI community, owing to their impressive abilities gained from training on large-scale vision-language data from the Web. These models have demonstrated strong performance across diverse tasks, including image understanding, video understanding, complex visual reasoning, and embodied AI. Despite these noteworthy successes, a fundamental question remains: Can VLMs count objects correctly? In this paper, we introduce a simple yet effective benchmark, VLMCountBench, designed under a minimalist setting with only basic geometric shapes (e.g., triangles, circles) and their compositions, focusing exclusively on counting tasks without interference from other factors. We adopt strict independent variable control and systematically study the effects of simple properties such as color, size, and prompt refinement in a controlled ablation. Our empirical results reveal that while VLMs can count reliably when only one shape type is present, they exhibit substantial failures when multiple shape types are combined (i.e., compositional counting). This highlights a fundamental empirical limitation of current VLMs and motivates important directions for future research.
📅 2025-10-05 | 💬 We are revising it
The integration of large language models (LLMs) into robotic systems has accelerated progress in embodied artificial intelligence, yet current approaches remain constrained by existing robotic architectures, particularly serial mechanisms. This hardware dependency fundamentally limits the scope of robotic intelligence. Here, we present INGRID (Intelligent Generative Robotic Design), a framework that enables the automated design of parallel robotic mechanisms through deep integration with reciprocal screw theory and kinematic synthesis methods. We decompose the design challenge into four progressive tasks: constraint analysis, kinematic joint generation, chain construction, and complete mechanism design. INGRID demonstrates the ability to generate novel parallel mechanisms with both fixed and variable mobility, discovering kinematic configurations not previously documented in the literature. We validate our approach through three case studies demonstrating how INGRID assists users in designing task-specific parallel robots based on desired mobility requirements. By bridging the gap between mechanism theory and machine learning, INGRID enables researchers without specialized robotics training to create custom parallel mechanisms, thereby decoupling advances in robotic intelligence from hardware constraints. This work establishes a foundation for mechanism intelligence, where AI systems actively design robotic hardware, potentially transforming the development of embodied AI systems.
📅 2025-10-05 | 💬 We are revising it
The integration of large language models (LLMs) into robotic systems has accelerated progress in embodied artificial intelligence, yet current approaches remain constrained by existing robotic architectures, particularly serial mechanisms. This hardware dependency fundamentally limits the scope of robotic intelligence. Here, we present INGRID (Intelligent Generative Robotic Design), a framework that enables the automated design of parallel robotic mechanisms through deep integration with reciprocal screw theory and kinematic synthesis methods. We decompose the design challenge into four progressive tasks: constraint analysis, kinematic joint generation, chain construction, and complete mechanism design. INGRID demonstrates the ability to generate novel parallel mechanisms with both fixed and variable mobility, discovering kinematic configurations not previously documented in the literature. We validate our approach through three case studies demonstrating how INGRID assists users in designing task-specific parallel robots based on desired mobility requirements. By bridging the gap between mechanism theory and machine learning, INGRID enables researchers without specialized robotics training to create custom parallel mechanisms, thereby decoupling advances in robotic intelligence from hardware constraints. This work establishes a foundation for mechanism intelligence, where AI systems actively design robotic hardware, potentially transforming the development of embodied AI systems.
📅 2025-10-04 | 💬 18 pages, 7 figures, Project Page:https://hyelinnam.github.io/Cameo/
Human video generation is becoming an increasingly important task with broad applications in graphics, entertainment, and embodied AI. Despite the rapid progress of video diffusion models (VDMs), their use for general-purpose human video generation remains underexplored, with most works constrained to image-to-video setups or narrow domains like dance videos. In this work, we propose CAMEO, a cascaded framework for general human motion video generation. It seamlessly bridges Text-to-Motion (T2M) models and conditional VDMs, mitigating suboptimal factors that may arise in this process across both training and inference through carefully designed components. Specifically, we analyze and prepare both textual prompts and visual conditions to effectively train the VDM, ensuring robust alignment between motion descriptions, conditioning signals, and the generated videos. Furthermore, we introduce a camera-aware conditioning module that connects the two stages, automatically selecting viewpoints aligned with the input text to enhance coherence and reduce manual intervention. We demonstrate the effectiveness of our approach on both the MovieGen benchmark and a newly introduced benchmark tailored to the T2M-VDM combination, while highlighting its versatility across diverse use cases.
📅 2025-10-04 | 💬 18 pages, 7 figures, Project Page:https://hyelinnam.github.io/Cameo/
Human video generation is becoming an increasingly important task with broad applications in graphics, entertainment, and embodied AI. Despite the rapid progress of video diffusion models (VDMs), their use for general-purpose human video generation remains underexplored, with most works constrained to image-to-video setups or narrow domains like dance videos. In this work, we propose CAMEO, a cascaded framework for general human motion video generation. It seamlessly bridges Text-to-Motion (T2M) models and conditional VDMs, mitigating suboptimal factors that may arise in this process across both training and inference through carefully designed components. Specifically, we analyze and prepare both textual prompts and visual conditions to effectively train the VDM, ensuring robust alignment between motion descriptions, conditioning signals, and the generated videos. Furthermore, we introduce a camera-aware conditioning module that connects the two stages, automatically selecting viewpoints aligned with the input text to enhance coherence and reduce manual intervention. We demonstrate the effectiveness of our approach on both the MovieGen benchmark and a newly introduced benchmark tailored to the T2M-VDM combination, while highlighting its versatility across diverse use cases.
📅 2025-10-04 | 💬 This paper has been accepted for presentation in the Auto ML for Zero-Touch Network Management Workshop (WS04-01) at the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) 2025
This position paper presents A4FN, an Agentic Artificial Intelligence (AI) architecture for intent-driven automation in Flying Networks (FNs) using Unmanned Aerial Vehicles (UAVs) as access nodes. A4FN leverages Generative AI and Large Language Models (LLMs) to enable real-time, context-aware network control via a distributed agentic system. It comprises two components: the Perception Agent (PA), which semantically interprets multimodal input -- including imagery, audio, and telemetry data -- from UAV-mounted sensors to derive Service Level Specifications (SLSs); and the Decision-and-Action Agent (DAA), which reconfigures the network based on inferred intents. A4FN embodies key properties of Agentic AI, including autonomy, goal-driven reasoning, and continuous perception-action cycles. Designed for mission-critical, infrastructure-limited scenarios such as disaster response, it supports adaptive reconfiguration, dynamic resource management, and interoperability with emerging wireless technologies. The paper details the A4FN architecture, its core innovations, and open research challenges in multi-agent coordination and Agentic AI integration in next-generation FNs.
📅 2025-10-03 | 💬 In proceedings of UKCI 2025
The integration of Large Language Models (LLMs) into multiagent systems has opened new possibilities for collaborative reasoning and cooperation with AI agents. This paper explores different prompting methods and evaluates their effectiveness in enhancing agent collaborative behaviour and decision-making. We enhance CoELA, a framework designed for building Collaborative Embodied Agents that leverage LLMs for multi-agent communication, reasoning, and task coordination in shared virtual spaces. Through systematic experimentation, we examine different LLMs and prompt engineering strategies to identify optimised combinations that maximise collaboration performance. Furthermore, we extend our research by integrating speech capabilities, enabling seamless collaborative voice-based interactions. Our findings highlight the effectiveness of prompt optimisation in enhancing collaborative agent performance; for example, our best combination improved the efficiency of the system running with Gemma3 by 22% compared to the original CoELA system. In addition, the speech integration provides a more engaging user interface for iterative system development and demonstrations.
📅 2025-10-03
To support latency-sensitive AI applications ranging from autonomous driving to industrial robot manipulation, 6G envisions distributed ML, connecting distributed computational resources in edge and cloud over hyper-reliable low-latency communication (HRLLC). In this setting, speculative decoding can facilitate collaborative inference of models distributively deployed: an on-device draft model locally generates drafts and a remote server-based target model verifies and corrects them, resulting lower latency. However, unlike autoregressive text generation, behavior cloning policies, typically used for embodied AI applications like robot manipulation and autonomous driving, cannot parallelize verification and correction for multiple drafts as each action depends on observation which needs to be updated by a previous action. To this end, we propose Action Deviation-Aware Hybrid Inference, wherein the draft model estimates an action's need for verification and correction by the target model and selectively skips communication and computation for server operations. Action deviation shows a strong correlation with action's rejection probability by the target model, enabling selective skipping. We derive the path deviation threshold that balances the transmission rate and the inference performance, and we empirically show that action deviation-aware hybrid inference reduces uplink transmission and server operation by 40%, while lowering end-to-end latency by 33.32% relative to hybrid inference without skipping and achieving task success rate up to 97.03% of that of target model only inference.
📅 2025-10-03 | 💬 In proceedings of UKCI 2025
The integration of Large Language Models (LLMs) into multiagent systems has opened new possibilities for collaborative reasoning and cooperation with AI agents. This paper explores different prompting methods and evaluates their effectiveness in enhancing agent collaborative behaviour and decision-making. We enhance CoELA, a framework designed for building Collaborative Embodied Agents that leverage LLMs for multi-agent communication, reasoning, and task coordination in shared virtual spaces. Through systematic experimentation, we examine different LLMs and prompt engineering strategies to identify optimised combinations that maximise collaboration performance. Furthermore, we extend our research by integrating speech capabilities, enabling seamless collaborative voice-based interactions. Our findings highlight the effectiveness of prompt optimisation in enhancing collaborative agent performance; for example, our best combination improved the efficiency of the system running with Gemma3 by 22% compared to the original CoELA system. In addition, the speech integration provides a more engaging user interface for iterative system development and demonstrations.
📅 2025-10-02
Vision-Language-Action (VLA) models aim to unify perception, language understanding, and action generation, offering strong cross-task and cross-scene generalization with broad impact on embodied AI. However, current VLA models often lack explicit step-by-step reasoning, instead emitting final actions without considering affordance constraints or geometric relations. Their post-training pipelines also rarely reinforce reasoning quality, relying primarily on supervised fine-tuning with weak reward design. To address these challenges, we present VLA-R1, a reasoning-enhanced VLA that integrates Reinforcement Learning from Verifiable Rewards (RLVR) with Group Relative Policy Optimization (GRPO) to systematically optimize both reasoning and execution. Specifically, we design an RLVR-based post-training strategy with verifiable rewards for region alignment, trajectory consistency, and output formatting, thereby strengthening reasoning robustness and execution accuracy. Moreover, we develop VLA-CoT-13K, a high-quality dataset that provides chain-of-thought supervision explicitly aligned with affordance and trajectory annotations. Furthermore, extensive evaluations on in-domain, out-of-domain, simulation, and real-robot platforms demonstrate that VLA-R1 achieves superior generalization and real-world performance compared to prior VLA methods. We plan to release the model, code, and dataset following the publication of this work. Code: https://github.com/GigaAI-research/VLA-R1. Website: https://gigaai-research.github.io/VLA-R1.
📅 2025-10-02
Embodied Artificial Intelligence (AI) promises to handle edge cases in robotic vehicle systems where data is scarce by using common-sense reasoning grounded in perception and action to generalize beyond training distributions and adapt to novel real-world situations. These capabilities, however, also create new security risks. In this paper, we introduce CHAI (Command Hijacking against embodied AI), a new class of prompt-based attacks that exploit the multimodal language interpretation abilities of Large Visual-Language Models (LVLMs). CHAI embeds deceptive natural language instructions, such as misleading signs, in visual input, systematically searches the token space, builds a dictionary of prompts, and guides an attacker model to generate Visual Attack Prompts. We evaluate CHAI on four LVLM agents; drone emergency landing, autonomous driving, and aerial object tracking, and on a real robotic vehicle. Our experiments show that CHAI consistently outperforms state-of-the-art attacks. By exploiting the semantic and multimodal reasoning strengths of next-generation embodied AI systems, CHAI underscores the urgent need for defenses that extend beyond traditional adversarial robustness.
📅 2025-10-02
Autonomous drones must often respond to sudden events, such as alarms, faults, or unexpected changes in their environment, that require immediate and adaptive decision-making. Traditional approaches rely on safety engineers hand-coding large sets of recovery rules, but this strategy cannot anticipate the vast range of real-world contingencies and quickly becomes incomplete. Recent advances in embodied AI, powered by large visual language models, provide commonsense reasoning to assess context and generate appropriate actions in real time. We demonstrate this capability in a simulated urban benchmark in the Unreal Engine, where drones dynamically interpret their surroundings and decide on sudden maneuvers for safe landings. Our results show that embodied AI makes possible a new class of adaptive recovery and decision-making pipelines that were previously infeasible to design by hand, advancing resilience and safety in autonomous aerial systems.
📅 2025-10-02
We introduce $\infty$-THOR, a new framework for long-horizon embodied tasks that advances long-context understanding in embodied AI. $\infty$-THOR provides: (1) a generation framework for synthesizing scalable, reproducible, and unlimited long-horizon trajectories; (2) a novel embodied QA task, Needle(s) in the Embodied Haystack, where multiple scattered clues across extended trajectories test agents' long-context reasoning ability; and (3) a long-horizon dataset and benchmark suite featuring complex tasks that span hundreds of environment steps, each paired with ground-truth action sequences. To enable this capability, we explore architectural adaptations, including interleaved Goal-State-Action modeling, context extension techniques, and Context Parallelism, to equip LLM-based agents for extreme long-context reasoning and interaction. Experimental results and analyses highlight the challenges posed by our benchmark and provide insights into training strategies and model behaviors under long-horizon conditions. Our work provides a foundation for the next generation of embodied AI systems capable of robust, long-term reasoning and planning.
📅 2025-10-02
Vision-Language-Action (VLA) models aim to unify perception, language understanding, and action generation, offering strong cross-task and cross-scene generalization with broad impact on embodied AI. However, current VLA models often lack explicit step-by-step reasoning, instead emitting final actions without considering affordance constraints or geometric relations. Their post-training pipelines also rarely reinforce reasoning quality, relying primarily on supervised fine-tuning with weak reward design. To address these challenges, we present VLA-R1, a reasoning-enhanced VLA that integrates Reinforcement Learning from Verifiable Rewards (RLVR) with Group Relative Policy Optimization (GRPO) to systematically optimize both reasoning and execution. Specifically, we design an RLVR-based post-training strategy with verifiable rewards for region alignment, trajectory consistency, and output formatting, thereby strengthening reasoning robustness and execution accuracy. Moreover, we develop VLA-CoT-13K, a high-quality dataset that provides chain-of-thought supervision explicitly aligned with affordance and trajectory annotations. Furthermore, extensive evaluations on in-domain, out-of-domain, simulation, and real-robot platforms demonstrate that VLA-R1 achieves superior generalization and real-world performance compared to prior VLA methods. We plan to release the model, code, and dataset following the publication of this work. Code: https://github.com/GigaAI-research/VLA-R1. Website: https://gigaai-research.github.io/VLA-R1.
📅 2025-10-01
We introduce $\infty$-THOR, a new framework for long-horizon embodied tasks that advances long-context understanding in embodied AI. $\infty$-THOR provides: (1) a generation framework for synthesizing scalable, reproducible, and unlimited long-horizon trajectories; (2) a novel embodied QA task, Needle(s) in the Embodied Haystack, where multiple scattered clues across extended trajectories test agents' long-context reasoning ability; and (3) a long-horizon dataset and benchmark suite featuring complex tasks that span hundreds of environment steps, each paired with ground-truth action sequences. To enable this capability, we explore architectural adaptations, including interleaved Goal-State-Action modeling, context extension techniques, and Context Parallelism, to equip LLM-based agents for extreme long-context reasoning and interaction. Experimental results and analyses highlight the challenges posed by our benchmark and provide insights into training strategies and model behaviors under long-horizon conditions. Our work provides a foundation for the next generation of embodied AI systems capable of robust, long-term reasoning and planning.
📅 2025-10-01
Visual navigation is a fundamental problem in embodied AI, yet practical deployments demand long-horizon planning capabilities to address multi-objective tasks. A major bottleneck is data scarcity: policies learned from limited data often overfit and fail to generalize OOD. Existing neural network-based agents typically increase architectural complexity that paradoxically become counterproductive in the small-sample regime. This paper introduce NeuRO, a integrated learning-to-optimize framework that tightly couples perception networks with downstream task-level robust optimization. Specifically, NeuRO addresses core difficulties in this integration: (i) it transforms noisy visual predictions under data scarcity into convex uncertainty sets using Partially Input Convex Neural Networks (PICNNs) with conformal calibration, which directly parameterize the optimization constraints; and (ii) it reformulates planning under partial observability as a robust optimization problem, enabling uncertainty-aware policies that transfer across environments. Extensive experiments on both unordered and sequential multi-object navigation tasks demonstrate that NeuRO establishes SoTA performance, particularly in generalization to unseen environments. Our work thus presents a significant advancement for developing robust, generalizable autonomous agents.
📅 2025-10-01
We introduce $\infty$-THOR, a new framework for long-horizon embodied tasks that advances long-context understanding in embodied AI. $\infty$-THOR provides: (1) a generation framework for synthesizing scalable, reproducible, and unlimited long-horizon trajectories; (2) a novel embodied QA task, Needle(s) in the Embodied Haystack, where multiple scattered clues across extended trajectories test agents' long-context reasoning ability; and (3) a long-horizon dataset and benchmark suite featuring complex tasks that span hundreds of environment steps, each paired with ground-truth action sequences. To enable this capability, we explore architectural adaptations, including interleaved Goal-State-Action modeling, context extension techniques, and Context Parallelism, to equip LLM-based agents for extreme long-context reasoning and interaction. Experimental results and analyses highlight the challenges posed by our benchmark and provide insights into training strategies and model behaviors under long-horizon conditions. Our work provides a foundation for the next generation of embodied AI systems capable of robust, long-term reasoning and planning.
📅 2025-10-01
Wine tasting is a multimodal and culturally embedded activity that presents unique challenges when adapted to non-Western contexts. This paper proposes a service design approach rooted in contextual co-creation to reimagine wine tasting experiences for Chinese consumers. Drawing on 26 in-situ interviews and follow-up validation sessions, we identify three distinct user archetypes: Curious Tasters, Experience Seekers, and Knowledge Builders, each exhibiting different needs in vocabulary, interaction, and emotional pacing. Our findings reveal that traditional wine descriptors lack cultural resonance and that cross-modal metaphors grounded in local gastronomy (e.g., green mango for acidity) significantly improve cognitive and emotional engagement. These insights informed a partially implemented prototype, featuring AI-driven metaphor-to-flavour mappings and real-time affective feedback visualisation. A small-scale usability evaluation confirmed improvements in engagement and comprehension. Our comparative analysis shows alignment with and differentiation from prior multimodal and affect-aware tasting systems. This research contributes to CBMI by demonstrating how culturally adaptive interaction systems can enhance embodied consumption experiences in physical tourism and beyond.