gaussian splatting - 2023_12
Navigation
Home / Papers / gaussian splatting
- Part 1
Papers
Reconstructing the human body from single-view videos plays a pivotal role in the virtual reality domain. One prevalent application scenario necessitates the rapid reconstruction of high-fidelity 3D digital humans while simultaneously ensuring real-time rendering and interaction. Existing methods often struggle to fulfill both requirements. In this paper, we introduce Human101, a novel framework adept at producing high-fidelity dynamic 3D human reconstructions from 1-view videos by training 3D Gaussians in 100 seconds and rendering in 100+ FPS. Our method leverages the strengths of 3D Gaussian Splatting, which provides an explicit and efficient representation of 3D humans. Standing apart from prior NeRF-based pipelines, Human101 ingeniously applies a Human-centric Forward Gaussian Animation method to deform the parameters of 3D Gaussians, thereby enhancing rendering speed (i.e., rendering 1024-resolution images at an impressive 60+ FPS and rendering 512-resolution images at 100+ FPS). Experimental results indicate that our approach substantially eclipses current methods, clocking up to a 10 times surge in frames per second and delivering comparable or superior rendering quality. Code and demos will be released at https://github.com/longxiang-ai/Human101.
Recent advances in neural radiance fields enable novel view synthesis of photo-realistic images in dynamic settings, which can be applied to scenarios with human animation. Commonly used implicit backbones to establish accurate models, however, require many input views and additional annotations such as human masks, UV maps and depth maps. In this work, we propose ParDy-Human (Parameterized Dynamic Human Avatar), a fully explicit approach to construct a digital avatar from as little as a single monocular sequence. ParDy-Human introduces parameter-driven dynamics into 3D Gaussian Splatting where 3D Gaussians are deformed by a human pose model to animate the avatar. Our method is composed of two parts: A first module that deforms canonical 3D Gaussians according to SMPL vertices and a consecutive module that further takes their designed joint encodings and predicts per Gaussian deformations to deal with dynamics beyond SMPL vertex deformations. Images are then synthesized by a rasterizer. ParDy-Human constitutes an explicit model for realistic dynamic human avatars which requires significantly fewer training views and images. Our avatars learning is free of additional annotations such as masks and can be trained with variable backgrounds while inferring full-resolution images efficiently even on consumer hardware. We provide experimental evidence to show that ParDy-Human outperforms state-of-the-art methods on ZJU-MoCap and THUman4.0 datasets both quantitatively and visually.
3D editing plays a crucial role in many areas such as gaming and virtual reality. Traditional 3D editing methods, which rely on representations like meshes and point clouds, often fall short in realistically depicting complex scenes. On the other hand, methods based on implicit 3D representations, like Neural Radiance Field (NeRF), render complex scenes effectively but suffer from slow processing speeds and limited control over specific scene areas. In response to these challenges, our paper presents GaussianEditor, an innovative and efficient 3D editing algorithm based on Gaussian Splatting (GS), a novel 3D representation. GaussianEditor enhances precision and control in editing through our proposed Gaussian semantic tracing, which traces the editing target throughout the training process. Additionally, we propose Hierarchical Gaussian splatting (HGS) to achieve stabilized and fine results under stochastic generative guidance from 2D diffusion models. We also develop editing strategies for efficient object removal and integration, a challenging task for existing methods. Our comprehensive experiments demonstrate GaussianEditor's superior control, efficacy, and rapid performance, marking a significant advancement in 3D editing. Project Page: https://buaacyw.github.io/gaussian-editor/
Recent advancements in 3D reconstruction from single images have been driven by the evolution of generative models. Prominent among these are methods based on Score Distillation Sampling (SDS) and the adaptation of diffusion models in the 3D domain. Despite their progress, these techniques often face limitations due to slow optimization or rendering processes, leading to extensive training and optimization times. In this paper, we introduce a novel approach for single-view reconstruction that efficiently generates a 3D model from a single image via feed-forward inference. Our method utilizes two transformer-based networks, namely a point decoder and a triplane decoder, to reconstruct 3D objects using a hybrid Triplane-Gaussian intermediate representation. This hybrid representation strikes a balance, achieving a faster rendering speed compared to implicit representations while simultaneously delivering superior rendering quality than explicit representations. The point decoder is designed for generating point clouds from single images, offering an explicit representation which is then utilized by the triplane decoder to query Gaussian features for each point. This design choice addresses the challenges associated with directly regressing explicit 3D Gaussian attributes characterized by their non-structural nature. Subsequently, the 3D Gaussians are decoded by an MLP to enable rapid rendering through splatting. Both decoders are built upon a scalable, transformer-based architecture and have been efficiently trained on large-scale 3D datasets. The evaluations conducted on both synthetic datasets and real-world images demonstrate that our method not only achieves higher quality but also ensures a faster runtime in comparison to previous state-of-the-art techniques. Please see our project page at https://zouzx.github.io/TriplaneGaussian/.
Many species face the threat of extinction. It's important to study these species and gather information about them as much as possible to preserve biodiversity. Due to the rarity of endangered species, there is a limited amount of data available, making it difficult to apply data requiring generative AI methods to this domain. We aim to study the feasibility of generating consistent and real-like 3D models of endangered animals using limited data. Such a phenomenon leads us to utilize zero-shot stable diffusion models that can generate a 3D model out of a single image of the target species. This paper investigates the intricate relationship between elevation angle and the output quality of 3D model generation, focusing on the innovative approach presented in DreamGaussian. DreamGaussian, a novel framework utilizing Generative Gaussian Splatting along with novel mesh extraction and refinement algorithms, serves as the focal point of our study. We conduct a comprehensive analysis, analyzing the effect of varying elevation angles on DreamGaussian's ability to reconstruct 3D scenes accurately. Through an empirical evaluation, we demonstrate how changes in elevation angle impact the generated images' spatial coherence, structural integrity, and perceptual realism. We observed that giving a correct elevation angle with the input image significantly affects the result of the generated 3D model. We hope this study to be influential for the usability of AI to preserve endangered animals; while the penultimate aim is to obtain a model that can output biologically consistent 3D models via small samples, the qualitative interpretation of an existing state-of-the-art model such as DreamGaussian will be a step forward in our goal.
We propose a unified framework aimed at enhancing the diffusion priors for 3D generation tasks. Despite the critical importance of these tasks, existing methodologies often struggle to generate high-caliber results. We begin by examining the inherent limitations in previous diffusion priors. We identify a divergence between the diffusion priors and the training procedures of diffusion models that substantially impairs the quality of 3D generation. To address this issue, we propose a novel, unified framework that iteratively optimizes both the 3D model and the diffusion prior. Leveraging the different learnable parameters of the diffusion prior, our approach offers multiple configurations, affording various trade-offs between performance and implementation complexity. Notably, our experimental results demonstrate that our method markedly surpasses existing techniques, establishing new state-of-the-art in the realm of text-to-3D generation. Furthermore, our approach exhibits impressive performance on both NeRF and the newly introduced 3D Gaussian Splatting backbones. Additionally, our framework yields insightful contributions to the understanding of recent score distillation methods, such as the VSD and DDS loss.
The ability to animate photo-realistic head avatars reconstructed from monocular portrait video sequences represents a crucial step in bridging the gap between the virtual and real worlds. Recent advancements in head avatar techniques, including explicit 3D morphable meshes (3DMM), point clouds, and neural implicit representation have been exploited for this ongoing research. However, 3DMM-based methods are constrained by their fixed topologies, point-based approaches suffer from a heavy training burden due to the extensive quantity of points involved, and the last ones suffer from limitations in deformation flexibility and rendering efficiency. In response to these challenges, we propose MonoGaussianAvatar (Monocular Gaussian Point-based Head Avatar), a novel approach that harnesses 3D Gaussian point representation coupled with a Gaussian deformation field to learn explicit head avatars from monocular portrait videos. We define our head avatars with Gaussian points characterized by adaptable shapes, enabling flexible topology. These points exhibit movement with a Gaussian deformation field in alignment with the target pose and expression of a person, facilitating efficient deformation. Additionally, the Gaussian points have controllable shape, size, color, and opacity combined with Gaussian splatting, allowing for efficient training and rendering. Experiments demonstrate the superior performance of our method, which achieves state-of-the-art results among previous methods.
We have recently seen tremendous progress in photo-real human modeling and rendering. Yet, efficiently rendering realistic human performance and integrating it into the rasterization pipeline remains challenging. In this paper, we present HiFi4G, an explicit and compact Gaussian-based approach for high-fidelity human performance rendering from dense footage. Our core intuition is to marry the 3D Gaussian representation with non-rigid tracking, achieving a compact and compression-friendly representation. We first propose a dual-graph mechanism to obtain motion priors, with a coarse deformation graph for effective initialization and a fine-grained Gaussian graph to enforce subsequent constraints. Then, we utilize a 4D Gaussian optimization scheme with adaptive spatial-temporal regularizers to effectively balance the non-rigid prior and Gaussian updating. We also present a companion compression scheme with residual compensation for immersive experiences on various platforms. It achieves a substantial compression rate of approximately 25 times, with less than 2MB of storage per frame. Extensive experiments demonstrate the effectiveness of our approach, which significantly outperforms existing approaches in terms of optimization speed, rendering quality, and storage overhead.
We introduce Gaussian-Flow, a novel point-based approach for fast dynamic scene reconstruction and real-time rendering from both multi-view and monocular videos. In contrast to the prevalent NeRF-based approaches hampered by slow training and rendering speeds, our approach harnesses recent advancements in point-based 3D Gaussian Splatting (3DGS). Specifically, a novel Dual-Domain Deformation Model (DDDM) is proposed to explicitly model attribute deformations of each Gaussian point, where the time-dependent residual of each attribute is captured by a polynomial fitting in the time domain, and a Fourier series fitting in the frequency domain. The proposed DDDM is capable of modeling complex scene deformations across long video footage, eliminating the need for training separate 3DGS for each frame or introducing an additional implicit neural field to model 3D dynamics. Moreover, the explicit deformation modeling for discretized Gaussian points ensures ultra-fast training and rendering of a 4D scene, which is comparable to the original 3DGS designed for static 3D reconstruction. Our proposed approach showcases a substantial efficiency improvement, achieving a $5\times$ faster training speed compared to the per-frame 3DGS modeling. In addition, quantitative results demonstrate that the proposed Gaussian-Flow significantly outperforms previous leading methods in novel view rendering quality. Project page: https://nju-3dv.github.io/projects/Gaussian-Flow
We present, GauHuman, a 3D human model with Gaussian Splatting for both fast training (1 ~ 2 minutes) and real-time rendering (up to 189 FPS), compared with existing NeRF-based implicit representation modelling frameworks demanding hours of training and seconds of rendering per frame. Specifically, GauHuman encodes Gaussian Splatting in the canonical space and transforms 3D Gaussians from canonical space to posed space with linear blend skinning (LBS), in which effective pose and LBS refinement modules are designed to learn fine details of 3D humans under negligible computational cost. Moreover, to enable fast optimization of GauHuman, we initialize and prune 3D Gaussians with 3D human prior, while splitting/cloning via KL divergence guidance, along with a novel merge operation for further speeding up. Extensive experiments on ZJU_Mocap and MonoCap datasets demonstrate that GauHuman achieves state-of-the-art performance quantitatively and qualitatively with fast training and real-time rendering speed. Notably, without sacrificing rendering quality, GauHuman can fast model the 3D human performer with ~13k 3D Gaussians.
This report provides the mathematical details of the gsplat library, a modular toolbox for efficient differentiable Gaussian splatting, as proposed by Kerbl et al. It provides a self-contained reference for the computations involved in the forward and backward passes of differentiable Gaussian splatting. To facilitate practical usage and development, we provide a user friendly Python API that exposes each component of the forward and backward passes in rasterization at github.com/nerfstudio-project/gsplat .
We propose a method to allow precise and extremely fast mesh extraction from 3D Gaussian Splatting. Gaussian Splatting has recently become very popular as it yields realistic rendering while being significantly faster to train than NeRFs. It is however challenging to extract a mesh from the millions of tiny 3D gaussians as these gaussians tend to be unorganized after optimization and no method has been proposed so far. Our first key contribution is a regularization term that encourages the gaussians to align well with the surface of the scene. We then introduce a method that exploits this alignment to extract a mesh from the Gaussians using Poisson reconstruction, which is fast, scalable, and preserves details, in contrast to the Marching Cubes algorithm usually applied to extract meshes from Neural SDFs. Finally, we introduce an optional refinement strategy that binds gaussians to the surface of the mesh, and jointly optimizes these Gaussians and the mesh through Gaussian splatting rendering. This enables easy editing, sculpting, rigging, animating, compositing and relighting of the Gaussians using traditional softwares by manipulating the mesh instead of the gaussians themselves. Retrieving such an editable mesh for realistic rendering is done within minutes with our method, compared to hours with the state-of-the-art methods on neural SDFs, while providing a better rendering quality. Our project page is the following: https://anttwo.github.io/sugar/
The recent advancements in text-to-3D generation mark a significant milestone in generative models, unlocking new possibilities for creating imaginative 3D assets across various real-world scenarios. While recent advancements in text-to-3D generation have shown promise, they often fall short in rendering detailed and high-quality 3D models. This problem is especially prevalent as many methods base themselves on Score Distillation Sampling (SDS). This paper identifies a notable deficiency in SDS, that it brings inconsistent and low-quality updating direction for the 3D model, causing the over-smoothing effect. To address this, we propose a novel approach called Interval Score Matching (ISM). ISM employs deterministic diffusing trajectories and utilizes interval-based score matching to counteract over-smoothing. Furthermore, we incorporate 3D Gaussian Splatting into our text-to-3D generation pipeline. Extensive experiments show that our model largely outperforms the state-of-the-art in quality and training efficiency.
Differentiable rendering is a technique used in an important emerging class of visual computing applications that involves representing a 3D scene as a model that is trained from 2D images using gradient descent. Recent works (e.g. 3D Gaussian Splatting) use a rasterization pipeline to enable rendering high quality photo-realistic imagery at high speeds from these learned 3D models. These methods have been demonstrated to be very promising, providing state-of-art quality for many important tasks. However, training a model to represent a scene is still a time-consuming task even when using powerful GPUs. In this work, we observe that the gradient computation phase during training is a significant bottleneck on GPUs due to the large number of atomic operations that need to be processed. These atomic operations overwhelm atomic units in the L2 partitions causing stalls. To address this challenge, we leverage the observations that during the gradient computation: (1) for most warps, all threads atomically update the same memory locations; and (2) warps generate varying amounts of atomic traffic (since some threads may be inactive). We propose DISTWAR, a software-approach to accelerate atomic operations based on two key ideas: First, we enable warp-level reduction of threads at the SM sub-cores using registers to leverage the locality in intra-warp atomic updates. Second, we distribute the atomic computation between the warp-level reduction at the SM and the L2 atomic units to increase the throughput of atomic computation. Warps with many threads performing atomic updates to the same memory locations are scheduled at the SM, and the rest using L2 atomic units. We implement DISTWAR using existing warp-level primitives. We evaluate DISTWAR on widely used raster-based differentiable rendering workloads. We demonstrate significant speedups of 2.44x on average (up to 5.7x).
Existing neural implicit surface reconstruction methods have achieved impressive performance in multi-view 3D reconstruction by leveraging explicit geometry priors such as depth maps or point clouds as regularization. However, the reconstruction results still lack fine details because of the over-smoothed depth map or sparse point cloud. In this work, we propose a neural implicit surface reconstruction pipeline with guidance from 3D Gaussian Splatting to recover highly detailed surfaces. The advantage of 3D Gaussian Splatting is that it can generate dense point clouds with detailed structure. Nonetheless, a naive adoption of 3D Gaussian Splatting can fail since the generated points are the centers of 3D Gaussians that do not necessarily lie on the surface. We thus introduce a scale regularizer to pull the centers close to the surface by enforcing the 3D Gaussians to be extremely thin. Moreover, we propose to refine the point cloud from 3D Gaussians Splatting with the normal priors from the surface predicted by neural implicit models instead of using a fixed set of points as guidance. Consequently, the quality of surface reconstruction improves from the guidance of the more accurate 3D Gaussian splatting. By jointly optimizing the 3D Gaussian Splatting and the neural implicit model, our approach benefits from both representations and generates complete surfaces with intricate details. Experiments on Tanks and Temples verify the effectiveness of our proposed method.