gaussian splatting - 2025_08
Navigation
Home / Papers / gaussian splatting
Papers
We present a study of how to integrate color (RGB) and multi-spectral imagery (red, green, red-edge, and near-infrared) into the 3D Gaussian Splatting (3DGS) framework, a state-of-the-art explicit radiance-field-based method for fast and high-fidelity 3D reconstruction from multi-view images. While 3DGS excels on RGB data, naive per-band optimization of additional spectra yields poor reconstructions due to inconsistently appearing geometry in the spectral domain. This problem is prominent, even though the actual geometry is the same, regardless of spectral modality. To investigate this, we evaluate three strategies: 1) Separate per-band reconstruction with no shared structure. 2) Splitting optimization, in which we first optimize RGB geometry, copy it, and then fit each new band to the model by optimizing both geometry and band representation. 3) Joint, in which the modalities are jointly optimized, optionally with an initial RGB-only phase. We showcase through quantitative metrics and qualitative novel-view renderings on multi-spectral datasets the effectiveness of our dedicated optimized Joint strategy, increasing overall spectral reconstruction as well as enhancing RGB results through spectral cross-talk. We therefore suggest integrating multi-spectral data directly into the spherical harmonics color components to compactly model each Gaussian's multi-spectral reflectance. Moreover, our analysis reveals several key trade-offs in when and how to introduce spectral bands during optimization, offering practical insights for robust multi-modal 3DGS reconstruction.
Accurate 3D reconstruction in underwater environments remains a complex challenge due to issues such as light distortion, turbidity, and limited visibility. AI-based techniques have been applied to address these issues, however, existing methods have yet to fully exploit the potential of AI, particularly in integrating language models with visual processing. In this paper, we propose a novel framework that leverages multimodal cross-knowledge to create semantic-guided 3D Gaussian Splatting for robust and high-fidelity deep-sea scene reconstruction. By embedding an extra semantic feature into each Gaussian primitive and supervised by the CLIP extracted semantic feature, our method enforces semantic and structural awareness throughout the training. The dedicated semantic consistency loss ensures alignment with high-level scene understanding. Besides, we propose a novel stage-wise training strategy, combining coarse-to-fine learning with late-stage parameter refinement, to further enhance both stability and reconstruction quality. Extensive results show that our approach consistently outperforms state-of-the-art methods on SeaThru-NeRF and Submerged3D datasets across three metrics, with an improvement of up to 3.09 dB on average in terms of PSNR, making it a strong candidate for applications in underwater exploration and marine perception.
The growing popularity of 3D Gaussian Splatting (3DGS) has intensified the need for effective copyright protection. Current 3DGS watermarking methods rely on computationally expensive fine-tuning procedures for each predefined message. We propose the first generalizable watermarking framework that enables efficient protection of Splatter Image-based 3DGS models through a single forward pass. We introduce GaussianBridge that transforms unstructured 3D Gaussians into Splatter Image format, enabling direct neural processing for arbitrary message embedding. To ensure imperceptibility, we design a Gaussian-Uncertainty-Perceptual heatmap prediction strategy for preserving visual quality. For robust message recovery, we develop a dense segmentation-based extraction mechanism that maintains reliable extraction even when watermarked objects occupy minimal regions in rendered views. Project page: https://kevinhuangxf.github.io/marksplatter.
Visual SLAM algorithms have been enhanced through the exploration of Gaussian Splatting representations, particularly in generating high-fidelity dense maps. While existing methods perform reliably in static environments, they often encounter camera tracking drift and fuzzy mapping when dealing with the disturbances caused by moving objects. This paper presents DyPho-SLAM, a real-time, resource-efficient visual SLAM system designed to address the challenges of localization and photorealistic mapping in environments with dynamic objects. Specifically, the proposed system integrates prior image information to generate refined masks, effectively minimizing noise from mask misjudgment. Additionally, to enhance constraints for optimization after removing dynamic obstacles, we devise adaptive feature extraction strategies significantly improving the system's resilience. Experiments conducted on publicly dynamic RGB-D datasets demonstrate that the proposed system achieves state-of-the-art performance in camera pose estimation and dense map reconstruction, while operating in real-time in dynamic scenes.
Reconstructing high-fidelity underwater scenes remains a challenging task due to light absorption, scattering, and limited visibility inherent in aquatic environments. This paper presents an enhanced Gaussian Splatting-based framework that improves both the visual quality and geometric accuracy of deep underwater rendering. We propose decoupled learning for RGB channels, guided by the physics of underwater attenuation, to enable more accurate colour restoration. To address sparse-view limitations and improve view consistency, we introduce a frame interpolation strategy with a novel adaptive weighting scheme. Additionally, we introduce a new loss function aimed at reducing noise while preserving edges, which is essential for deep-sea content. We also release a newly collected dataset, Submerged3D, captured specifically in deep-sea environments. Experimental results demonstrate that our framework consistently outperforms state-of-the-art methods with PSNR gains up to 1.90dB, delivering superior perceptual quality and robustness, and offering promising directions for marine robotics and underwater visual analytics. The code of RUSplatting is available at https://github.com/theflash987/RUSplatting and the dataset Submerged3D can be downloaded at https://zenodo.org/records/15482420.
Despite the advancements in quality and efficiency achieved by 3D Gaussian Splatting (3DGS) in 3D scene rendering, aliasing artifacts remain a persistent challenge. Existing approaches primarily rely on low-pass filtering to mitigate aliasing. However, these methods are not sensitive to the sampling rate, often resulting in under-filtering and over-smoothing renderings. To address this limitation, we propose LOD-GS, a Level-of-Detail-sensitive filtering framework for Gaussian Splatting, which dynamically predicts the optimal filtering strength for each 3D Gaussian primitive. Specifically, we introduce a set of basis functions to each Gaussian, which take the sampling rate as input to model appearance variations, enabling sampling-rate-sensitive filtering. These basis function parameters are jointly optimized with the 3D Gaussian in an end-to-end manner. The sampling rate is influenced by both focal length and camera distance. However, existing methods and datasets rely solely on down-sampling to simulate focal length changes for anti-aliasing evaluation, overlooking the impact of camera distance. To enable a more comprehensive assessment, we introduce a new synthetic dataset featuring objects rendered at varying camera distances. Extensive experiments on both public datasets and our newly collected dataset demonstrate that our method achieves SOTA rendering quality while effectively eliminating aliasing. The code and dataset have been open-sourced.
Simultaneous Localization and Mapping (SLAM) is a critical task that enables autonomous vehicles to construct maps and localize themselves in unknown environments. Recent breakthroughs combine SLAM with 3D Gaussian Splatting (3DGS) to achieve exceptional reconstruction fidelity. However, existing 3DGS-SLAM systems provide insufficient throughput due to the need for multiple training iterations per frame and the vast number of Gaussians. In this paper, we propose AGS, an algorithm-hardware co-design framework to boost the efficiency of 3DGS-SLAM based on the intuition that SLAM systems process frames in a streaming manner, where adjacent frames exhibit high similarity that can be utilized for acceleration. On the software level: 1) We propose a coarse-then-fine-grained pose tracking method with respect to the robot's movement. 2) We avoid redundant computations of Gaussians by sharing their contribution information across frames. On the hardware level, we propose a frame covisibility detection engine to extract intermediate data from the video CODEC. We also implement a pose tracking engine and a mapping engine with workload schedulers to efficiently deploy the AGS algorithm. Our evaluation shows that AGS achieves up to $17.12\times$, $6.71\times$, and $5.41\times$ speedups against the mobile and high-end GPUs, and a state-of-the-art 3DGS accelerator, GSCore.
Gaussian splatting typically requires dense observations of the scene and can fail to reconstruct occluded and unobserved areas. We propose a latent diffusion model to reconstruct a complete 3D scene with Gaussian splats, including the occluded parts, from only a single image during inference. Completing the unobserved surfaces of a scene is challenging due to the ambiguity of the plausible surfaces. Conventional methods use a regression-based formulation to predict a single "mode" for occluded and out-of-frustum surfaces, leading to blurriness, implausibility, and failure to capture multiple possible explanations. Thus, they often address this problem partially, focusing either on objects isolated from the background, reconstructing only visible surfaces, or failing to extrapolate far from the input views. In contrast, we propose a generative formulation to learn a distribution of 3D representations of Gaussian splats conditioned on a single input image. To address the lack of ground-truth training data, we propose a Variational AutoReconstructor to learn a latent space only from 2D images in a self-supervised manner, over which a diffusion model is trained. Our method generates faithful reconstructions and diverse samples with the ability to complete the occluded surfaces for high-quality 360-degree renderings.
3D Gaussian Splatting (3DGS) enables high-fidelity real-time rendering, a key requirement for immersive applications. However, the extension of 3DGS to dynamic scenes remains limitations on the substantial data volume of dense Gaussians and the prolonged training time required for each frame. This paper presents \M, a scalable Gaussian Splatting framework designed for efficient training in streaming tasks. Specifically, Gaussian spheres are hierarchically organized by scale within an anchor-based structure. Coarser-level Gaussians represent the low-resolution structure of the scene, while finer-level Gaussians, responsible for detailed high-fidelity rendering, are selectively activated by the coarser-level Gaussians. To further reduce computational overhead, we introduce a hybrid deformation and spawning strategy that models motion of inter-frame through Gaussian deformation and triggers Gaussian spawning to characterize wide-range motion. Additionally, a bidirectional adaptive masking mechanism enhances training efficiency by removing static regions and prioritizing informative viewpoints. Extensive experiments demonstrate that \M~ achieves superior visual quality while significantly reducing training time compared to state-of-the-art methods.
Reconstructing high-quality 3D meshes and visuals from 3D Gaussian Splatting(3DGS) still remains a central challenge in computer graphics. Although existing models such as SuGaR offer effective solutions for rendering, there is is still room to improve improve both visual fidelity and scene consistency. This work builds upon SuGaR by introducing two complementary regularization strategies that address common limitations in both the shape of individual Gaussians and the coherence of the overall surface. The first strategy introduces an effective rank regularization, motivated by recent studies on Gaussian primitive structures. This regularization discourages extreme anisotropy-specifically, "needle-like" shapes-by favoring more balanced, "disk-like" forms that are better suited for stable surface reconstruction. The second strategy integrates a neural Signed Distance Function (SDF) into the optimization process. The SDF is regularized with an Eikonal loss to maintain proper distance properties and provides a continuous global surface prior, guiding Gaussians toward better alignment with the underlying geometry. These two regularizations aim to improve both the fidelity of individual Gaussian primitives and their collective surface behavior. The final model can make more accurate and coherent visuals from 3DGS data.
DexFruit is a robotic manipulation framework that enables gentle, autonomous handling of fragile fruit and precise evaluation of damage. Many fruits are fragile and prone to bruising, thus requiring humans to manually harvest them with care. In this work, we demonstrate by using optical tactile sensing, autonomous manipulation of fruit with minimal damage can be achieved. We show that our tactile informed diffusion policies outperform baselines in both reduced bruising and pick-and-place success rate across three fruits: strawberries, tomatoes, and blackberries. In addition, we introduce FruitSplat, a novel technique to represent and quantify visual damage in high-resolution 3D representation via 3D Gaussian Splatting (3DGS). Existing metrics for measuring damage lack quantitative rigor or require expensive equipment. With FruitSplat, we distill a 2D strawberry mask as well as a 2D bruise segmentation mask into the 3DGS representation. Furthermore, this representation is modular and general, compatible with any relevant 2D model. Overall, we demonstrate a 92% grasping policy success rate, up to a 20% reduction in visual bruising, and up to an 31% improvement in grasp success rate on challenging fruit compared to our baselines across our three tested fruits. We rigorously evaluate this result with over 630 trials. Please checkout our website at https://dex-fruit.github.io .
The emergence of 3D artificial intelligence-generated content (3D-AIGC) has enabled rapid synthesis of intricate geometries. However, a fundamental disconnect persists between AI-generated content and human-centric design paradigms, rooted in representational incompatibilities: conventional AI frameworks predominantly manipulate meshes or neural representations (\emph{e.g.}, NeRF, Gaussian Splatting), while designers operate within parametric modeling tools. This disconnection diminishes the practical value of AI for 3D industry, undermining the efficiency of human-AI collaboration. To resolve this disparity, we focus on generating design operation sequences, which are structured modeling histories that comprehensively capture the step-by-step construction process of 3D assets and align with designers' typical workflows in modern 3D software. We first reformulate fundamental modeling operations (\emph{e.g.}, \emph{Extrude}, \emph{Boolean}) into differentiable units, enabling joint optimization of continuous (\emph{e.g.}, \emph{Extrude} height) and discrete (\emph{e.g.}, \emph{Boolean} type) parameters via gradient-based learning. Based on these differentiable operations, a hierarchical graph with gating mechanism is constructed and optimized end-to-end by minimizing Chamfer Distance to target geometries. Multi-stage sequence length constraint and domain rule penalties enable unsupervised learning of compact design sequences without ground-truth sequence supervision. Extensive validation demonstrates that the generated operation sequences achieve high geometric fidelity, smooth mesh wiring, rational step composition and flexible editing capacity, with full compatibility within design industry.
Generalizable Gaussian Splatting aims to synthesize novel views for unseen scenes without per-scene optimization. In particular, recent advancements utilize feed-forward networks to predict per-pixel Gaussian parameters, enabling high-quality synthesis from sparse input views. However, existing approaches fall short in encoding discriminative, multi-view consistent features for Gaussian predictions, which struggle to construct accurate geometry with sparse views. To address this, we propose $\mathbf{C}^{3}$-GS, a framework that enhances feature learning by incorporating context-aware, cross-dimension, and cross-scale constraints. Our architecture integrates three lightweight modules into a unified rendering pipeline, improving feature fusion and enabling photorealistic synthesis without requiring additional supervision. Extensive experiments on benchmark datasets validate that $\mathbf{C}^{3}$-GS achieves state-of-the-art rendering quality and generalization ability. Code is available at: https://github.com/YuhsiHu/C3-GS.
Recent advances in Gaussian Splatting have significantly boosted the reconstruction of head avatars, enabling high-quality facial modeling by representing an 3D avatar as a collection of 3D Gaussians. However, existing methods predominantly rely on frontal-view images, leaving the back-head poorly constructed. This leads to geometric inconsistencies, structural blurring, and reduced realism in the rear regions, ultimately limiting the fidelity of reconstructed avatars. To address this challenge, we propose AvatarBack, a novel plug-and-play framework specifically designed to reconstruct complete and consistent 3D Gaussian avatars by explicitly modeling the missing back-head regions. AvatarBack integrates two core technical innovations,i.e., the Subject-specific Generator (SSG) and the Adaptive Spatial Alignment Strategy (ASA). The former leverages a generative prior to synthesize identity-consistent, plausible back-view pseudo-images from sparse frontal inputs, providing robust multi-view supervision. To achieve precise geometric alignment between these synthetic views and the 3D Gaussian representation, the later employs learnable transformation matrices optimized during training, effectively resolving inherent pose and coordinate discrepancies. Extensive experiments on NeRSemble and K-hairstyle datasets, evaluated using geometric, photometric, and GPT-4o-based perceptual metrics, demonstrate that AvatarBack significantly enhances back-head reconstruction quality while preserving frontal fidelity. Moreover, the reconstructed avatars maintain consistent visual realism under diverse motions and remain fully animatable.
Corner cases are crucial for training and validating autonomous driving systems, yet collecting them from the real world is often costly and hazardous. Editing objects within captured sensor data offers an effective alternative for generating diverse scenarios, commonly achieved through 3D Gaussian Splatting or image generative models. However, these approaches often suffer from limited visual fidelity or imprecise pose control. To address these issues, we propose G^2Editor, a framework designed for photorealistic and precise object editing in driving videos. Our method leverages a 3D Gaussian representation of the edited object as a dense prior, injected into the denoising process to ensure accurate pose control and spatial consistency. A scene-level 3D bounding box layout is employed to reconstruct occluded areas of non-target objects. Furthermore, to guide the appearance details of the edited object, we incorporate hierarchical fine-grained features as additional conditions during generation. Experiments on the Waymo Open Dataset demonstrate that G^2Editor effectively supports object repositioning, insertion, and deletion within a unified framework, outperforming existing methods in both pose controllability and visual quality, while also benefiting downstream data-driven tasks.
Existing evaluation paradigms for Autonomous Vehicles (AVs) face critical limitations. Real-world evaluation is often challenging due to safety concerns and a lack of reproducibility, whereas closed-loop simulation can face insufficient realism or high computational costs. Open-loop evaluation, while being efficient and data-driven, relies on metrics that generally overlook compounding errors. In this paper, we propose pseudo-simulation, a novel paradigm that addresses these limitations. Pseudo-simulation operates on real datasets, similar to open-loop evaluation, but augments them with synthetic observations generated prior to evaluation using 3D Gaussian Splatting. Our key idea is to approximate potential future states the AV might encounter by generating a diverse set of observations that vary in position, heading, and speed. Our method then assigns a higher importance to synthetic observations that best match the AV's likely behavior using a novel proximity-based weighting scheme. This enables evaluating error recovery and the mitigation of causal confusion, as in closed-loop benchmarks, without requiring sequential interactive simulation. We show that pseudo-simulation is better correlated with closed-loop simulations ($R^2=0.8$) than the best existing open-loop approach ($R^2=0.7$). We also establish a public leaderboard for the community to benchmark new methodologies with pseudo-simulation. Our code is available at https://github.com/autonomousvision/navsim.
360-degree visual content is widely shared on platforms such as YouTube and plays a central role in virtual reality, robotics, and autonomous navigation. However, consumer-grade dual-fisheye systems consistently yield imperfect panoramas due to inherent lens separation and angular distortions. In this work, we introduce a novel calibration framework that incorporates a dual-fisheye camera model into the 3D Gaussian splatting pipeline. Our approach not only simulates the realistic visual artifacts produced by dual-fisheye cameras but also enables the synthesis of seamlessly rendered 360-degree images. By jointly optimizing 3D Gaussian parameters alongside calibration variables that emulate lens gaps and angular distortions, our framework transforms imperfect omnidirectional inputs into flawless novel view synthesis. Extensive evaluations on real-world datasets confirm that our method produces seamless renderings-even from imperfect images-and outperforms existing 360-degree rendering models.
3D Gaussian Splatting, known for enabling high-quality static scene reconstruction with fast rendering, is increasingly being applied to dynamic scene reconstruction. A common strategy involves learning a deformation field to model the temporal changes of a canonical set of 3D Gaussians. However, these deformation-based methods often produce blurred renderings and lose fine motion details in highly dynamic regions due to the inherent limitations of a single, unified model in representing diverse motion patterns. To address these challenges, we introduce Motion-Aware Partitioning of Deformable 3D Gaussian Splatting (MAPo), a novel framework for high-fidelity dynamic scene reconstruction. Its core is a dynamic score-based partitioning strategy that distinguishes between high- and low-dynamic 3D Gaussians. For high-dynamic 3D Gaussians, we recursively partition them temporally and duplicate their deformation networks for each new temporal segment, enabling specialized modeling to capture intricate motion details. Concurrently, low-dynamic 3DGs are treated as static to reduce computational costs. However, this temporal partitioning strategy for high-dynamic 3DGs can introduce visual discontinuities across frames at the partition boundaries. To address this, we introduce a cross-frame consistency loss, which not only ensures visual continuity but also further enhances rendering quality. Extensive experiments demonstrate that MAPo achieves superior rendering quality compared to baselines while maintaining comparable computational costs, particularly in regions with complex or rapid motions.
Despite significant progress in 3D avatar reconstruction, it still faces challenges such as high time complexity, sensitivity to data quality, and low data utilization. We propose FastAvatar, a feedforward 3D avatar framework capable of flexibly leveraging diverse daily recordings (e.g., a single image, multi-view observations, or monocular video) to reconstruct a high-quality 3D Gaussian Splatting (3DGS) model within seconds, using only a single unified model. FastAvatar's core is a Large Gaussian Reconstruction Transformer featuring three key designs: First, a variant VGGT-style transformer architecture aggregating multi-frame cues while injecting initial 3D prompt to predict an aggregatable canonical 3DGS representation; Second, multi-granular guidance encoding (camera pose, FLAME expression, head pose) mitigating animation-induced misalignment for variable-length inputs; Third, incremental Gaussian aggregation via landmark tracking and sliced fusion losses. Integrating these features, FastAvatar enables incremental reconstruction, i.e., improving quality with more observations, unlike prior work wasting input data. This yields a quality-speed-tunable paradigm for highly usable avatar modeling. Extensive experiments show that FastAvatar has higher quality and highly competitive speed compared to existing methods.
3D Gaussian Splatting (3DGS) has emerged as a novel explicit representation for 3D scenes, offering both high-fidelity reconstruction and efficient rendering. However, 3DGS lacks 3D segmentation ability, which limits its applicability in tasks that require scene understanding. The identification and isolating of specific object components is crucial. To address this limitation, we propose Label-aware 3D Gaussian Splatting (LabelGS), a method that augments the Gaussian representation with object label.LabelGS introduces cross-view consistent semantic masks for 3D Gaussians and employs a novel Occlusion Analysis Model to avoid overfitting occlusion during optimization, Main Gaussian Labeling model to lift 2D semantic prior to 3D Gaussian and Gaussian Projection Filter to avoid Gaussian label conflict. Our approach achieves effective decoupling of Gaussian representations and refines the 3DGS optimization process through a random region sampling strategy, significantly improving efficiency. Extensive experiments demonstrate that LabelGS outperforms previous state-of-the-art methods, including Feature-3DGS, in the 3D scene segmentation task. Notably, LabelGS achieves a remarkable 22X speedup in training compared to Feature-3DGS, at a resolution of 1440X1080. Our code will be at https://github.com/garrisonz/LabelGS.
We introduce Style4D-Bench, the first benchmark suite specifically designed for 4D stylization, with the goal of standardizing evaluation and facilitating progress in this emerging area. Style4D-Bench comprises: 1) a comprehensive evaluation protocol measuring spatial fidelity, temporal coherence, and multi-view consistency through both perceptual and quantitative metrics, 2) a strong baseline that make an initial attempt for 4D stylization, and 3) a curated collection of high-resolution dynamic 4D scenes with diverse motions and complex backgrounds. To establish a strong baseline, we present Style4D, a novel framework built upon 4D Gaussian Splatting. It consists of three key components: a basic 4DGS scene representation to capture reliable geometry, a Style Gaussian Representation that leverages lightweight per-Gaussian MLPs for temporally and spatially aware appearance control, and a Holistic Geometry-Preserved Style Transfer module designed to enhance spatio-temporal consistency via contrastive coherence learning and structural content preservation. Extensive experiments on Style4D-Bench demonstrate that Style4D achieves state-of-the-art performance in 4D stylization, producing fine-grained stylistic details with stable temporal dynamics and consistent multi-view rendering. We expect Style4D-Bench to become a valuable resource for benchmarking and advancing research in stylized rendering of dynamic 3D scenes. Project page: https://becky-catherine.github.io/Style4D . Code: https://github.com/Becky-catherine/Style4D-Bench .
Inferring the physical properties of 3D scenes from visual information is a critical yet challenging task for creating interactive and realistic virtual worlds. While humans intuitively grasp material characteristics such as elasticity or stiffness, existing methods often rely on slow, per-scene optimization, limiting their generalizability and application. To address this problem, we introduce PIXIE, a novel method that trains a generalizable neural network to predict physical properties across multiple scenes from 3D visual features purely using supervised losses. Once trained, our feed-forward network can perform fast inference of plausible material fields, which coupled with a learned static scene representation like Gaussian Splatting enables realistic physics simulation under external forces. To facilitate this research, we also collected PIXIEVERSE, one of the largest known datasets of paired 3D assets and physic material annotations. Extensive evaluations demonstrate that PIXIE is about 1.46-4.39x better and orders of magnitude faster than test-time optimization methods. By leveraging pretrained visual features like CLIP, our method can also zero-shot generalize to real-world scenes despite only ever been trained on synthetic data. https://pixie-3d.github.io/
Visual localization is the task of estimating a camera pose in a known environment. In this paper, we utilize 3D Gaussian Splatting (3DGS)-based representations for accurate and privacy-preserving visual localization. We propose Gaussian Splatting Feature Fields (GSFFs), a scene representation for visual localization that combines an explicit geometry model (3DGS) with an implicit feature field. We leverage the dense geometric information and differentiable rasterization algorithm from 3DGS to learn robust feature representations grounded in 3D. In particular, we align a 3D scale-aware feature field and a 2D feature encoder in a common embedding space through a contrastive framework. Using a 3D structure-informed clustering procedure, we further regularize the representation learning and seamlessly convert the features to segmentations, which can be used for privacy-preserving visual localization. Pose refinement, which involves aligning either feature maps or segmentations from a query image with those rendered from the GSFFs scene representation, is used to achieve localization. The resulting privacy- and non-privacy-preserving localization pipelines, evaluated on multiple real-world datasets, show state-of-the-art performances.
Radiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering. However, with sparse input views, the lack of multi-view consistency constraints results in poorly initialized Gaussians and unreliable heuristics for optimization, leading to suboptimal performance. Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images. Additionally, they rely on dense initialization, which limits the efficiency of scene representation. To overcome these challenges, we propose a view synthesis framework based on 3D Gaussian Splatting, named MCGS, enabling photorealistic scene reconstruction from sparse views. The key innovations of MCGS in enhancing multi-view consistency are as follows: i) We leverage matching priors from a sparse matcher to initialize Gaussians primarily on textured regions, while low-texture areas are populated with randomly distributed Gaussians. This yields a compact yet sufficient set of initial Gaussians. ii) We propose a multi-view consistency-guided progressive pruning strategy to dynamically eliminate inconsistent Gaussians. This approach confines their optimization to a consistency-constrained space, which ensures robust and coherent scene reconstruction. These strategies enhance robustness to sparse views, accelerate rendering, and reduce memory consumption, making MCGS a practical framework for 3D Gaussian Splatting.
Online mapping models show remarkable results in predicting vectorized maps from multi-view camera images only. However, all existing approaches still rely on ground-truth high-definition maps during training, which are expensive to obtain and often not geographically diverse enough for reliable generalization. In this work, we propose PseudoMapTrainer, a novel approach to online mapping that uses pseudo-labels generated from unlabeled sensor data. We derive those pseudo-labels by reconstructing the road surface from multi-camera imagery using Gaussian splatting and semantics of a pre-trained 2D segmentation network. In addition, we introduce a mask-aware assignment algorithm and loss function to handle partially masked pseudo-labels, allowing for the first time the training of online mapping models without any ground-truth maps. Furthermore, our pseudo-labels can be effectively used to pre-train an online model in a semi-supervised manner to leverage large-scale unlabeled crowdsourced data. The code is available at github.com/boschresearch/PseudoMapTrainer.
3D Gaussian Splatting (3DGS) has demonstrated impressive performance in novel view synthesis under dense-view settings. However, in sparse-view scenarios, despite the realistic renderings in training views, 3DGS occasionally manifests appearance artifacts in novel views. This paper investigates the appearance artifacts in sparse-view 3DGS and uncovers a core limitation of current approaches: the optimized Gaussians are overly-entangled with one another to aggressively fit the training views, which leads to a neglect of the real appearance distribution of the underlying scene and results in appearance artifacts in novel views. The analysis is based on a proposed metric, termed Co-Adaptation Score (CA), which quantifies the entanglement among Gaussians, i.e., co-adaptation, by computing the pixel-wise variance across multiple renderings of the same viewpoint, with different random subsets of Gaussians. The analysis reveals that the degree of co-adaptation is naturally alleviated as the number of training views increases. Based on the analysis, we propose two lightweight strategies to explicitly mitigate the co-adaptation in sparse-view 3DGS: (1) random gaussian dropout; (2) multiplicative noise injection to the opacity. Both strategies are designed to be plug-and-play, and their effectiveness is validated across various methods and benchmarks. We hope that our insights into the co-adaptation effect will inspire the community to achieve a more comprehensive understanding of sparse-view 3DGS.
High-fidelity reconstruction of deformable tissues from endoscopic videos remains challenging due to the limitations of existing methods in capturing subtle color variations and modeling global deformations. While 3D Gaussian Splatting (3DGS) enables efficient dynamic reconstruction, its fixed per-Gaussian color assignment struggles with intricate textures, and linear deformation modeling fails to model consistent global deformation. To address these issues, we propose ColorGS, a novel framework that integrates spatially adaptive color encoding and enhanced deformation modeling for surgical scene reconstruction. First, we introduce Colored Gaussian Primitives, which employ dynamic anchors with learnable color parameters to adaptively encode spatially varying textures, significantly improving color expressiveness under complex lighting and tissue similarity. Second, we design an Enhanced Deformation Model (EDM) that combines time-aware Gaussian basis functions with learnable time-independent deformations, enabling precise capture of both localized tissue deformations and global motion consistency caused by surgical interactions. Extensive experiments on DaVinci robotic surgery videos and benchmark datasets (EndoNeRF, StereoMIS) demonstrate that ColorGS achieves state-of-the-art performance, attaining a PSNR of 39.85 (1.5 higher than prior 3DGS-based methods) and superior SSIM (97.25\%) while maintaining real-time rendering efficiency. Our work advances surgical scene reconstruction by balancing high fidelity with computational practicality, critical for intraoperative guidance and AR/VR applications.
Understanding the 3D geometry of transparent objects from RGB images is challenging due to their inherent physical properties, such as reflection and refraction. To address these difficulties, especially in scenarios with sparse views and dynamic environments, we introduce TRAN-D, a novel 2D Gaussian Splatting-based depth reconstruction method for transparent objects. Our key insight lies in separating transparent objects from the background, enabling focused optimization of Gaussians corresponding to the object. We mitigate artifacts with an object-aware loss that places Gaussians in obscured regions, ensuring coverage of invisible surfaces while reducing overfitting. Furthermore, we incorporate a physics-based simulation that refines the reconstruction in just a few seconds, effectively handling object removal and chain-reaction movement of remaining objects without the need for rescanning. TRAN-D is evaluated on both synthetic and real-world sequences, and it consistently demonstrated robust improvements over existing GS-based state-of-the-art methods. In comparison with baselines, TRAN-D reduces the mean absolute error by over 39% for the synthetic TRansPose sequences. Furthermore, despite being updated using only one image, TRAN-D reaches a {\delta} < 2.5 cm accuracy of 48.46%, over 1.5 times that of baselines, which uses six images. Code and more results are available at https://jeongyun0609.github.io/TRAN-D/.
We introduce GSVisLoc, a visual localization method designed for 3D Gaussian Splatting (3DGS) scene representations. Given a 3DGS model of a scene and a query image, our goal is to estimate the camera's position and orientation. We accomplish this by robustly matching scene features to image features. Scene features are produced by downsampling and encoding the 3D Gaussians while image features are obtained by encoding image patches. Our algorithm proceeds in three steps, starting with coarse matching, then fine matching, and finally by applying pose refinement for an accurate final estimate. Importantly, our method leverages the explicit 3DGS scene representation for visual localization without requiring modifications, retraining, or additional reference images. We evaluate GSVisLoc on both indoor and outdoor scenes, demonstrating competitive localization performance on standard benchmarks while outperforming existing 3DGS-based baselines. Moreover, our approach generalizes effectively to novel scenes without additional training.
Camera pose refinement aims at improving the accuracy of initial pose estimation for applications in 3D computer vision. Most refinement approaches rely on 2D-3D correspondences with specific descriptors or dedicated networks, requiring reconstructing the scene again for a different descriptor or fully retraining the network for each scene. Some recent methods instead infer pose from feature similarity, but their lack of geometry constraints results in less accuracy. To overcome these limitations, we propose a novel camera pose refinement framework leveraging 3D Gaussian Splatting (3DGS), referred to as GS-SMC. Given the widespread usage of 3DGS, our method can employ an existing 3DGS model to render novel views, providing a lightweight solution that can be directly applied to diverse scenes without additional training or fine-tuning. Specifically, we introduce an iterative optimization approach, which refines the camera pose using epipolar geometric constraints among the query and multiple rendered images. Our method allows flexibly choosing feature extractors and matchers to establish these constraints. Extensive empirical evaluations on the 7-Scenes and the Cambridge Landmarks datasets demonstrate that our method outperforms state-of-the-art camera pose refinement approaches, achieving 53.3% and 56.9% reductions in median translation and rotation errors on 7-Scenes, and 40.7% and 53.2% on Cambridge.
Surface reconstruction has been widely studied in computer vision and graphics. However, existing surface reconstruction works struggle to recover accurate scene geometry when the input views are extremely sparse. To address this issue, we propose MeshSplat, a generalizable sparse-view surface reconstruction framework via Gaussian Splatting. Our key idea is to leverage 2DGS as a bridge, which connects novel view synthesis to learned geometric priors and then transfers these priors to achieve surface reconstruction. Specifically, we incorporate a feed-forward network to predict per-view pixel-aligned 2DGS, which enables the network to synthesize novel view images and thus eliminates the need for direct 3D ground-truth supervision. To improve the accuracy of 2DGS position and orientation prediction, we propose a Weighted Chamfer Distance Loss to regularize the depth maps, especially in overlapping areas of input views, and also a normal prediction network to align the orientation of 2DGS with normal vectors predicted by a monocular normal estimator. Extensive experiments validate the effectiveness of our proposed improvement, demonstrating that our method achieves state-of-the-art performance in generalizable sparse-view mesh reconstruction tasks. Project Page: https://hanzhichang.github.io/meshsplat_web
Mesh models have become increasingly accessible for numerous cities; however, the lack of realistic textures restricts their application in virtual urban navigation and autonomous driving. To address this, this paper proposes MeSS (Meshbased Scene Synthesis) for generating high-quality, styleconsistent outdoor scenes with city mesh models serving as the geometric prior. While image and video diffusion models can leverage spatial layouts (such as depth maps or HD maps) as control conditions to generate street-level perspective views, they are not directly applicable to 3D scene generation. Video diffusion models excel at synthesizing consistent view sequences that depict scenes but often struggle to adhere to predefined camera paths or align accurately with rendered control videos. In contrast, image diffusion models, though unable to guarantee cross-view visual consistency, can produce more geometry-aligned results when combined with ControlNet. Building on this insight, our approach enhances image diffusion models by improving cross-view consistency. The pipeline comprises three key stages: first, we generate geometrically consistent sparse views using Cascaded Outpainting ControlNets; second, we propagate denser intermediate views via a component dubbed AGInpaint; and third, we globally eliminate visual inconsistencies (e.g., varying exposure) using the GCAlign module. Concurrently with generation, a 3D Gaussian Splatting (3DGS) scene is reconstructed by initializing Gaussian balls on the mesh surface. Our method outperforms existing approaches in both geometric alignment and generation quality. Once synthesized, the scene can be rendered in diverse styles through relighting and style transfer techniques.
Occupancy estimation has become a prominent task in 3D computer vision, particularly within the autonomous driving community. In this paper, we present a novel approach to occupancy estimation, termed GaussianFlowOcc, which is inspired by Gaussian Splatting and replaces traditional dense voxel grids with a sparse 3D Gaussian representation. Our efficient model architecture based on a Gaussian Transformer significantly reduces computational and memory requirements by eliminating the need for expensive 3D convolutions used with inefficient voxel-based representations that predominantly represent empty 3D spaces. GaussianFlowOcc effectively captures scene dynamics by estimating temporal flow for each Gaussian during the overall network training process, offering a straightforward solution to a complex problem that is often neglected by existing methods. Moreover, GaussianFlowOcc is designed for scalability, as it employs weak supervision and does not require costly dense 3D voxel annotations based on additional data (e.g., LiDAR). Through extensive experimentation, we demonstrate that GaussianFlowOcc significantly outperforms all previous methods for weakly supervised occupancy estimation on the nuScenes dataset while featuring an inference speed that is 50 times faster than current SOTA.
The emergence of 3D artificial intelligence-generated content (3D-AIGC) has enabled rapid synthesis of intricate geometries. However, a fundamental disconnect persists between AI-generated content and human-centric design paradigms, rooted in representational incompatibilities: conventional AI frameworks predominantly manipulate meshes or neural representations (\emph{e.g.}, NeRF, Gaussian Splatting), while designers operate within parametric modeling tools. This disconnection diminishes the practical value of AI for 3D industry, undermining the efficiency of human-AI collaboration. To resolve this disparity, we focus on generating design operation sequences, which are structured modeling histories that comprehensively capture the step-by-step construction process of 3D assets and align with designers' typical workflows in modern 3D software. We first reformulate fundamental modeling operations (\emph{e.g.}, \emph{Extrude}, \emph{Boolean}) into differentiable units, enabling joint optimization of continuous (\emph{e.g.}, \emph{Extrude} height) and discrete (\emph{e.g.}, \emph{Boolean} type) parameters via gradient-based learning. Based on these differentiable operations, a hierarchical graph with gating mechanism is constructed and optimized end-to-end by minimizing Chamfer Distance to target geometries. Multi-stage sequence length constraint and domain rule penalties enable unsupervised learning of compact design sequences without ground-truth sequence supervision. Extensive validation demonstrates that the generated operation sequences achieve high geometric fidelity, smooth mesh wiring, rational step composition and flexible editing capacity, with full compatibility within design industry.
In the realm of driving scenarios, the presence of rapidly moving vehicles, pedestrians in motion, and large-scale static backgrounds poses significant challenges for 3D scene reconstruction. Recent methods based on 3D Gaussian Splatting address the motion blur problem by decoupling dynamic and static components within the scene. However, these decoupling strategies overlook background optimization with adequate geometry relationships and rely solely on fitting each training view by adding Gaussians. Therefore, these models exhibit limited robustness in rendering novel views and lack an accurate geometric representation. To address the above issues, we introduce DriveSplat, a high-quality reconstruction method for driving scenarios based on neural Gaussian representations with dynamic-static decoupling. To better accommodate the predominantly linear motion patterns of driving viewpoints, a region-wise voxel initialization scheme is employed, which partitions the scene into near, middle, and far regions to enhance close-range detail representation. Deformable neural Gaussians are introduced to model non-rigid dynamic actors, whose parameters are temporally adjusted by a learnable deformation network. The entire framework is further supervised by depth and normal priors from pre-trained models, improving the accuracy of geometric structures. Our method has been rigorously evaluated on the Waymo and KITTI datasets, demonstrating state-of-the-art performance in novel-view synthesis for driving scenarios.
In this paper, we present a 3D reconstruction and rendering framework termed Mesh-Learner that is natively compatible with traditional rasterization pipelines. It integrates mesh and spherical harmonic (SH) texture (i.e., texture filled with SH coefficients) into the learning process to learn each mesh s view-dependent radiance end-to-end. Images are rendered by interpolating surrounding SH Texels at each pixel s sampling point using a novel interpolation method. Conversely, gradients from each pixel are back-propagated to the related SH Texels in SH textures. Mesh-Learner exploits graphic features of rasterization pipeline (texture sampling, deferred rendering) to render, which makes Mesh-Learner naturally compatible with tools (e.g., Blender) and tasks (e.g., 3D reconstruction, scene rendering, reinforcement learning for robotics) that are based on rasterization pipelines. Our system can train vast, unlimited scenes because we transfer only the SH textures within the frustum to the GPU for training. At other times, the SH textures are stored in CPU RAM, which results in moderate GPU memory usage. The rendering results on interpolation and extrapolation sequences in the Replica and FAST-LIVO2 datasets achieve state-of-the-art performance compared to existing state-of-the-art methods (e.g., 3D Gaussian Splatting and M2-Mapping). To benefit the society, the code will be available at https://github.com/hku-mars/Mesh-Learner.
Training robot policies within a learned world model is trending due to the inefficiency of real-world interactions. The established image-based world models and policies have shown prior success, but lack robust geometric information that requires consistent spatial and physical understanding of the three-dimensional world, even pre-trained on internet-scale video sources. To this end, we propose a novel branch of world model named Gaussian World Model (GWM) for robotic manipulation, which reconstructs the future state by inferring the propagation of Gaussian primitives under the effect of robot actions. At its core is a latent Diffusion Transformer (DiT) combined with a 3D variational autoencoder, enabling fine-grained scene-level future state reconstruction with Gaussian Splatting. GWM can not only enhance the visual representation for imitation learning agent by self-supervised future prediction training, but can serve as a neural simulator that supports model-based reinforcement learning. Both simulated and real-world experiments depict that GWM can precisely predict future scenes conditioned on diverse robot actions, and can be further utilized to train policies that outperform the state-of-the-art by impressive margins, showcasing the initial data scaling potential of 3D world model.
For simulation and training purposes, military organizations have made substantial investments in developing high-resolution 3D virtual environments through extensive imaging and 3D scanning. However, the dynamic nature of battlefield conditions-where objects may appear or vanish over time-makes frequent full-scale updates both time-consuming and costly. In response, we introduce the Incremental Dynamic Update (IDU) pipeline, which efficiently updates existing 3D reconstructions, such as 3D Gaussian Splatting (3DGS), with only a small set of newly acquired images. Our approach starts with camera pose estimation to align new images with the existing 3D model, followed by change detection to pinpoint modifications in the scene. A 3D generative AI model is then used to create high-quality 3D assets of the new elements, which are seamlessly integrated into the existing 3D model. The IDU pipeline incorporates human guidance to ensure high accuracy in object identification and placement, with each update focusing on a single new object at a time. Experimental results confirm that our proposed IDU pipeline significantly reduces update time and labor, offering a cost-effective and targeted solution for maintaining up-to-date 3D models in rapidly evolving military scenarios.
Radiance fields have revolutionized photo-realistic 3D scene visualization by enabling high-fidelity reconstruction of complex environments, making them an ideal match for light field displays. However, integrating these technologies presents significant computational challenges, as light field displays require multiple high-resolution renderings from slightly shifted viewpoints, while radiance fields rely on computationally intensive volume rendering. In this paper, we propose a unified and efficient framework for real-time radiance field rendering on light field displays. Our method supports a wide range of radiance field representations, including NeRFs, 3D Gaussian Splatting, and Sparse Voxels, within a shared architecture based on a single-pass plane sweeping strategy and caching of shared, non-directional components. The framework generalizes across different scene formats without retraining, and avoids redundant computation across views. We further demonstrate a real-time interactive application on a Looking Glass display, achieving 200+ FPS at 512p across 45 views, enabling seamless, immersive 3D interaction. On standard benchmarks, our method achieves up to 22x speedup compared to independently rendering each view, while preserving image quality.
We present FastAvatar, a pose-invariant, feed-forward framework that can generate a 3D Gaussian Splatting (3DGS) model from a single face image from an arbitrary pose in near-instant time (<10ms). FastAvatar uses a novel encoder-decoder neural network design to achieve both fast fitting and identity preservation regardless of input pose. First, FastAvatar constructs a 3DGS face ``template'' model from a training dataset of faces with multi-view captures. Second, FastAvatar encodes the input face image into an identity-specific and pose-invariant latent embedding, and decodes this embedding to predict residuals to the structural and appearance parameters of each Gaussian in the template 3DGS model. By only inferring residuals in a feed-forward fashion, model inference is fast and robust. FastAvatar significantly outperforms existing feed-forward face 3DGS methods (e.g., GAGAvatar) in reconstruction quality, and runs 1000x faster than per-face optimization methods (e.g., FlashAvatar, GaussianAvatars and GASP). In addition, FastAvatar's novel latent space design supports real-time identity interpolation and attribute editing which is not possible with any existing feed-forward 3DGS face generation framework. FastAvatar's combination of excellent reconstruction quality and speed expands the scope of 3DGS for photorealistic avatar applications in consumer and interactive systems.
High-fidelity 3D simulation is critical for training mobile robots, but its traditional reliance on mesh-based representations often struggle in complex environments, such as densely packed greenhouses featuring occlusions and repetitive structures. Recent neural rendering methods, like Gaussian Splatting (GS), achieve remarkable visual realism but lack flexibility to incorporate fiducial markers, which are essential for robotic localization and control. We propose a hybrid framework that combines the photorealism of GS with structured marker representations. Our core contribution is a novel algorithm for efficiently generating GS-based fiducial markers (e.g., AprilTags) within cluttered scenes. Experiments show that our approach outperforms traditional image-fitting techniques in both efficiency and pose-estimation accuracy. We further demonstrate the framework's potential in a greenhouse simulation. This agricultural setting serves as a challenging testbed, as its combination of dense foliage, similar-looking elements, and occlusions pushes the limits of perception, thereby highlighting the framework's value for real-world applications.
Modeling dynamic, large-scale urban scenes is challenging due to their highly intricate geometric structures and unconstrained dynamics in both space and time. Prior methods often employ high-level architectural priors, separating static and dynamic elements, resulting in suboptimal capture of their synergistic interactions. To address this challenge, we present a unified representation model, called Periodic Vibration Gaussian (PVG). PVG builds upon the efficient 3D Gaussian splatting technique, originally designed for static scene representation, by introducing periodic vibration-based temporal dynamics. This innovation enables PVG to elegantly and uniformly represent the characteristics of various objects and elements in dynamic urban scenes. To enhance temporally coherent and large scene representation learning with sparse training data, we introduce a novel temporal smoothing mechanism and a position-aware adaptive control strategy respectively. Extensive experiments on Waymo Open Dataset and KITTI benchmarks demonstrate that PVG surpasses state-of-the-art alternatives in both reconstruction and novel view synthesis for both dynamic and static scenes. Notably, PVG achieves this without relying on manually labeled object bounding boxes or expensive optical flow estimation. Moreover, PVG exhibits 900-fold acceleration in rendering over the best alternative.
In the 6G era, the demand for higher system throughput and the implementation of emerging 6G technologies require large-scale antenna arrays and accurate spatial channel state information (Spatial-CSI). Traditional channel modeling approaches, such as empirical models, ray tracing, and measurement-based methods, face challenges in spatial resolution, efficiency, and scalability. Radiance field-based methods have emerged as promising alternatives but still suffer from geometric inaccuracy and costly supervision. This paper proposes RF-PGS, a novel framework that reconstructs high-fidelity radio propagation paths from only sparse path loss spectra. By introducing Planar Gaussians as geometry primitives with certain RF-specific optimizations, RF-PGS achieves dense, surface-aligned scene reconstruction in the first geometry training stage. In the subsequent Radio Frequency (RF) training stage, the proposed fully-structured radio radiance, combined with a tailored multi-view loss, accurately models radio propagation behavior. Compared to prior radiance field methods, RF-PGS significantly improves reconstruction accuracy, reduces training costs, and enables efficient representation of wireless channels, offering a practical solution for scalable 6G Spatial-CSI modeling.
Existing 3D Gaussian Splatting (3DGS) super-resolution methods typically perform high-resolution (HR) rendering of fixed scale factors, making them impractical for resource-limited scenarios. Directly rendering arbitrary-scale HR views with vanilla 3DGS introduces aliasing artifacts due to the lack of scale-aware rendering ability, while adding a post-processing upsampler for 3DGS complicates the framework and reduces rendering efficiency. To tackle these issues, we build an integrated framework that incorporates scale-aware rendering, generative prior-guided optimization, and progressive super-resolving to enable 3D Gaussian super-resolution of arbitrary scale factors with a single 3D model. Notably, our approach supports both integer and non-integer scale rendering to provide more flexibility. Extensive experiments demonstrate the effectiveness of our model in rendering high-quality arbitrary-scale HR views (6.59 dB PSNR gain over 3DGS) with a single model. It preserves structural consistency with LR views and across different scales, while maintaining real-time rendering speed (85 FPS at 1080p).
3D Gaussian Splatting (3DGS) has recently emerged as a powerful alternative to Neural Radiance Fields (NeRF) for 3D scene representation, offering high-fidelity photorealistic rendering with real-time performance. Beyond novel view synthesis, the explicit and compact nature of 3DGS enables a wide range of downstream applications that require geometric and semantic understanding. This survey provides a comprehensive overview of recent progress in 3DGS applications. It first introduces 2D foundation models that support semantic understanding and control in 3DGS applications, followed by a review of NeRF-based methods that inform their 3DGS counterparts. We then categorize 3DGS applications into segmentation, editing, generation, and other functional tasks. For each, we summarize representative methods, supervision strategies, and learning paradigms, highlighting shared design principles and emerging trends. Commonly used datasets and evaluation protocols are also summarized, along with comparative analyses of recent methods across public benchmarks. To support ongoing research and development, a continually updated repository of papers, code, and resources is maintained at https://github.com/heshuting555/Awesome-3DGS-Applications.
3D Gaussian splatting (GS) has emerged as a transformative technique in explicit radiance field and computer graphics. This innovative approach, characterized by the use of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
Articulated object recognition -- the task of identifying both the geometry and kinematic joints of objects with movable parts -- is essential for enabling robots to interact with everyday objects such as doors and laptops. However, existing approaches often rely on strong assumptions, such as a known number of articulated parts; require additional inputs, such as depth images; or involve complex intermediate steps that can introduce potential errors -- limiting their practicality in real-world settings. In this paper, we introduce ScrewSplat, a simple end-to-end method that operates solely on RGB observations. Our approach begins by randomly initializing screw axes, which are then iteratively optimized to recover the object's underlying kinematic structure. By integrating with Gaussian Splatting, we simultaneously reconstruct the 3D geometry and segment the object into rigid, movable parts. We demonstrate that our method achieves state-of-the-art recognition accuracy across a diverse set of articulated objects, and further enables zero-shot, text-guided manipulation using the recovered kinematic model. See the project website at: https://screwsplat.github.io.
Recent text-guided generation of individual 3D object has achieved great success using diffusion priors. However, these methods are not suitable for object insertion and replacement tasks as they do not consider the background, leading to illumination mismatches within the environment. To bridge the gap, we introduce an illumination-aware 3D scene editing pipeline for 3D Gaussian Splatting (3DGS) representation. Our key observation is that inpainting by the state-of-the-art conditional 2D diffusion model is consistent with background in lighting. To leverage the prior knowledge from the well-trained diffusion models for 3D object generation, our approach employs a coarse-to-fine objection optimization pipeline with inpainted views. In the first coarse step, we achieve image-to-3D lifting given an ideal inpainted view. The process employs 3D-aware diffusion prior from a view-conditioned diffusion model, which preserves illumination present in the conditioning image. To acquire an ideal inpainted image, we introduce an Anchor View Proposal (AVP) algorithm to find a single view that best represents the scene illumination in target region. In the second Texture Enhancement step, we introduce a novel Depth-guided Inpainting Score Distillation Sampling (DI-SDS), which enhances geometry and texture details with the inpainting diffusion prior, beyond the scope of the 3D-aware diffusion prior knowledge in the first coarse step. DI-SDS not only provides fine-grained texture enhancement, but also urges optimization to respect scene lighting. Our approach efficiently achieves local editing with global illumination consistency without explicitly modeling light transport. We demonstrate robustness of our method by evaluating editing in real scenes containing explicit highlight and shadows, and compare against the state-of-the-art text-to-3D editing methods.
3D Gaussian Splatting (3DGS) has demonstrated outstanding performance in novel view synthesis, achieving a balance between rendering quality and real-time performance. 3DGS employs Adaptive Density Control (ADC) to increase the number of Gaussians. However, the clone and split operations within ADC are not sufficiently efficient, impacting optimization speed and detail recovery. Additionally, overfitted Gaussians that affect rendering quality may exist, and the original ADC is unable to remove them. To address these issues, we propose two key innovations: (1) Long-Axis Split, which precisely controls the position, shape, and opacity of child Gaussians to minimize the difference before and after splitting. (2) Recovery-Aware Pruning, which leverages differences in recovery speed after resetting opacity to prune overfitted Gaussians, thereby improving generalization performance. Experimental results show that our method significantly enhances rendering quality. Due to resubmission reasons, this version has been abandoned. The improved version is available at https://xiaobin2001.github.io/improved-gs-web .
With the rapid advancement and widespread adoption of VR/AR technologies, there is a growing demand for the creation of high-quality, immersive dynamic scenes. However, existing generation works predominantly concentrate on the creation of static scenes or narrow perspective-view dynamic scenes, falling short of delivering a truly 360-degree immersive experience from any viewpoint. In this paper, we introduce \textbf{TiP4GEN}, an advanced text-to-dynamic panorama scene generation framework that enables fine-grained content control and synthesizes motion-rich, geometry-consistent panoramic 4D scenes. TiP4GEN integrates panorama video generation and dynamic scene reconstruction to create 360-degree immersive virtual environments. For video generation, we introduce a \textbf{Dual-branch Generation Model} consisting of a panorama branch and a perspective branch, responsible for global and local view generation, respectively. A bidirectional cross-attention mechanism facilitates comprehensive information exchange between the branches. For scene reconstruction, we propose a \textbf{Geometry-aligned Reconstruction Model} based on 3D Gaussian Splatting. By aligning spatial-temporal point clouds using metric depth maps and initializing scene cameras with estimated poses, our method ensures geometric consistency and temporal coherence for the reconstructed scenes. Extensive experiments demonstrate the effectiveness of our proposed designs and the superiority of TiP4GEN in generating visually compelling and motion-coherent dynamic panoramic scenes. Our project page is at https://ke-xing.github.io/TiP4GEN/.
We present 3DGS-LM, a new method that accelerates the reconstruction of 3D Gaussian Splatting (3DGS) by replacing its ADAM optimizer with a tailored Levenberg-Marquardt (LM). Existing methods reduce the optimization time by decreasing the number of Gaussians or by improving the implementation of the differentiable rasterizer. However, they still rely on the ADAM optimizer to fit Gaussian parameters of a scene in thousands of iterations, which can take up to an hour. To this end, we change the optimizer to LM that runs in conjunction with the 3DGS differentiable rasterizer. For efficient GPU parallization, we propose a caching data structure for intermediate gradients that allows us to efficiently calculate Jacobian-vector products in custom CUDA kernels. In every LM iteration, we calculate update directions from multiple image subsets using these kernels and combine them in a weighted mean. Overall, our method is 20% faster than the original 3DGS while obtaining the same reconstruction quality. Our optimization is also agnostic to other methods that acclerate 3DGS, thus enabling even faster speedups compared to vanilla 3DGS.
3D Gaussian Splatting (3DGS) has demonstrated remarkable real-time performance in novel view synthesis, yet its effectiveness relies heavily on dense multi-view inputs with precisely known camera poses, which are rarely available in real-world scenarios. When input views become extremely sparse, the Structure-from-Motion (SfM) method that 3DGS depends on for initialization fails to accurately reconstruct the 3D geometric structures of scenes, resulting in degraded rendering quality. In this paper, we propose a novel SfM-free 3DGS-based method that jointly estimates camera poses and reconstructs 3D scenes from extremely sparse-view inputs. Specifically, instead of SfM, we propose a dense stereo module to progressively estimates camera pose information and reconstructs a global dense point cloud for initialization. To address the inherent problem of information scarcity in extremely sparse-view settings, we propose a coherent view interpolation module that interpolates camera poses based on training view pairs and generates viewpoint-consistent content as additional supervision signals for training. Furthermore, we introduce multi-scale Laplacian consistent regularization and adaptive spatial-aware multi-scale geometry regularization to enhance the quality of geometrical structures and rendered content. Experiments show that our method significantly outperforms other state-of-the-art 3DGS-based approaches, achieving a remarkable 2.75dB improvement in PSNR under extremely sparse-view conditions (using only 2 training views). The images synthesized by our method exhibit minimal distortion while preserving rich high-frequency details, resulting in superior visual quality compared to existing techniques.
3D scene reconstruction and understanding have gained increasing popularity, yet existing methods still struggle to capture fine-grained, language-aware 3D representations from 2D images. In this paper, we present GALA, a novel framework for open-vocabulary 3D scene understanding with 3D Gaussian Splatting (3DGS). GALA distills a scene-specific 3D instance feature field via self-supervised contrastive learning. To extend to generalized language feature fields, we introduce the core contribution of GALA, a cross-attention module with two learnable codebooks that encode view-independent semantic embeddings. This design not only ensures intra-instance feature similarity but also supports seamless 2D and 3D open-vocabulary queries. It reduces memory consumption by avoiding per-Gaussian high-dimensional feature learning. Extensive experiments on real-world datasets demonstrate GALA's remarkable open-vocabulary performance on both 2D and 3D.
In the realm of driving scenarios, the presence of rapidly moving vehicles, pedestrians in motion, and large-scale static backgrounds poses significant challenges for 3D scene reconstruction. Recent methods based on 3D Gaussian Splatting address the motion blur problem by decoupling dynamic and static components within the scene. However, these decoupling strategies overlook background optimization with adequate geometry relationships and rely solely on fitting each training view by adding Gaussians. Therefore, these models exhibit limited robustness in rendering novel views and lack an accurate geometric representation. To address the above issues, we introduce DriveSplat, a high-quality reconstruction method for driving scenarios based on neural Gaussian representations with dynamic-static decoupling. To better accommodate the predominantly linear motion patterns of driving viewpoints, a region-wise voxel initialization scheme is employed, which partitions the scene into near, middle, and far regions to enhance close-range detail representation. Deformable neural Gaussians are introduced to model non-rigid dynamic actors, whose parameters are temporally adjusted by a learnable deformation network. The entire framework is further supervised by depth and normal priors from pre-trained models, improving the accuracy of geometric structures. Our method has been rigorously evaluated on the Waymo and KITTI datasets, demonstrating state-of-the-art performance in novel-view synthesis for driving scenarios.
3D Gaussian Splatting (3DGS) has attracted considerable attention for enabling high-quality real-time rendering. Although 3DGS compression methods have been proposed for deployment on storage-constrained devices, two limitations hinder archival use: (1) they compress medium-scale scenes only to the megabyte range, which remains impractical for large-scale scenes or extensive scene collections; and (2) they lack mechanisms to accommodate scene changes after long-term archival. To address these limitations, we propose an Image-Conditioned Gaussian Splat Quantizer (ICGS-Quantizer) that substantially enhances compression efficiency and provides adaptability to scene changes after archiving. ICGS-Quantizer improves quantization efficiency by jointly exploiting inter-Gaussian and inter-attribute correlations and by using shared codebooks across all training scenes, which are then fixed and applied to previously unseen test scenes, eliminating the overhead of per-scene codebooks. This approach effectively reduces the storage requirements for 3DGS to the kilobyte range while preserving visual fidelity. To enable adaptability to post-archival scene changes, ICGS-Quantizer conditions scene decoding on images captured at decoding time. The encoding, quantization, and decoding processes are trained jointly, ensuring that the codes, which are quantized representations of the scene, are effective for conditional decoding. We evaluate ICGS-Quantizer on 3D scene compression and 3D scene updating. Experimental results show that ICGS-Quantizer consistently outperforms state-of-the-art methods in compression efficiency and adaptability to scene changes. Our code, model, and data will be publicly available on GitHub.
Recent advancements in Generalizable Gaussian Splatting have enabled robust 3D reconstruction from sparse input views by utilizing feed-forward Gaussian Splatting models, achieving superior cross-scene generalization. However, while many methods focus on geometric consistency, they often neglect the potential of text-driven guidance to enhance semantic understanding, which is crucial for accurately reconstructing fine-grained details in complex scenes. To address this limitation, we propose TextSplat--the first text-driven Generalizable Gaussian Splatting framework. By employing a text-guided fusion of diverse semantic cues, our framework learns robust cross-modal feature representations that improve the alignment of geometric and semantic information, producing high-fidelity 3D reconstructions. Specifically, our framework employs three parallel modules to obtain complementary representations: the Diffusion Prior Depth Estimator for accurate depth information, the Semantic Aware Segmentation Network for detailed semantic information, and the Multi-View Interaction Network for refined cross-view features. Then, in the Text-Guided Semantic Fusion Module, these representations are integrated via the text-guided and attention-based feature aggregation mechanism, resulting in enhanced 3D Gaussian parameters enriched with detailed semantic cues. Experimental results on various benchmark datasets demonstrate improved performance compared to existing methods across multiple evaluation metrics, validating the effectiveness of our framework. The code will be publicly available.
Mesh models have become increasingly accessible for numerous cities; however, the lack of realistic textures restricts their application in virtual urban navigation and autonomous driving. To address this, this paper proposes MeSS (Meshbased Scene Synthesis) for generating high-quality, styleconsistent outdoor scenes with city mesh models serving as the geometric prior. While image and video diffusion models can leverage spatial layouts (such as depth maps or HD maps) as control conditions to generate street-level perspective views, they are not directly applicable to 3D scene generation. Video diffusion models excel at synthesizing consistent view sequences that depict scenes but often struggle to adhere to predefined camera paths or align accurately with rendered control videos. In contrast, image diffusion models, though unable to guarantee cross-view visual consistency, can produce more geometry-aligned results when combined with ControlNet. Building on this insight, our approach enhances image diffusion models by improving cross-view consistency. The pipeline comprises three key stages: first, we generate geometrically consistent sparse views using Cascaded Outpainting ControlNets; second, we propagate denser intermediate views via a component dubbed AGInpaint; and third, we globally eliminate visual inconsistencies (e.g., varying exposure) using the GCAlign module. Concurrently with generation, a 3D Gaussian Splatting (3DGS) scene is reconstructed by initializing Gaussian balls on the mesh surface. Our method outperforms existing approaches in both geometric alignment and generation quality. Once synthesized, the scene can be rendered in diverse styles through relighting and style transfer techniques.
Computed tomography (CT) is widely used in clinical diagnosis, but acquiring high-resolution (HR) CT is limited by radiation exposure risks. Deep learning-based super-resolution (SR) methods have been studied to reconstruct HR from low-resolution (LR) inputs. While supervised SR approaches have shown promising results, they require large-scale paired LR-HR volume datasets that are often unavailable. In contrast, zero-shot methods alleviate the need for paired data by using only a single LR input, but typically struggle to recover fine anatomical details due to limited internal information. To overcome these, we propose a novel zero-shot 3D CT SR framework that leverages upsampled 2D X-ray projection priors generated by a diffusion model. Exploiting the abundance of HR 2D X-ray data, we train a diffusion model on large-scale 2D X-ray projection and introduce a per-projection adaptive sampling strategy. It selects the generative process for each projection, thus providing HR projections as strong external priors for 3D CT reconstruction. These projections serve as inputs to 3D Gaussian splatting for reconstructing a 3D CT volume. Furthermore, we propose negative alpha blending (NAB-GS) that allows negative values in Gaussian density representation. NAB-GS enables residual learning between LR and diffusion-based projections, thereby enhancing high-frequency structure reconstruction. Experiments on two datasets show that our method achieves superior quantitative and qualitative results for 3D CT SR.
Estimating the 6D pose of novel objects is a fundamental yet challenging problem in robotics, often relying on access to object CAD models. However, acquiring such models can be costly and impractical. Recent approaches aim to bypass this requirement by leveraging strong priors from foundation models to reconstruct objects from single or multi-view images, but typically require additional training or produce hallucinated geometry. To this end, we propose UnPose, a novel framework for zero-shot, model-free 6D object pose estimation and reconstruction that exploits 3D priors and uncertainty estimates from a pre-trained diffusion model. Specifically, starting from a single-view RGB-D frame, UnPose uses a multi-view diffusion model to estimate an initial 3D model using 3D Gaussian Splatting (3DGS) representation, along with pixel-wise epistemic uncertainty estimates. As additional observations become available, we incrementally refine the 3DGS model by fusing new views guided by the diffusion model's uncertainty, thereby continuously improving the pose estimation accuracy and 3D reconstruction quality. To ensure global consistency, the diffusion prior-generated views and subsequent observations are further integrated in a pose graph and jointly optimized into a coherent 3DGS field. Extensive experiments demonstrate that UnPose significantly outperforms existing approaches in both 6D pose estimation accuracy and 3D reconstruction quality. We further showcase its practical applicability in real-world robotic manipulation tasks.
Recent developments in 3D Gaussian Splatting have significantly enhanced novel view synthesis, yet generating high-quality renderings from extreme novel viewpoints or partially observed regions remains challenging. Meanwhile, diffusion models exhibit strong generative capabilities, but their reliance on text prompts and lack of awareness of specific scene information hinder accurate 3D reconstruction tasks. To address these limitations, we introduce GSFix3D, a novel framework that improves the visual fidelity in under-constrained regions by distilling prior knowledge from diffusion models into 3D representations, while preserving consistency with observed scene details. At its core is GSFixer, a latent diffusion model obtained via our customized fine-tuning protocol that can leverage both mesh and 3D Gaussians to adapt pretrained generative models to a variety of environments and artifact types from different reconstruction methods, enabling robust novel view repair for unseen camera poses. Moreover, we propose a random mask augmentation strategy that empowers GSFixer to plausibly inpaint missing regions. Experiments on challenging benchmarks demonstrate that our GSFix3D and GSFixer achieve state-of-the-art performance, requiring only minimal scene-specific fine-tuning on captured data. Real-world test further confirms its resilience to potential pose errors. Our code and data will be made publicly available. Project page: https://gsfix3d.github.io.
In this paper, we present a real-time photo-realistic SLAM method based on marrying Gaussian Splatting with LiDAR-Inertial-Camera SLAM. Most existing radiance-field-based SLAM systems mainly focus on bounded indoor environments, equipped with RGB-D or RGB sensors. However, they are prone to decline when expanding to unbounded scenes or encountering adverse conditions, such as violent motions and changing illumination. In contrast, oriented to general scenarios, our approach additionally tightly fuses LiDAR, IMU, and camera for robust pose estimation and photo-realistic online mapping. To compensate for regions unobserved by the LiDAR, we propose to integrate both the triangulated visual points from images and LiDAR points for initializing 3D Gaussians. In addition, the modeling of the sky and varying camera exposure have been realized for high-quality rendering. Notably, we implement our system purely with C++ and CUDA, and meticulously design a series of strategies to accelerate the online optimization of the Gaussian-based scene representation. Extensive experiments demonstrate that our method outperforms its counterparts while maintaining real-time capability. Impressively, regarding photo-realistic mapping, our method with our estimated poses even surpasses all the compared approaches that utilize privileged ground-truth poses for mapping. Our code has been released on https://github.com/APRIL-ZJU/Gaussian-LIC.
We introduce GeMS, a framework for 3D Gaussian Splatting (3DGS) designed to handle severely motion-blurred images. State-of-the-art deblurring methods for extreme blur, such as ExBluRF, as well as Gaussian Splatting-based approaches like Deblur-GS, typically assume access to sharp images for camera pose estimation and point cloud generation, an unrealistic assumption. Methods relying on COLMAP initialization, such as BAD-Gaussians, also fail due to unreliable feature correspondences under severe blur. To address these challenges, we propose GeMS, a 3DGS framework that reconstructs scenes directly from extremely blurred images. GeMS integrates: (1) VGGSfM, a deep learning-based Structure-from-Motion pipeline that estimates poses and generates point clouds directly from blurred inputs; (2) 3DGS-MCMC, which enables robust scene initialization by treating Gaussians as samples from a probability distribution, eliminating heuristic densification and pruning; and (3) joint optimization of camera trajectories and Gaussian parameters for stable reconstruction. While this pipeline produces strong results, inaccuracies may remain when all inputs are severely blurred. To mitigate this, we propose GeMS-E, which integrates a progressive refinement step using events: (4) Event-based Double Integral (EDI) deblurring restores sharper images that are then fed into GeMS, improving pose estimation, point cloud generation, and overall reconstruction. Both GeMS and GeMS-E achieve state-of-the-art performance on synthetic and real-world datasets. To our knowledge, this is the first framework to address extreme motion blur within 3DGS directly from severely blurred inputs.
Inverse rendering of glossy objects from RGB imagery remains fundamentally limited by inherent ambiguity. Although NeRF-based methods achieve high-fidelity reconstruction via dense-ray sampling, their computational cost is prohibitive. Recent 3D Gaussian Splatting achieves high reconstruction efficiency but exhibits limitations under specular reflections. Multi-view inconsistencies introduce high-frequency surface noise and structural artifacts, while simplified rendering equations obscure material properties, leading to implausible relighting results. To address these issues, we propose GOGS, a novel two-stage framework based on 2D Gaussian surfels. First, we establish robust surface reconstruction through physics-based rendering with split-sum approximation, enhanced by geometric priors from foundation models. Second, we perform material decomposition by leveraging Monte Carlo importance sampling of the full rendering equation, modeling indirect illumination via differentiable 2D Gaussian ray tracing and refining high-frequency specular details through spherical mipmap-based directional encoding that captures anisotropic highlights. Extensive experiments demonstrate state-of-the-art performance in geometry reconstruction, material separation, and photorealistic relighting under novel illuminations, outperforming existing inverse rendering approaches.
Volumetric ultrasound has the potential to significantly improve diagnostic accuracy and clinical decision-making, yet its widespread adoption remains limited by dependence on specialized hardware and restrictive acquisition protocols. In this work, we present a novel unsupervised framework for reconstructing 3D anatomical structures from freehand 2D transvaginal ultrasound (TVS) sweeps, without requiring external tracking or learned pose estimators. Our method adapts the principles of Gaussian Splatting to the domain of ultrasound, introducing a slice-aware, differentiable rasterizer tailored to the unique physics and geometry of ultrasound imaging. We model anatomy as a collection of anisotropic 3D Gaussians and optimize their parameters directly from image-level supervision, leveraging sensorless probe motion estimation and domain-specific geometric priors. The result is a compact, flexible, and memory-efficient volumetric representation that captures anatomical detail with high spatial fidelity. This work demonstrates that accurate 3D reconstruction from 2D ultrasound images can be achieved through purely computational means, offering a scalable alternative to conventional 3D systems and enabling new opportunities for AI-assisted analysis and diagnosis.
While 3D Gaussian Splatting (3DGS) has rapidly advanced, its application in agriculture remains underexplored. Agricultural scenes present unique challenges for 3D reconstruction methods, particularly due to uneven illumination, occlusions, and a limited field of view. To address these limitations, we introduce \textbf{NIRPlant}, a novel multimodal dataset encompassing Near-Infrared (NIR) imagery, RGB imagery, textual metadata, Depth, and LiDAR data collected under varied indoor and outdoor lighting conditions. By integrating NIR data, our approach enhances robustness and provides crucial botanical insights that extend beyond the visible spectrum. Additionally, we leverage text-based metadata derived from vegetation indices, such as NDVI, NDWI, and the chlorophyll index, which significantly enriches the contextual understanding of complex agricultural environments. To fully exploit these modalities, we propose \textbf{NIRSplat}, an effective multimodal Gaussian splatting architecture employing a cross-attention mechanism combined with 3D point-based positional encoding, providing robust geometric priors. Comprehensive experiments demonstrate that \textbf{NIRSplat} outperforms existing landmark methods, including 3DGS, CoR-GS, and InstantSplat, highlighting its effectiveness in challenging agricultural scenarios. The code and dataset are publicly available at: https://github.com/StructuresComp/3D-Reconstruction-NIR
Inferring the physical properties of 3D scenes from visual information is a critical yet challenging task for creating interactive and realistic virtual worlds. While humans intuitively grasp material characteristics such as elasticity or stiffness, existing methods often rely on slow, per-scene optimization, limiting their generalizability and application. To address this problem, we introduce PIXIE, a novel method that trains a generalizable neural network to predict physical properties across multiple scenes from 3D visual features purely using supervised losses. Once trained, our feed-forward network can perform fast inference of plausible material fields, which coupled with a learned static scene representation like Gaussian Splatting enables realistic physics simulation under external forces. To facilitate this research, we also collected PIXIEVERSE, one of the largest known datasets of paired 3D assets and physic material annotations. Extensive evaluations demonstrate that PIXIE is about 1.46-4.39x better and orders of magnitude faster than test-time optimization methods. By leveraging pretrained visual features like CLIP, our method can also zero-shot generalize to real-world scenes despite only ever been trained on synthetic data. https://pixie-3d.github.io/
LongSplat addresses critical challenges in novel view synthesis (NVS) from casually captured long videos characterized by irregular camera motion, unknown camera poses, and expansive scenes. Current methods often suffer from pose drift, inaccurate geometry initialization, and severe memory limitations. To address these issues, we introduce LongSplat, a robust unposed 3D Gaussian Splatting framework featuring: (1) Incremental Joint Optimization that concurrently optimizes camera poses and 3D Gaussians to avoid local minima and ensure global consistency; (2) a robust Pose Estimation Module leveraging learned 3D priors; and (3) an efficient Octree Anchor Formation mechanism that converts dense point clouds into anchors based on spatial density. Extensive experiments on challenging benchmarks demonstrate that LongSplat achieves state-of-the-art results, substantially improving rendering quality, pose accuracy, and computational efficiency compared to prior approaches. Project page: https://linjohnss.github.io/longsplat/
3D Gaussian Splatting (3DGS) has exhibited remarkable efficacy in novel view synthesis (NVS). However, it suffers from a significant drawback: achieving high-fidelity rendering typically necessitates a large number of 3D Gaussians, resulting in substantial memory consumption and storage requirements. To address this challenge, we propose the first knowledge distillation framework for 3DGS, featuring various teacher models, including vanilla 3DGS, noise-augmented variants, and dropout-regularized versions. The outputs of these teachers are aggregated to guide the optimization of a lightweight student model. To distill the hidden geometric structure, we propose a structural similarity loss to boost the consistency of spatial geometric distributions between the student and teacher model. Through comprehensive quantitative and qualitative evaluations across diverse datasets, the proposed Distilled-3DGS, a simple yet effective framework without bells and whistles, achieves promising rendering results in both rendering quality and storage efficiency compared to state-of-the-art methods. Project page: https://distilled3dgs.github.io . Code: https://github.com/lt-xiang/Distilled-3DGS .
This study addresses the challenge of generating online 3D Gaussian Splatting (3DGS) models from RGB-only frames. Previous studies have employed dense SLAM techniques to estimate 3D scenes from keyframes for 3DGS model construction. However, these methods are limited by their reliance solely on keyframes, which are insufficient to capture an entire scene, resulting in incomplete reconstructions. Moreover, building a generalizable model requires incorporating frames from diverse viewpoints to achieve broader scene coverage. However, online processing restricts the use of many frames or extensive training iterations. Therefore, we propose a novel method for high-quality 3DGS modeling that improves model completeness through adaptive view selection. By analyzing reconstruction quality online, our approach selects optimal non-keyframes for additional training. By integrating both keyframes and selected non-keyframes, the method refines incomplete regions from diverse viewpoints, significantly enhancing completeness. We also present a framework that incorporates an online multi-view stereo approach, ensuring consistency in 3D information throughout the 3DGS modeling process. Experimental results demonstrate that our method outperforms state-of-the-art methods, delivering exceptional performance in complex outdoor scenes.
Creating relightable and animatable human avatars from monocular videos is a rising research topic with a range of applications, e.g. virtual reality, sports, and video games. Previous works utilize neural fields together with physically based rendering (PBR), to estimate geometry and disentangle appearance properties of human avatars. However, one drawback of these methods is the slow rendering speed due to the expensive Monte Carlo ray tracing. To tackle this problem, we proposed to distill the knowledge from implicit neural fields (teacher) to explicit 2D Gaussian splatting (student) representation to take advantage of the fast rasterization property of Gaussian splatting. To avoid ray-tracing, we employ the split-sum approximation for PBR appearance. We also propose novel part-wise ambient occlusion probes for shadow computation. Shadow prediction is achieved by querying these probes only once per pixel, which paves the way for real-time relighting of avatars. These techniques combined give high-quality relighting results with realistic shadow effects. Our experiments demonstrate that the proposed student model achieves comparable or even better relighting results with our teacher model while being 370 times faster at inference time, achieving a 67 FPS rendering speed.
While physics-grounded 3D motion synthesis has seen significant progress, current methods face critical limitations. They typically rely on pre-reconstructed 3D Gaussian Splatting (3DGS) representations, while physics integration depends on either inflexible, manually defined physical attributes or unstable, optimization-heavy guidance from video models. To overcome these challenges, we introduce PhysGM, a feed-forward framework that jointly predicts a 3D Gaussian representation and its physical properties from a single image, enabling immediate, physical simulation and high-fidelity 4D rendering. We first establish a base model by jointly optimizing for Gaussian reconstruction and probabilistic physics prediction. The model is then refined with physically plausible reference videos to enhance both rendering fidelity and physics prediction accuracy. We adopt the Direct Preference Optimization (DPO) to align its simulations with reference videos, circumventing Score Distillation Sampling (SDS) optimization which needs back-propagating gradients through the complex differentiable simulation and rasterization. To facilitate the training, we introduce a new dataset PhysAssets of over 24,000 3D assets, annotated with physical properties and corresponding guiding videos. Experimental results demonstrate that our method effectively generates high-fidelity 4D simulations from a single image in one minute. This represents a significant speedup over prior works while delivering realistic rendering results. Our project page is at:https://hihixiaolv.github.io/PhysGM.github.io/
High-fidelity head avatar reconstruction plays a crucial role in AR/VR, gaming, and multimedia content creation. Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated effectiveness in modeling complex geometry with real-time rendering capability and are now widely used in high-fidelity head avatar reconstruction tasks. However, existing 3DGS-based methods still face significant challenges in capturing fine-grained facial expressions and preserving local texture continuity, especially in highly deformable regions. To mitigate these limitations, we propose a novel 3DGS-based framework termed EAvatar for head reconstruction that is both expression-aware and deformation-aware. Our method introduces a sparse expression control mechanism, where a small number of key Gaussians are used to influence the deformation of their neighboring Gaussians, enabling accurate modeling of local deformations and fine-scale texture transitions. Furthermore, we leverage high-quality 3D priors from pretrained generative models to provide a more reliable facial geometry, offering structural guidance that improves convergence stability and shape accuracy during training. Experimental results demonstrate that our method produces more accurate and visually coherent head reconstructions with improved expression controllability and detail fidelity.
Gaussian Splatting has rapidly emerged as a transformative technique for real-time 3D scene representation, offering a highly efficient and expressive alternative to Neural Radiance Fields (NeRF). Its ability to render complex scenes with high fidelity has enabled progress across domains such as scene reconstruction, robotics, and interactive content creation. More recently, the integration of Large Language Models (LLMs) and language embeddings into Gaussian Splatting pipelines has opened new possibilities for text-conditioned generation, editing, and semantic scene understanding. Despite these advances, a comprehensive overview of this emerging intersection has been lacking. This survey presents a structured review of current research efforts that combine language guidance with 3D Gaussian Splatting, detailing theoretical foundations, integration strategies, and real-world use cases. We highlight key limitations such as computational bottlenecks, generalizability, and the scarcity of semantically annotated 3D Gaussian data and outline open challenges and future directions for advancing language-guided 3D scene understanding using Gaussian Splatting.
Novel view synthesis from images, for example, with 3D Gaussian splatting, has made great progress. Rendering fidelity and speed are now ready even for demanding virtual reality applications. However, the problem of assisting humans in collecting the input images for these rendering algorithms has received much less attention. High-quality view synthesis requires uniform and dense view sampling. Unfortunately, these requirements are not easily addressed by human camera operators, who are in a hurry, impatient, or lack understanding of the scene structure and the photographic process. Existing approaches to guide humans during image acquisition concentrate on single objects or neglect view-dependent material characteristics. We propose a novel situated visualization technique for scanning at multiple scales. During the scanning of a scene, our method identifies important objects that need extended image coverage to properly represent view-dependent appearance. To this end, we leverage semantic segmentation and category identification, ranked by a vision-language model. Spherical proxies are generated around highly ranked objects to guide the user during scanning. Our results show superior performance in real scenes compared to conventional view sampling strategies.
Photo-realistic novel view synthesis from multi-view images, such as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), has gained significant attention for its superior performance. However, most existing methods rely on low dynamic range (LDR) images, limiting their ability to capture detailed scenes in high-contrast environments. While some prior works address high dynamic range (HDR) scene reconstruction, they typically require multi-view sharp images with varying exposure times captured at fixed camera positions, which is time-consuming and impractical. To make data acquisition more flexible, we propose \textbf{Casual3DHDR}, a robust one-stage method that reconstructs 3D HDR scenes from casually-captured auto-exposure (AE) videos, even under severe motion blur and unknown, varying exposure times. Our approach integrates a continuous-time camera trajectory into a unified physical imaging model, jointly optimizing exposure times, camera trajectory, and the camera response function (CRF). Extensive experiments on synthetic and real-world datasets demonstrate that \textbf{Casual3DHDR} outperforms existing methods in robustness and rendering quality. Our source code and dataset will be available at https://lingzhezhao.github.io/CasualHDRSplat/
3D Gaussian Splatting (3DGS) has demonstrated impressive performance in novel view synthesis under dense-view settings. However, in sparse-view scenarios, despite the realistic renderings in training views, 3DGS occasionally manifests appearance artifacts in novel views. This paper investigates the appearance artifacts in sparse-view 3DGS and uncovers a core limitation of current approaches: the optimized Gaussians are overly-entangled with one another to aggressively fit the training views, which leads to a neglect of the real appearance distribution of the underlying scene and results in appearance artifacts in novel views. The analysis is based on a proposed metric, termed Co-Adaptation Score (CA), which quantifies the entanglement among Gaussians, i.e., co-adaptation, by computing the pixel-wise variance across multiple renderings of the same viewpoint, with different random subsets of Gaussians. The analysis reveals that the degree of co-adaptation is naturally alleviated as the number of training views increases. Based on the analysis, we propose two lightweight strategies to explicitly mitigate the co-adaptation in sparse-view 3DGS: (1) random gaussian dropout; (2) multiplicative noise injection to the opacity. Both strategies are designed to be plug-and-play, and their effectiveness is validated across various methods and benchmarks. We hope that our insights into the co-adaptation effect will inspire the community to achieve a more comprehensive understanding of sparse-view 3DGS.
3D semantic field learning is crucial for applications like autonomous navigation, AR/VR, and robotics, where accurate comprehension of 3D scenes from limited viewpoints is essential. Existing methods struggle under sparse view conditions, relying on inefficient per-scene multi-view optimizations, which are impractical for many real-world tasks. To address this, we propose SLGaussian, a feed-forward method for constructing 3D semantic fields from sparse viewpoints, allowing direct inference of 3DGS-based scenes. By ensuring consistent SAM segmentations through video tracking and using low-dimensional indexing for high-dimensional CLIP features, SLGaussian efficiently embeds language information in 3D space, offering a robust solution for accurate 3D scene understanding under sparse view conditions. In experiments on two-view sparse 3D object querying and segmentation in the LERF and 3D-OVS datasets, SLGaussian outperforms existing methods in chosen IoU, Localization Accuracy, and mIoU. Moreover, our model achieves scene inference in under 30 seconds and open-vocabulary querying in just 0.011 seconds per query.
We propose Quadratic Gaussian Splatting (QGS), a novel representation that replaces static primitives with deformable quadric surfaces (e.g., ellipse, paraboloids) to capture intricate geometry. Unlike prior works that rely on Euclidean distance for primitive density modeling--a metric misaligned with surface geometry under deformation--QGS introduces geodesic distance-based density distributions. This innovation ensures that density weights adapt intrinsically to the primitive curvature, preserving consistency during shape changes (e.g., from planar disks to curved paraboloids). By solving geodesic distances in closed form on quadric surfaces, QGS enables surface-aware splatting, where a single primitive can represent complex curvature that previously required dozens of planar surfels, potentially reducing memory usage while maintaining efficient rendering via fast ray-quadric intersection. Experiments on DTU, Tanks and Temples, and MipNeRF360 datasets demonstrate state-of-the-art surface reconstruction, with QGS reducing geometric error (chamfer distance) by 33% over 2DGS and 27% over GOF on the DTU dataset. Crucially, QGS retains competitive appearance quality, bridging the gap between geometric precision and visual fidelity for applications like robotics and immersive reality.
3D Gaussian Splatting (3DGS) has recently gained popularity for efficient scene rendering by representing scenes as explicit sets of anisotropic 3D Gaussians. However, most existing work focuses primarily on modeling external surfaces. In this work, we target the reconstruction of internal scenes, which is crucial for applications that require a deep understanding of an object's interior. By directly modeling a continuous volumetric density through the inner 3D Gaussian distribution, our model effectively reconstructs smooth and detailed internal structures from sparse sliced data. Our approach eliminates the need for camera poses, is plug-and-play, and is inherently compatible with any data modalities. We provide cuda implementation at: https://github.com/Shuxin-Liang/InnerGS.
Language-augmented scene representations hold great promise for large-scale robotics applications such as search-and-rescue, smart cities, and mining. Many of these scenarios are time-sensitive, requiring rapid scene encoding while also being data-intensive, necessitating scalable solutions. Deploying these representations on robots with limited computational resources further adds to the challenge. To address this, we introduce SLAG, a multi-GPU framework for language-augmented Gaussian splatting that enhances the speed and scalability of embedding large scenes. Our method integrates 2D visual-language model features into 3D scenes using SAM and CLIP. Unlike prior approaches, SLAG eliminates the need for a loss function to compute per-Gaussian language embeddings. Instead, it derives embeddings from 3D Gaussian scene parameters via a normalized weighted average, enabling highly parallelized scene encoding. Additionally, we introduce a vector database for efficient embedding storage and retrieval. Our experiments show that SLAG achieves an 18 times speedup in embedding computation on a 16-GPU setup compared to OpenGaussian, while preserving embedding quality on the ScanNet and LERF datasets. For more details, visit our project website: https://slag-project.github.io/.
With the rapid advancement and widespread adoption of VR/AR technologies, there is a growing demand for the creation of high-quality, immersive dynamic scenes. However, existing generation works predominantly concentrate on the creation of static scenes or narrow perspective-view dynamic scenes, falling short of delivering a truly 360-degree immersive experience from any viewpoint. In this paper, we introduce \textbf{TiP4GEN}, an advanced text-to-dynamic panorama scene generation framework that enables fine-grained content control and synthesizes motion-rich, geometry-consistent panoramic 4D scenes. TiP4GEN integrates panorama video generation and dynamic scene reconstruction to create 360-degree immersive virtual environments. For video generation, we introduce a \textbf{Dual-branch Generation Model} consisting of a panorama branch and a perspective branch, responsible for global and local view generation, respectively. A bidirectional cross-attention mechanism facilitates comprehensive information exchange between the branches. For scene reconstruction, we propose a \textbf{Geometry-aligned Reconstruction Model} based on 3D Gaussian Splatting. By aligning spatial-temporal point clouds using metric depth maps and initializing scene cameras with estimated poses, our method ensures geometric consistency and temporal coherence for the reconstructed scenes. Extensive experiments demonstrate the effectiveness of our proposed designs and the superiority of TiP4GEN in generating visually compelling and motion-coherent dynamic panoramic scenes. Our project page is at https://ke-xing.github.io/TiP4GEN/.
Although 3D Gaussian Splatting (3DGS) has achieved impressive performance in real-time rendering, its densification strategy often results in suboptimal reconstruction quality. In this work, we present a comprehensive improvement to the densification pipeline of 3DGS from three perspectives: when to densify, how to densify, and how to mitigate overfitting. Specifically, we propose an Edge-Aware Score to effectively select candidate Gaussians for splitting. We further introduce a Long-Axis Split strategy that reduces geometric distortions introduced by clone and split operations. To address overfitting, we design a set of techniques, including Recovery-Aware Pruning, Multi-step Update, and Growth Control. Our method enhances rendering fidelity without introducing additional training or inference overhead, achieving state-of-the-art performance with fewer Gaussians.
Reconstructing dynamic driving scenes from dashcam videos has attracted increasing attention due to its significance in autonomous driving and scene understanding. While recent advances have made impressive progress, most methods still unify all background elements into a single representation, hindering both instance-level understanding and flexible scene editing. Some approaches attempt to lift 2D segmentation into 3D space, but often rely on pre-processed instance IDs or complex pipelines to map continuous features to discrete identities. Moreover, these methods are typically designed for indoor scenes with rich viewpoints, making them less applicable to outdoor driving scenarios. In this paper, we present InstDrive, an instance-aware 3D Gaussian Splatting framework tailored for the interactive reconstruction of dynamic driving scene. We use masks generated by SAM as pseudo ground-truth to guide 2D feature learning via contrastive loss and pseudo-supervised objectives. At the 3D level, we introduce regularization to implicitly encode instance identities and enforce consistency through a voxel-based loss. A lightweight static codebook further bridges continuous features and discrete identities without requiring data pre-processing or complex optimization. Quantitative and qualitative experiments demonstrate the effectiveness of InstDrive, and to the best of our knowledge, it is the first framework to achieve 3D instance segmentation in dynamic, open-world driving scenes.More visualizations are available at our project page.
As 3D Gaussian Splatting (3DGS) gains rapid adoption in safety-critical tasks for efficient novel-view synthesis from static images, how might an adversary tamper images to cause harm? We introduce ComplicitSplat, the first attack that exploits standard 3DGS shading methods to create viewpoint-specific camouflage - colors and textures that change with viewing angle - to embed adversarial content in scene objects that are visible only from specific viewpoints and without requiring access to model architecture or weights. Our extensive experiments show that ComplicitSplat generalizes to successfully attack a variety of popular detector - both single-stage, multi-stage, and transformer-based models on both real-world capture of physical objects and synthetic scenes. To our knowledge, this is the first black-box attack on downstream object detectors using 3DGS, exposing a novel safety risk for applications like autonomous navigation and other mission-critical robotic systems.
Recently, 2D Gaussian Splatting (2DGS) has demonstrated superior geometry reconstruction quality than the popular 3DGS by using 2D surfels to approximate thin surfaces. However, it falls short when dealing with glossy surfaces, resulting in visible holes in these areas. We find that the reflection discontinuity causes the issue. To fit the jump from diffuse to specular reflection at different viewing angles, depth bias is introduced in the optimized Gaussian primitives. To address that, we first replace the depth distortion loss in 2DGS with a novel depth convergence loss, which imposes a strong constraint on depth continuity. Then, we rectify the depth criterion in determining the actual surface, which fully accounts for all the intersecting Gaussians along the ray. Qualitative and quantitative evaluations across various datasets reveal that our method significantly improves reconstruction quality, with more complete and accurate surfaces than 2DGS. Code is available at https://github.com/XiaoXinyyx/Unbiased_Surfel.
Monitoring space objects is crucial for space situational awareness, yet reconstructing 3D satellite models from ground-based telescope images is challenging due to atmospheric turbulence, long observation distances, limited viewpoints, and low signal-to-noise ratios. In this paper, we propose a novel computational imaging framework that overcomes these obstacles by integrating a hybrid image pre-processing pipeline with a joint pose estimation and 3D reconstruction module based on controlled Gaussian Splatting (GS) and Branch-and-Bound (BnB) search. We validate our approach on both synthetic satellite datasets and on-sky observations of China's Tiangong Space Station and the International Space Station, achieving robust 3D reconstructions of low-Earth orbit satellites from ground-based data. Quantitative evaluations using SSIM, PSNR, LPIPS, and Chamfer Distance demonstrate that our method outperforms state-of-the-art NeRF-based approaches, and ablation studies confirm the critical role of each component. Our framework enables high-fidelity 3D satellite monitoring from Earth, offering a cost-effective alternative for space situational awareness. Project page: https://ai4scientificimaging.org/ReconstructingSatellites
Understanding what semantic information persists after object removal is critical for privacy-preserving 3D reconstruction and editable scene representations. In this work, we introduce a novel benchmark and evaluation framework to measure semantic residuals, the unintended semantic traces left behind, after object removal in 3D Gaussian Splatting. We conduct experiments across a diverse set of indoor and outdoor scenes, showing that current methods can preserve semantic information despite the absence of visual geometry. We also release Remove360, a dataset of pre/post-removal RGB images and object-level masks captured in real-world environments. While prior datasets have focused on isolated object instances, Remove360 covers a broader and more complex range of indoor and outdoor scenes, enabling evaluation of object removal in the context of full-scene representations. Given ground truth images of a scene before and after object removal, we assess whether we can truly eliminate semantic presence, and if downstream models can still infer what was removed. Our findings reveal critical limitations in current 3D object removal techniques and underscore the need for more robust solutions capable of handling real-world complexity. The evaluation framework is available at github.com/spatial-intelligence-ai/Remove360.git. Data are available at huggingface.co/datasets/simkoc/Remove360.
Photo-realistic novel view synthesis from multi-view images, such as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), has gained significant attention for its superior performance. However, most existing methods rely on low dynamic range (LDR) images, limiting their ability to capture detailed scenes in high-contrast environments. While some prior works address high dynamic range (HDR) scene reconstruction, they typically require multi-view sharp images with varying exposure times captured at fixed camera positions, which is time-consuming and impractical. To make data acquisition more flexible, we propose \textbf{Casual3DHDR}, a robust one-stage method that reconstructs 3D HDR scenes from casually-captured auto-exposure (AE) videos, even under severe motion blur and unknown, varying exposure times. Our approach integrates a continuous camera trajectory into a unified physical imaging model, jointly optimizing exposure times, camera trajectory, and the camera response function (CRF). Extensive experiments on synthetic and real-world datasets demonstrate that \textbf{Casual3DHDR} outperforms existing methods in robustness and rendering quality. Our source code and dataset will be available at https://lingzhezhao.github.io/CasualHDRSplat/
Gaussian splatting has gained attention for its efficient representation and rendering of 3D scenes using continuous Gaussian primitives. However, it struggles with sparse-view inputs due to limited geometric and photometric information, causing ambiguities in depth, shape, and texture. we propose GBR: Generative Bundle Refinement, a method for high-fidelity Gaussian splatting and meshing using only 4-6 input views. GBR integrates a neural bundle adjustment module to enhance geometry accuracy and a generative depth refinement module to improve geometry fidelity. More specifically, the neural bundle adjustment module integrates a foundation network to produce initial 3D point maps and point matches from unposed images, followed by bundle adjustment optimization to improve multiview consistency and point cloud accuracy. The generative depth refinement module employs a diffusion-based strategy to enhance geometric details and fidelity while preserving the scale. Finally, for Gaussian splatting optimization, we propose a multimodal loss function incorporating depth and normal consistency, geometric regularization, and pseudo-view supervision, providing robust guidance under sparse-view conditions. Experiments on widely used datasets show that GBR significantly outperforms existing methods under sparse-view inputs. Additionally, GBR demonstrates the ability to reconstruct and render large-scale real-world scenes, such as the Pavilion of Prince Teng and the Great Wall, with remarkable details using only 6 views.
Video tokenization procedure is critical for a wide range of video processing tasks. Most existing approaches directly transform video into fixed-grid and patch-wise tokens, which exhibit limited versatility. Spatially, uniformly allocating a fixed number of tokens often leads to over-encoding in low-information regions. Temporally, reducing redundancy remains challenging without explicitly distinguishing between static and dynamic content. In this work, we propose the Gaussian Video Transformer (GVT), a versatile video tokenizer built upon a generative 2D Gaussian Splatting (2DGS) strategy. We first extract latent rigid features from a video clip and represent them with a set of 2D Gaussians generated by our proposed Spatio-Temporal Gaussian Embedding (STGE) mechanism in a feed-forward manner. Such generative 2D Gaussians not only enhance spatial adaptability by assigning higher (resp., lower) rendering weights to regions with higher (resp., lower) information content during rasterization, but also improve generalization by avoiding per-video optimization.To enhance the temporal versatility, we introduce a Gaussian Set Partitioning (GSP) strategy that separates the 2D Gaussians into static and dynamic sets, which explicitly model static content shared across different time-steps and dynamic content specific to each time-step, enabling a compact representation.We primarily evaluate GVT on the video reconstruction, while also assessing its performance on action recognition and compression using the UCF101, Kinetics, and DAVIS datasets. Extensive experiments demonstrate that GVT achieves a state-of-the-art video reconstruction quality, outperforms the baseline MAGVIT-v2 in action recognition, and delivers comparable compression performance.
Recent advances in 3D reconstruction techniques and vision-language models have fueled significant progress in 3D semantic understanding, a capability critical to robotics, autonomous driving, and virtual/augmented reality. However, methods that rely on 2D priors are prone to a critical challenge: cross-view semantic inconsistencies induced by occlusion, image blur, and view-dependent variations. These inconsistencies, when propagated via projection supervision, deteriorate the quality of 3D Gaussian semantic fields and introduce artifacts in the rendered outputs. To mitigate this limitation, we propose CCL-LGS, a novel framework that enforces view-consistent semantic supervision by integrating multi-view semantic cues. Specifically, our approach first employs a zero-shot tracker to align a set of SAM-generated 2D masks and reliably identify their corresponding categories. Next, we utilize CLIP to extract robust semantic encodings across views. Finally, our Contrastive Codebook Learning (CCL) module distills discriminative semantic features by enforcing intra-class compactness and inter-class distinctiveness. In contrast to previous methods that directly apply CLIP to imperfect masks, our framework explicitly resolves semantic conflicts while preserving category discriminability. Extensive experiments demonstrate that CCL-LGS outperforms previous state-of-the-art methods. Our project page is available at https://epsilontl.github.io/CCL-LGS/.
Recent advances in 3D Gaussian splatting have significantly improved real-time novel view synthesis, yet insufficient geometric constraints during scene optimization often result in blurred reconstructions of fine-grained details, particularly in regions with high-frequency textures and sharp discontinuities. To address this, we propose a comprehensive optimization framework integrating multisample anti-aliasing (MSAA) with dual geometric constraints. Our system computes pixel colors through adaptive blending of quadruple subsamples, effectively reducing aliasing artifacts in high-frequency components. The framework introduces two constraints: (a) an adaptive weighting strategy that prioritizes under-reconstructed regions through dynamic gradient analysis, and (b) gradient differential constraints enforcing geometric regularization at object boundaries. This targeted optimization enables the model to allocate computational resources preferentially to critical regions requiring refinement while maintaining global consistency. Extensive experimental evaluations across multiple benchmarks demonstrate that our method achieves state-of-the-art performance in detail preservation, particularly in preserving high-frequency textures and sharp discontinuities, while maintaining real-time rendering efficiency. Quantitative metrics and perceptual studies confirm statistically significant improvements over baseline approaches in both structural similarity (SSIM) and perceptual quality (LPIPS).
3D Gaussian Splatting (3D-GS) is a recent 3D scene reconstruction technique that enables real-time rendering of novel views by modeling scenes as parametric point clouds of differentiable 3D Gaussians. However, its rendering speed and model size still present bottlenecks, especially in resource-constrained settings. In this paper, we identify and address two key inefficiencies in 3D-GS to substantially improve rendering speed. These improvements also yield the ancillary benefits of reduced model size and training time. First, we optimize the rendering pipeline to precisely localize Gaussians in the scene, boosting rendering speed without altering visual fidelity. Second, we introduce a novel pruning technique and integrate it into the training pipeline, significantly reducing model size and training time while further raising rendering speed. Our Speedy-Splat approach combines these techniques to accelerate average rendering speed by a drastic $\mathit{6.71\times}$ across scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets.
Dynamic scene reconstruction from monocular video is essential for real-world applications. We introduce DGNS, a hybrid framework integrating \underline{D}eformable \underline{G}aussian Splatting and Dynamic \underline{N}eural \underline{S}urfaces, effectively addressing dynamic novel-view synthesis and 3D geometry reconstruction simultaneously. During training, depth maps generated by the deformable Gaussian splatting module guide the ray sampling for faster processing and provide depth supervision within the dynamic neural surface module to improve geometry reconstruction. Conversely, the dynamic neural surface directs the distribution of Gaussian primitives around the surface, enhancing rendering quality. In addition, we propose a depth-filtering approach to further refine depth supervision. Extensive experiments conducted on public datasets demonstrate that DGNS achieves state-of-the-art performance in 3D reconstruction, along with competitive results in novel-view synthesis.
As an emerging novel view synthesis approach, 3D Gaussian Splatting (3DGS) demonstrates fast training/rendering with superior visual quality. The two tasks of 3DGS, Gaussian creation and view rendering, are typically separated over time or devices, and thus storage/transmission and finally compression of 3DGS Gaussians become necessary. We begin with a correlation and statistical analysis of 3DGS Gaussian attributes. An inspiring finding in this work reveals that spherical harmonic AC attributes precisely follow Laplace distributions, while mixtures of Gaussian distributions can approximate rotation, scaling, and opacity. Additionally, harmonic AC attributes manifest weak correlations with other attributes except for inherited correlations from a color space. A factorized and parameterized entropy coding method, EntropyGS, is hereinafter proposed. During encoding, distribution parameters of each Gaussian attribute are estimated to assist their entropy coding. The quantization for entropy coding is adaptively performed according to Gaussian attribute types. EntropyGS demonstrates about 30x rate reduction on benchmark datasets while maintaining similar rendering quality compared to input 3DGS data, with a fast encoding and decoding time.
3D Gaussian Splatting (3DGS) has recently emerged as a powerful alternative to Neural Radiance Fields (NeRF) for 3D scene representation, offering high-fidelity photorealistic rendering with real-time performance. Beyond novel view synthesis, the explicit and compact nature of 3DGS enables a wide range of downstream applications that require geometric and semantic understanding. This survey provides a comprehensive overview of recent progress in 3DGS applications. It first introduces 2D foundation models that support semantic understanding and control in 3DGS applications, followed by a review of NeRF-based methods that inform their 3DGS counterparts. We then categorize 3DGS applications into segmentation, editing, generation, and other functional tasks. For each, we summarize representative methods, supervision strategies, and learning paradigms, highlighting shared design principles and emerging trends. Commonly used datasets and evaluation protocols are also summarized, along with comparative analyses of recent methods across public benchmarks. To support ongoing research and development, a continually updated repository of papers, code, and resources is maintained at https://github.com/heshuting555/Awesome-3DGS-Applications.
Novel view synthesis and 4D reconstruction techniques predominantly rely on RGB cameras, thereby inheriting inherent limitations such as the dependence on adequate lighting, susceptibility to motion blur, and a limited dynamic range. Event cameras, offering advantages of low power, high temporal resolution and high dynamic range, have brought a new perspective to addressing the scene reconstruction challenges in high-speed motion and low-light scenes. To this end, we propose E-4DGS, the first event-driven dynamic Gaussian Splatting approach, for novel view synthesis from multi-view event streams with fast-moving cameras. Specifically, we introduce an event-based initialization scheme to ensure stable training and propose event-adaptive slicing splatting for time-aware reconstruction. Additionally, we employ intensity importance pruning to eliminate floating artifacts and enhance 3D consistency, while incorporating an adaptive contrast threshold for more precise optimization. We design a synthetic multi-view camera setup with six moving event cameras surrounding the object in a 360-degree configuration and provide a benchmark multi-view event stream dataset that captures challenging motion scenarios. Our approach outperforms both event-only and event-RGB fusion baselines and paves the way for the exploration of multi-view event-based reconstruction as a novel approach for rapid scene capture.
3D Gaussian Splatting (3DGS) achieves remarkable results in the field of surface reconstruction. However, when Gaussian normal vectors are aligned within the single-view projection plane, while the geometry appears reasonable in the current view, biases may emerge upon switching to nearby views. To address the distance and global matching challenges in multi-view scenes, we design multi-view normal and distance-guided Gaussian splatting. This method achieves geometric depth unification and high-accuracy reconstruction by constraining nearby depth maps and aligning 3D normals. Specifically, for the reconstruction of small indoor and outdoor scenes, we propose a multi-view distance reprojection regularization module that achieves multi-view Gaussian alignment by computing the distance loss between two nearby views and the same Gaussian surface. Additionally, we develop a multi-view normal enhancement module, which ensures consistency across views by matching the normals of pixel points in nearby views and calculating the loss. Extensive experimental results demonstrate that our method outperforms the baseline in both quantitative and qualitative evaluations, significantly enhancing the surface reconstruction capability of 3DGS. Our code will be made publicly available at (https://github.com/Bistu3DV/MND-GS/).
\textbf{Synthetic human dynamics} aims to generate photorealistic videos of human subjects performing expressive, intention-driven motions. However, current approaches face two core challenges: (1) \emph{geometric inconsistency} and \emph{coarse reconstruction}, due to limited 3D modeling and detail preservation; and (2) \emph{motion generalization limitations} and \emph{scene inharmonization}, stemming from weak generative capabilities. To address these, we present \textbf{HumanGenesis}, a framework that integrates geometric and generative modeling through four collaborative agents: (1) \textbf{Reconstructor} builds 3D-consistent human-scene representations from monocular video using 3D Gaussian Splatting and deformation decomposition. (2) \textbf{Critique Agent} enhances reconstruction fidelity by identifying and refining poor regions via multi-round MLLM-based reflection. (3) \textbf{Pose Guider} enables motion generalization by generating expressive pose sequences using time-aware parametric encoders. (4) \textbf{Video Harmonizer} synthesizes photorealistic, coherent video via a hybrid rendering pipeline with diffusion, refining the Reconstructor through a Back-to-4D feedback loop. HumanGenesis achieves state-of-the-art performance on tasks including text-guided synthesis, video reenactment, and novel-pose generalization, significantly improving expressiveness, geometric fidelity, and scene integration.
Human-robot teaming (HRT) systems often rely on large-scale datasets of human and robot interactions, especially for close-proximity collaboration tasks such as human-robot handovers. Learning robot manipulation policies from raw, real-world image data requires a large number of robot-action trials in the physical environment. Although simulation training offers a cost-effective alternative, the visual domain gap between simulation and robot workspace remains a major limitation. We introduce a method for training HRT policies, focusing on human-to-robot handovers, solely from RGB images without the need for real-robot training or real-robot data collection. The goal is to enable the robot to reliably receive objects from a human with stable grasping while avoiding collisions with the human hand. The proposed policy learner leverages sparse-view Gaussian Splatting reconstruction of human-to-robot handover scenes to generate robot demonstrations containing image-action pairs captured with a camera mounted on the robot gripper. As a result, the simulated camera pose changes in the reconstructed scene can be directly translated into gripper pose changes. Experiments in both Gaussian Splatting reconstructed scene and real-world human-to-robot handover experiments demonstrate that our method serves as a new and effective representation for the human-to-robot handover task, contributing to more seamless and robust HRT.