gaussian splatting - 2025_09
Navigation
Home / Papers / gaussian splatting
- Part 1
- Part 2
Papers
We introduce HART, a unified framework for sparse-view human reconstruction. Given a small set of uncalibrated RGB images of a person as input, it outputs a watertight clothed mesh, the aligned SMPL-X body mesh, and a Gaussian-splat representation for photorealistic novel-view rendering. Prior methods for clothed human reconstruction either optimize parametric templates, which overlook loose garments and human-object interactions, or train implicit functions under simplified camera assumptions, limiting applicability in real scenes. In contrast, HART predicts per-pixel 3D point maps, normals, and body correspondences, and employs an occlusion-aware Poisson reconstruction to recover complete geometry, even in self-occluded regions. These predictions also align with a parametric SMPL-X body model, ensuring that reconstructed geometry remains consistent with human structure while capturing loose clothing and interactions. These human-aligned meshes initialize Gaussian splats to further enable sparse-view rendering. While trained on only 2.3K synthetic scans, HART achieves state-of-the-art results: Chamfer Distance improves by 18-23 percent for clothed-mesh reconstruction, PA-V2V drops by 6-27 percent for SMPL-X estimation, LPIPS decreases by 15-27 percent for novel-view synthesis on a wide range of datasets. These results suggest that feed-forward transformers can serve as a scalable model for robust human reconstruction in real-world settings. Code and models will be released.
We introduce ODE-GS, a novel approach that integrates 3D Gaussian Splatting with latent neural ordinary differential equations (ODEs) to enable future extrapolation of dynamic 3D scenes. Unlike existing dynamic scene reconstruction methods, which rely on time-conditioned deformation networks and are limited to interpolation within a fixed time window, ODE-GS eliminates timestamp dependency by modeling Gaussian parameter trajectories as continuous-time latent dynamics. Our approach first learns an interpolation model to generate accurate Gaussian trajectories within the observed window, then trains a Transformer encoder to aggregate past trajectories into a latent state evolved via a neural ODE. Finally, numerical integration produces smooth, physically plausible future Gaussian trajectories, enabling rendering at arbitrary future timestamps. On the D-NeRF, NVFi, and HyperNeRF benchmarks, ODE-GS achieves state-of-the-art extrapolation performance, improving metrics by 19.8% compared to leading baselines, demonstrating its ability to accurately represent and predict 3D scene dynamics.
We present Stylos, a single-forward 3D Gaussian framework for 3D style transfer that operates on unposed content, from a single image to a multi-view collection, conditioned on a separate reference style image. Stylos synthesizes a stylized 3D Gaussian scene without per-scene optimization or precomputed poses, achieving geometry-aware, view-consistent stylization that generalizes to unseen categories, scenes, and styles. At its core, Stylos adopts a Transformer backbone with two pathways: geometry predictions retain self-attention to preserve geometric fidelity, while style is injected via global cross-attention to enforce visual consistency across views. With the addition of a voxel-based 3D style loss that aligns aggregated scene features to style statistics, Stylos enforces view-consistent stylization while preserving geometry. Experiments across multiple datasets demonstrate that Stylos delivers high-quality zero-shot stylization, highlighting the effectiveness of global style-content coupling, the proposed 3D style loss, and the scalability of our framework from single view to large-scale multi-view settings.
High Dynamic Range Novel View Synthesis (HDR NVS) seeks to learn an HDR 3D model from Low Dynamic Range (LDR) training images captured under conventional imaging conditions. Current methods primarily focus on static scenes, implicitly assuming all scene elements remain stationary and non-living. However, real-world scenarios frequently feature dynamic elements, such as moving objects, varying lighting conditions, and other temporal events, thereby presenting a significantly more challenging scenario. To address this gap, we propose a more realistic problem named HDR Dynamic Novel View Synthesis (HDR DNVS), where the additional dimension ``Dynamic'' emphasizes the necessity of jointly modeling temporal radiance variations alongside sophisticated 3D translation between LDR and HDR. To tackle this complex, intertwined challenge, we introduce HDR-4DGS, a Gaussian Splatting-based architecture featured with an innovative dynamic tone-mapping module that explicitly connects HDR and LDR domains, maintaining temporal radiance coherence by dynamically adapting tone-mapping functions according to the evolving radiance distributions across the temporal dimension. As a result, HDR-4DGS achieves both temporal radiance consistency and spatially accurate color translation, enabling photorealistic HDR renderings from arbitrary viewpoints and time instances. Extensive experiments demonstrate that HDR-4DGS surpasses existing state-of-the-art methods in both quantitative performance and visual fidelity. Source code will be released.
This paper presents GaussEdit, a framework for adaptive 3D scene editing guided by text and image prompts. GaussEdit leverages 3D Gaussian Splatting as its backbone for scene representation, enabling convenient Region of Interest selection and efficient editing through a three-stage process. The first stage involves initializing the 3D Gaussians to ensure high-quality edits. The second stage employs an Adaptive Global-Local Optimization strategy to balance global scene coherence and detailed local edits and a category-guided regularization technique to alleviate the Janus problem. The final stage enhances the texture of the edited objects using a sophisticated image-to-image synthesis technique, ensuring that the results are visually realistic and align closely with the given prompts. Our experimental results demonstrate that GaussEdit surpasses existing methods in editing accuracy, visual fidelity, and processing speed. By successfully embedding user-specified concepts into 3D scenes, GaussEdit is a powerful tool for detailed and user-driven 3D scene editing, offering significant improvements over traditional methods.
Recently, 3D Gaussian Splatting (3D-GS) has prevailed in novel view synthesis, achieving high fidelity and efficiency. However, it often struggles to capture rich details and complete geometry. Our analysis reveals that the 3D-GS densification operation lacks adaptiveness and faces a dilemma between geometry coverage and detail recovery. To address this, we introduce a novel densification operation, residual split, which adds a downscaled Gaussian as a residual. Our approach is capable of adaptively retrieving details and complementing missing geometry. To further support this method, we propose a pipeline named ResGS. Specifically, we integrate a Gaussian image pyramid for progressive supervision and implement a selection scheme that prioritizes the densification of coarse Gaussians over time. Extensive experiments demonstrate that our method achieves SOTA rendering quality. Consistent performance improvements can be achieved by applying our residual split on various 3D-GS variants, underscoring its versatility and potential for broader application in 3D-GS-based applications.
In this paper, we present the first pinhole-fisheye framework for heterogeneous multi-view depth estimation, PFDepth. Our key insight is to exploit the complementary characteristics of pinhole and fisheye imagery (undistorted vs. distorted, small vs. large FOV, far vs. near field) for joint optimization. PFDepth employs a unified architecture capable of processing arbitrary combinations of pinhole and fisheye cameras with varied intrinsics and extrinsics. Within PFDepth, we first explicitly lift 2D features from each heterogeneous view into a canonical 3D volumetric space. Then, a core module termed Heterogeneous Spatial Fusion is designed to process and fuse distortion-aware volumetric features across overlapping and non-overlapping regions. Additionally, we subtly reformulate the conventional voxel fusion into a novel 3D Gaussian representation, in which learnable latent Gaussian spheres dynamically adapt to local image textures for finer 3D aggregation. Finally, fused volume features are rendered into multi-view depth maps. Through extensive experiments, we demonstrate that PFDepth sets a state-of-the-art performance on KITTI-360 and RealHet datasets over current mainstream depth networks. To the best of our knowledge, this is the first systematic study of heterogeneous pinhole-fisheye depth estimation, offering both technical novelty and valuable empirical insights.
3D Gaussian Splatting (3DGS) has attracted considerable attention for enabling high-quality real-time rendering. Although 3DGS compression methods have been proposed for deployment on storage-constrained devices, two limitations hinder archival use: (1) they compress medium-scale scenes only to the megabyte range, which remains impractical for large-scale scenes or extensive scene collections; and (2) they lack mechanisms to accommodate scene changes after long-term archival. To address these limitations, we propose an Image-Conditioned Gaussian Splat Quantizer (ICGS-Quantizer) that substantially enhances compression efficiency and provides adaptability to scene changes after archiving. ICGS-Quantizer improves quantization efficiency by jointly exploiting inter-Gaussian and inter-attribute correlations and by using shared codebooks across all training scenes, which are then fixed and applied to previously unseen test scenes, eliminating the overhead of per-scene codebooks. This approach effectively reduces the storage requirements for 3DGS to the kilobyte range while preserving visual fidelity. To enable adaptability to post-archival scene changes, ICGS-Quantizer conditions scene decoding on images captured at decoding time. The encoding, quantization, and decoding processes are trained jointly, ensuring that the codes, which are quantized representations of the scene, are effective for conditional decoding. We evaluate ICGS-Quantizer on 3D scene compression and 3D scene updating. Experimental results show that ICGS-Quantizer consistently outperforms state-of-the-art methods in compression efficiency and adaptability to scene changes. Our code, model, and data will be publicly available on GitHub.
3D Gaussian splatting (3DGS) is a transformative technique with profound implications on novel view synthesis and real-time rendering. Given its importance, there have been many attempts to improve its performance. However, with the increasing complexity of GPU architectures and the vast search space of performance-tuning parameters, it is a challenging task. Although manual optimizations have achieved remarkable speedups, they require domain expertise and the optimization process can be highly time consuming and error prone. In this paper, we propose to exploit large language models (LLMs) to analyze and optimize Gaussian splatting kernels. To our knowledge, this is the first work to use LLMs to optimize highly specialized real-world GPU kernels. We reveal the intricacies of using LLMs for code optimization and analyze the code optimization techniques from the LLMs. We also propose ways to collaborate with LLMs to further leverage their capabilities. For the original 3DGS code on the MipNeRF360 datasets, LLMs achieve significant speedups, 19% with Deepseek and 24% with GPT-5, demonstrating the different capabilities of different LLMs. By feeding additional information from performance profilers, the performance improvement from LLM-optimized code is enhanced to up to 42% and 38% on average. In comparison, our best-effort manually optimized version can achieve a performance improvement up to 48% and 39% on average, showing that there are still optimizations beyond the capabilities of current LLMs. On the other hand, even upon a newly proposed 3DGS framework with algorithmic optimizations, Seele, LLMs can still further enhance its performance by 6%, showing that there are optimization opportunities missed by domain experts. This highlights the potential of collaboration between domain experts and LLMs.
We introduce Universal Beta Splatting (UBS), a unified framework that generalizes 3D Gaussian Splatting to N-dimensional anisotropic Beta kernels for explicit radiance field rendering. Unlike fixed Gaussian primitives, Beta kernels enable controllable dependency modeling across spatial, angular, and temporal dimensions within a single representation. Our unified approach captures complex light transport effects, handles anisotropic view-dependent appearance, and models scene dynamics without requiring auxiliary networks or specific color encodings. UBS maintains backward compatibility by approximating to Gaussian Splatting as a special case, guaranteeing plug-in usability and lower performance bounds. The learned Beta parameters naturally decompose scene properties into interpretable without explicit supervision: spatial (surface vs. texture), angular (diffuse vs. specular), and temporal (static vs. dynamic). Our CUDA-accelerated implementation achieves real-time rendering while consistently outperforming existing methods across static, view-dependent, and dynamic benchmarks, establishing Beta kernels as a scalable universal primitive for radiance field rendering. Our project website is available at https://rongliu-leo.github.io/universal-beta-splatting/.
Reconstructing 3D scenes and synthesizing novel views has seen rapid progress in recent years. Neural Radiance Fields demonstrated that continuous volumetric radiance fields can achieve high-quality image synthesis, but their long training and rendering times limit practicality. 3D Gaussian Splatting (3DGS) addressed these issues by representing scenes with millions of Gaussians, enabling real-time rendering and fast optimization. However, Gaussian primitives are not natively compatible with the mesh-based pipelines used in VR headsets, and real-time graphics applications. Existing solutions attempt to convert Gaussians into meshes through post-processing or two-stage pipelines, which increases complexity and degrades visual quality. In this work, we introduce Triangle Splatting+, which directly optimizes triangles, the fundamental primitive of computer graphics, within a differentiable splatting framework. We formulate triangle parametrization to enable connectivity through shared vertices, and we design a training strategy that enforces opaque triangles. The final output is immediately usable in standard graphics engines without post-processing. Experiments on the Mip-NeRF360 and Tanks & Temples datasets show that Triangle Splatting+achieves state-of-the-art performance in mesh-based novel view synthesis. Our method surpasses prior splatting approaches in visual fidelity while remaining efficient and fast to training. Moreover, the resulting semi-connected meshes support downstream applications such as physics-based simulation or interactive walkthroughs. The project page is https://trianglesplatting2.github.io/trianglesplatting2/.
Cryo-electron microscopy (cryo-EM) has become a central tool for high-resolution structural biology, yet the massive scale of datasets (often exceeding 100k particle images) renders 3D reconstruction both computationally expensive and memory intensive. Traditional Fourier-space methods are efficient but lose fidelity due to repeated transforms, while recent real-space approaches based on neural radiance fields (NeRFs) improve accuracy but incur cubic memory and computation overhead. Therefore, we introduce GEM, a novel cryo-EM reconstruction framework built on 3D Gaussian Splatting (3DGS) that operates directly in real-space while maintaining high efficiency. Instead of modeling the entire density volume, GEM represents proteins with compact 3D Gaussians, each parameterized by only 11 values. To further improve the training efficiency, we designed a novel gradient computation to 3D Gaussians that contribute to each voxel. This design substantially reduced both memory footprint and training cost. On standard cryo-EM benchmarks, GEM achieves up to 48% faster training and 12% lower memory usage compared to state-of-the-art methods, while improving local resolution by as much as 38.8%. These results establish GEM as a practical and scalable paradigm for cryo-EM reconstruction, unifying speed, efficiency, and high-resolution accuracy. Our code is available at https://github.com/UNITES-Lab/GEM.
Large transformer models are proving to be a powerful tool for 3D vision and novel view synthesis. However, the standard Transformer's well-known quadratic complexity makes it difficult to scale these methods to large scenes. To address this challenge, we propose the Local View Transformer (LVT), a large-scale scene reconstruction and novel view synthesis architecture that circumvents the need for the quadratic attention operation. Motivated by the insight that spatially nearby views provide more useful signal about the local scene composition than distant views, our model processes all information in a local neighborhood around each view. To attend to tokens in nearby views, we leverage a novel positional encoding that conditions on the relative geometric transformation between the query and nearby views. We decode the output of our model into a 3D Gaussian Splat scene representation that includes both color and opacity view-dependence. Taken together, the Local View Transformer enables reconstruction of arbitrarily large, high-resolution scenes in a single forward pass. See our project page for results and interactive demos https://toobaimt.github.io/lvt/.
Novel View Synthesis (NVS) from sparse views remains a core challenge in 3D reconstruction, typically suffering from overfitting, geometric distortion, and incomplete scene recovery due to limited multi-view constraints. Although 3D Gaussian Splatting (3DGS) enables real-time, high-fidelity rendering, it suffers from floating artifacts and structural inconsistencies under sparse-input settings. To address these issues, we propose DWGS, a novel unified framework that enhances 3DGS for sparse-view synthesis by integrating robust structural cues, virtual view constraints, and occluded region completion. Our approach introduces three principal contributions: a Hybrid-Loss Depth Estimation module that leverages dense matching priors with reprojection, point propagation, and smoothness constraints to enforce multi-view consistency; a Bidirectional Warping Virtual View Synthesis method generates virtual training views to impose stronger geometric and photometric constraints; and an Occlusion-Aware Reconstruction component that utilizes depth-difference mask and a learning-based inpainting model to recover obscured regions. Extensive experiments on standard benchmarks (LLFF, Blender, and DTU) show that DWGS achieves a new state-of-the-art, achieving up to 21.13 dB PSNR and 0.189 LPIPS, while retaining real-time inference capabilities.
Neural scene representations, such as 3D Gaussian Splatting (3DGS), have enabled high-quality neural rendering; however, their large storage and transmission costs hinder deployment in resource-constrained environments. Existing compression methods either rely on costly optimization, which is slow and scene-specific, or adopt training-free pruning and quantization, which degrade rendering quality under high compression ratios. In contrast, recent data-driven approaches provide a promising direction to overcome this trade-off, enabling efficient compression while preserving high rendering quality. We introduce \textbf{ExGS}, a novel feed-forward framework that unifies \textbf{Universal Gaussian Compression} (UGC) with \textbf{GaussPainter} for \textbf{Ex}treme 3D\textbf{GS} compression. \textbf{UGC} performs re-optimization-free pruning to aggressively reduce Gaussian primitives while retaining only essential information, whereas \textbf{GaussPainter} leverages powerful diffusion priors with mask-guided refinement to restore high-quality renderings from heavily pruned Gaussian scenes. Unlike conventional inpainting, GaussPainter not only fills in missing regions but also enhances visible pixels, yielding substantial improvements in degraded renderings. To ensure practicality, it adopts a lightweight VAE and a one-step diffusion design, enabling real-time restoration. Our framework can even achieve over $100\times$ compression (reducing a typical 354.77 MB model to about 3.31 MB) while preserving fidelity and significantly improving image quality under challenging conditions. These results highlight the central role of diffusion priors in bridging the gap between extreme compression and high-quality neural rendering. Our code repository will be released at \href{https://github.com/chenttt2001/ExGS}{here}.
Reconstructing high-quality 3D meshes and visuals from 3D Gaussian Splatting(3DGS) still remains a central challenge in computer graphics. Although existing models such as SuGaR offer effective solutions for rendering, there is is still room to improve improve both visual fidelity and scene consistency. This work builds upon SuGaR by introducing two complementary regularization strategies that address common limitations in both the shape of individual Gaussians and the coherence of the overall surface. The first strategy introduces an effective rank regularization, motivated by recent studies on Gaussian primitive structures. This regularization discourages extreme anisotropy-specifically, "needle-like" shapes-by favoring more balanced, "disk-like" forms that are better suited for stable surface reconstruction. The second strategy integrates a neural Signed Distance Function (SDF) into the optimization process. The SDF is regularized with an Eikonal loss to maintain proper distance properties and provides a continuous global surface prior, guiding Gaussians toward better alignment with the underlying geometry. These two regularizations aim to improve both the fidelity of individual Gaussian primitives and their collective surface behavior. The final model can make more accurate and coherent visuals from 3DGS data.
Camera-based object detection systems play a vital role in autonomous driving, yet they remain vulnerable to adversarial threats in real-world environments. Existing 2D and 3D physical attacks, due to their focus on texture optimization, often struggle to balance physical realism and attack robustness. In this work, we propose 3D Gaussian-based Adversarial Attack (3DGAA), a novel adversarial object generation framework that leverages the full 14-dimensional parameterization of 3D Gaussian Splatting (3DGS) to jointly optimize geometry and appearance in physically realizable ways. Unlike prior works that rely on patches or texture optimization, 3DGAA jointly perturbs both geometric attributes (shape, scale, rotation) and appearance attributes (color, opacity) to produce physically realistic and transferable adversarial objects. We further introduce a physical filtering module that filters outliers to preserve geometric fidelity, and a physical augmentation module that simulates complex physical scenarios to enhance attack generalization under real-world conditions. We evaluate 3DGAA on both virtual benchmarks and physical-world setups using miniature vehicle models. Experimental results show that 3DGAA achieves to reduce the detection mAP from 87.21\% to 7.38\%, significantly outperforming existing 3D physical attacks. Moreover, our method maintains high transferability across different physical conditions, demonstrating a new state-of-the-art in physically realizable adversarial attacks.
PoI: A Filter to Extract Pixel of Interest from Novel View Synthesis for Scene Coordinate Regression
Novel View synthesis (NVS) techniques, notably Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), can augment camera pose estimation by extending training data with rendered images. However, the images rendered by these methods are often plagued by blurring, undermining their reliability as training data for camera pose estimation. This limitation is particularly critical for Scene Coordinate Regression (SCR) methods, which aim at pixel-level 3D coordinate estimation, because rendering artifacts directly lead to estimation inaccuracies. To address this challenge, we propose a dual-criteria filtering mechanism that dynamically identifies and discards suboptimal pixels during training. The dual-criteria filter evaluates two concurrent metrics: (1) real-time SCR reprojection error, and (2) gradient threshold, across the coordinate regression domain. In addition, for visual localization problems in sparse input scenarios, it will be even more necessary to use data generated by NVS to assist the localization task. We design a coarse-to-fine PoI variant using sparse input NVS to solve this problem. Experiments across indoor and outdoor benchmarks confirm our method's efficacy. It achieves state-of-the-art localization accuracy while maintaining computational efficiency.
3D Gaussian Splatting (3DGS) has emerged as an efficient approach for achieving photorealistic rendering. Recent MLP-based variants further improve visual fidelity but introduce substantial decoding overhead during rendering. To alleviate computation cost, several pruning strategies and level-of-detail (LOD) techniques have been introduced, aiming to effectively reduce the number of Gaussian primitives in large-scale scenes. However, our analysis reveals that significant redundancy still remains due to the lack of occlusion awareness. In this work, we propose Proxy-GS, a novel pipeline that exploits a proxy to introduce Gaussian occlusion awareness from any view. At the core of our approach is a fast proxy system capable of producing precise occlusion depth maps at a resolution of 1000x1000 under 1ms. This proxy serves two roles: first, it guides the culling of anchors and Gaussians to accelerate rendering speed. Second, it guides the densification towards surfaces during training, avoiding inconsistencies in occluded regions, and improving the rendering quality. In heavily occluded scenarios, such as the MatrixCity Streets dataset, Proxy-GS not only equips MLP-based Gaussian splatting with stronger rendering capability but also achieves faster rendering speed. Specifically, it achieves more than 2.5x speedup over Octree-GS, and consistently delivers substantially higher rendering quality. Code will be public upon acceptance.
Neural rendering with Gaussian splatting has advanced novel view synthesis, and most methods reconstruct surfaces via post-hoc mesh extraction. However, existing methods suffer from two limitations: (i) inaccurate geometry in texture-less indoor regions, and (ii) the decoupling of mesh extraction from optimization, thereby missing the opportunity to leverage mesh geometry to guide splat optimization. In this paper, we present OMeGa, an end-to-end framework that jointly optimizes an explicit triangle mesh and 2D Gaussian splats via a flexible binding strategy, where spatial attributes of Gaussian Splats are expressed in the mesh frame and texture attributes are retained on splats. To further improve reconstruction accuracy, we integrate mesh constraints and monocular normal supervision into the optimization, thereby regularizing geometry learning. In addition, we propose a heuristic, iterative mesh-refinement strategy that splits high-error faces and prunes unreliable ones to further improve the detail and accuracy of the reconstructed mesh. OMeGa achieves state-of-the-art performance on challenging indoor reconstruction benchmarks, reducing Chamfer-$L_1$ by 47.3\% over the 2DGS baseline while maintaining competitive novel-view rendering quality. The experimental results demonstrate that OMeGa effectively addresses prior limitations in indoor texture-less reconstruction.
Radiance fields have gained tremendous success with applications ranging from novel view synthesis to geometry reconstruction, especially with the advent of Gaussian splatting. However, they sacrifice modeling of material reflective properties and lighting conditions, leading to significant geometric ambiguities and the inability to easily perform relighting. One way to address these limitations is to incorporate physically-based rendering, but it has been prohibitively expensive to include full global illumination within the inner loop of the optimization. Therefore, previous works adopt simplifications that make the whole optimization with global illumination effects efficient but less accurate. In this work, we adopt Gaussian surfels as the primitives and build an efficient framework for differentiable light transport, inspired from the classic radiosity theory. The whole framework operates in the coefficient space of spherical harmonics, enabling both diffuse and specular materials. We extend the classic radiosity into non-binary visibility and semi-opaque primitives, propose novel solvers to efficiently solve the light transport, and derive the backward pass for gradient optimizations, which is more efficient than auto-differentiation. During inference, we achieve view-independent rendering where light transport need not be recomputed under viewpoint changes, enabling hundreds of FPS for global illumination effects, including view-dependent reflections using a spherical harmonics representation. Through extensive qualitative and quantitative experiments, we demonstrate superior geometry reconstruction, view synthesis and relighting than previous inverse rendering baselines, or data-driven baselines given relatively sparse datasets with known or unknown lighting conditions.
As 3D Gaussian Splatting (3DGS) is increasingly adopted in various academic and commercial applications due to its high-quality and real-time rendering capabilities, the need for copyright protection is growing. At the same time, its large model size requires efficient compression for storage and transmission. However, compression techniques, especially quantization-based methods, degrade the integrity of existing 3DGS watermarking methods, thus creating the need for a novel methodology that is robust against compression. To ensure reliable watermark detection under compression, we propose a compression-tolerant 3DGS watermarking method that preserves watermark integrity and rendering quality. Our approach utilizes an anchor-based 3DGS, embedding the watermark into anchor attributes, particularly the anchor feature, to enhance security and rendering quality. We also propose a quantization distortion layer that injects quantization noise during training, preserving the watermark after quantization-based compression. Moreover, we employ a frequency-aware anchor growing strategy that enhances rendering quality by effectively identifying Gaussians in high-frequency regions, and an HSV loss to mitigate color artifacts for further rendering quality improvement. Extensive experiments demonstrate that our proposed method preserves the watermark even under compression and maintains high rendering quality.
We perceive our surroundings with an active focus, paying more attention to regions of interest, such as the shelf labels in a grocery store. When it comes to scene reconstruction, this human perception trait calls for spatially varying degrees of detail ready for closer inspection in critical regions, preferably reconstructed on demand. While recent works in 3D Gaussian Splatting (3DGS) achieve fast, generalizable reconstruction from sparse views, their uniform resolution output leads to high computational costs unscalable to high-resolution training. As a result, they cannot leverage available images at their original high resolution to reconstruct details. Per-scene optimization methods reconstruct finer details with adaptive density control, yet require dense observations and lengthy offline optimization. To bridge the gap between the prohibitive cost of high-resolution holistic reconstructions and the user needs for localized fine details, we propose the problem of localized high-resolution reconstruction via on-demand Gaussian densification. Given a low-resolution 3DGS reconstruction, the goal is to learn a generalizable network that densifies the initial 3DGS to capture fine details in a user-specified local region of interest (RoI), based on sparse high-resolution observations of the RoI. This formulation avoids the high cost and redundancy of uniformly high-resolution reconstructions and fully leverages high-resolution captures in critical regions. We propose GaussianLens, a feed-forward densification framework that fuses multi-modal information from the initial 3DGS and multi-view images. We further design a pixel-guided densification mechanism that effectively captures details under large resolution increases. Experiments demonstrate our method's superior performance in local fine detail reconstruction and strong scalability to images of up to $1024\times1024$ resolution.
Automatic car damage detection has been a topic of significant interest for the auto insurance industry as it promises faster, accurate, and cost-effective damage assessments. However, few works have gone beyond 2D image analysis to leverage 3D reconstruction methods, which have the potential to provide a more comprehensive and geometrically accurate representation of the damage. Moreover, recent methods employing 3D representations for novel view synthesis, particularly 3D Gaussian Splatting (3D-GS), have demonstrated the ability to generate accurate and coherent 3D reconstructions from a limited number of views. In this work we introduce an automatic car damage detection pipeline that performs 3D damage segmentation by up-lifting 2D masks. Additionally, we propose a simple yet effective learning-free approach for single-view 3D-GS segmentation. Specifically, Gaussians are projected onto the image plane using camera parameters obtained via Structure from Motion (SfM). They are then filtered through an algorithm that utilizes Z-buffering along with a normal distribution model of depth and opacities. Through experiments we found that this method is particularly effective for challenging scenarios like car damage detection, where target objects (e.g., scratches, small dents) may only be clearly visible in a single view, making multi-view consistency approaches impractical or impossible. The code is publicly available at: https://github.com/DragosChileban/CrashSplat.
We present PERSE, a method for building a personalized 3D generative avatar from a reference portrait. Our avatar enables facial attribute editing in a continuous and disentangled latent space to control each facial attribute, while preserving the individual's identity. To achieve this, our method begins by synthesizing large-scale synthetic 2D video datasets, where each video contains consistent changes in facial expression and viewpoint, along with variations in a specific facial attribute from the original input. We propose a novel pipeline to produce high-quality, photorealistic 2D videos with facial attribute editing. Leveraging this synthetic attribute dataset, we present a personalized avatar creation method based on 3D Gaussian Splatting, learning a continuous and disentangled latent space for intuitive facial attribute manipulation. To enforce smooth transitions in this latent space, we introduce a latent space regularization technique by using interpolated 2D faces as supervision. Compared to previous approaches, we demonstrate that PERSE generates high-quality avatars with interpolated attributes while preserving the identity of the reference individual.
Neural scene representations such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have transformed how 3D environments are modeled, rendered, and interpreted. NeRF introduced view-consistent photorealism via volumetric rendering; 3DGS has rapidly emerged as an explicit, efficient alternative that supports high-quality rendering, faster optimization, and integration into hybrid pipelines for enhanced photorealism and task-driven scene understanding. This survey examines how 3DGS is being adopted across SLAM, telepresence and teleoperation, robotic manipulation, and 3D content generation. Despite their differences, these domains share common goals: photorealistic rendering, meaningful 3D structure, and accurate downstream tasks. We organize the review around unified research questions that explain why 3DGS is increasingly displacing NeRF-based approaches: What technical advantages drive its adoption? How does it adapt to different input modalities and domain-specific constraints? What limitations remain? By systematically comparing domain-specific pipelines, we show that 3DGS balances photorealism, geometric fidelity, and computational efficiency. The survey offers a roadmap for leveraging neural rendering not only for image synthesis but also for perception, interaction, and content creation across real and virtual environments.
We introduce ODE-GS, a novel approach that integrates 3D Gaussian Splatting with latent neural ordinary differential equations (ODEs) to enable future extrapolation of dynamic 3D scenes. Unlike existing dynamic scene reconstruction methods, which rely on time-conditioned deformation networks and are limited to interpolation within a fixed time window, ODE-GS eliminates timestamp dependency by modeling Gaussian parameter trajectories as continuous-time latent dynamics. Our approach first learns an interpolation model to generate accurate Gaussian trajectories within the observed window, then trains a Transformer encoder to aggregate past trajectories into a latent state evolved via a neural ODE. Finally, numerical integration produces smooth, physically plausible future Gaussian trajectories, enabling rendering at arbitrary future timestamps. On the D-NeRF, NVFi, and HyperNeRF benchmarks, ODE-GS achieves state-of-the-art extrapolation performance, improving metrics by 19.8% compared to leading baselines, demonstrating its ability to accurately represent and predict 3D scene dynamics.
We present Orientation-anchored Gaussian Splatting (OriGS), a novel framework for high-quality 4D reconstruction from casually captured monocular videos. While recent advances extend 3D Gaussian Splatting to dynamic scenes via various motion anchors, such as graph nodes or spline control points, they often rely on low-rank assumptions and fall short in modeling complex, region-specific deformations inherent to unconstrained dynamics. OriGS addresses this by introducing a hyperdimensional representation grounded in scene orientation. We first estimate a Global Orientation Field that propagates principal forward directions across space and time, serving as stable structural guidance for dynamic modeling. Built upon this, we propose Orientation-aware Hyper-Gaussian, a unified formulation that embeds time, space, geometry, and orientation into a coherent probabilistic state. This enables inferring region-specific deformation through principled conditioned slicing, adaptively capturing diverse local dynamics in alignment with global motion intent. Experiments demonstrate the superior reconstruction fidelity of OriGS over mainstream methods in challenging real-world dynamic scenes.
3D reconstruction and view synthesis are foundational problems in computer vision, graphics, and immersive technologies such as augmented reality (AR), virtual reality (VR), and digital twins. Traditional methods rely on computationally intensive iterative optimization in a complex chain, limiting their applicability in real-world scenarios. Recent advances in feed-forward approaches, driven by deep learning, have revolutionized this field by enabling fast and generalizable 3D reconstruction and view synthesis. This survey offers a comprehensive review of feed-forward techniques for 3D reconstruction and view synthesis, with a taxonomy according to the underlying representation architectures including point cloud, 3D Gaussian Splatting (3DGS), Neural Radiance Fields (NeRF), etc. We examine key tasks such as pose-free reconstruction, dynamic 3D reconstruction, and 3D-aware image and video synthesis, highlighting their applications in digital humans, SLAM, robotics, and beyond. In addition, we review commonly used datasets with detailed statistics, along with evaluation protocols for various downstream tasks. We conclude by discussing open research challenges and promising directions for future work, emphasizing the potential of feed-forward approaches to advance the state of the art in 3D vision.
Sparse-view novel view synthesis is fundamentally ill-posed due to severe geometric ambiguity. Current methods are caught in a trade-off: regressive models are geometrically faithful but incomplete, whereas generative models can complete scenes but often introduce structural inconsistencies. We propose OracleGS, a novel framework that reconciles generative completeness with regressive fidelity for sparse view Gaussian Splatting. Instead of using generative models to patch incomplete reconstructions, our "propose-and-validate" framework first leverages a pre-trained 3D-aware diffusion model to synthesize novel views to propose a complete scene. We then repurpose a multi-view stereo (MVS) model as a 3D-aware oracle to validate the 3D uncertainties of generated views, using its attention maps to reveal regions where the generated views are well-supported by multi-view evidence versus where they fall into regions of high uncertainty due to occlusion, lack of texture, or direct inconsistency. This uncertainty signal directly guides the optimization of a 3D Gaussian Splatting model via an uncertainty-weighted loss. Our approach conditions the powerful generative prior on multi-view geometric evidence, filtering hallucinatory artifacts while preserving plausible completions in under-constrained regions, outperforming state-of-the-art methods on datasets including Mip-NeRF 360 and NeRF Synthetic.
We pose a new problem, In-2-4D, for generative 4D (i.e., 3D + motion) inbetweening to interpolate two single-view images. In contrast to video/4D generation from only text or a single image, our interpolative task can leverage more precise motion control to better constrain the generation. Given two monocular RGB images representing the start and end states of an object in motion, our goal is to generate and reconstruct the motion in 4D, without making assumptions on the object category, motion type, length, or complexity. To handle such arbitrary and diverse motions, we utilize a foundational video interpolation model for motion prediction. However, large frame-to-frame motion gaps can lead to ambiguous interpretations. To this end, we employ a hierarchical approach to identify keyframes that are visually close to the input states while exhibiting significant motions, then generate smooth fragments between them. For each fragment, we construct a 3D representation of the keyframe using Gaussian Splatting (3DGS). The temporal frames within the fragment guide the motion, enabling their transformation into dynamic 3DGS through a deformation field. To improve temporal consistency and refine the 3D motion, we expand the self-attention of multi-view diffusion across timesteps and apply rigid transformation regularization. Finally, we merge the independently generated 3D motion segments by interpolating boundary deformation fields and optimizing them to align with the guiding video, ensuring smooth and flicker-free transitions. Through extensive qualitative and quantitive experiments as well as a user study, we demonstrate the effectiveness of our method and design choices.
Modern vision language pipelines are driven by RGB vision encoders trained on massive image text corpora. While these pipelines have enabled impressive zero shot capabilities and strong transfer across tasks, they still inherit two structural inefficiencies from the pixel domain: (i) transmitting dense RGB images from edge devices to the cloud is energy intensive and costly, and (ii) patch based tokenization explodes sequence length, stressing attention budgets and context limits. We explore 2D Gaussian Splatting (2DGS) as an alternative visual substrate for alignment: a compact, spatially adaptive representation that parameterizes images by a set of colored anisotropic Gaussians. We develop a scalable 2DGS pipeline with structured initialization, luminance aware pruning, and batched CUDA kernels, achieving over 90x faster fitting and about 97% GPU utilization compared to prior implementations. We further adapt contrastive language image pretraining (CLIP) to 2DGS by reusing a frozen RGB-based transformer backbone with a lightweight splat aware input stem and a perceiver resampler, training only about 7% of the total parameters. On large DataComp subsets, GS encoders yield meaningful zero shot ImageNet-1K performance while compressing inputs 3 to 20x relative to pixels. While accuracy currently trails RGB encoders, our results establish 2DGS as a viable multimodal substrate, pinpoint architectural bottlenecks, and open a path toward representations that are both semantically powerful and transmission efficient for edge cloud learning.
Open-vocabulary 3D scene understanding is crucial for robotics applications, such as natural language-driven manipulation, human-robot interaction, and autonomous navigation. Existing methods for querying 3D Gaussian Splatting often struggle with inconsistent 2D mask supervision and lack a robust 3D point-level retrieval mechanism. In this work, (i) we present a novel point-level querying framework that performs tracking on segmentation masks to establish a semantically consistent ground-truth for distilling the language Gaussians; (ii) we introduce a GT-anchored querying approach that first retrieves the distilled ground-truth and subsequently uses the ground-truth to query the individual Gaussians. Extensive experiments on three benchmark datasets demonstrate that the proposed method outperforms state-of-the-art performance. Our method achieves an mIoU improvement of +4.14, +20.42, and +1.7 on the LERF, 3D-OVS, and Replica datasets. These results validate our framework as a promising step toward open-vocabulary understanding in real-world robotic systems.
In-the-wild photo collections often contain limited volumes of imagery and exhibit multiple appearances, e.g., taken at different times of day or seasons, posing significant challenges to scene reconstruction and novel view synthesis. Although recent adaptations of Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS) have improved in these areas, they tend to oversmooth and are prone to overfitting. In this paper, we present MS-GS, a novel framework designed with Multi-appearance capabilities in Sparse-view scenarios using 3DGS. To address the lack of support due to sparse initializations, our approach is built on the geometric priors elicited from monocular depth estimations. The key lies in extracting and utilizing local semantic regions with a Structure-from-Motion (SfM) points anchored algorithm for reliable alignment and geometry cues. Then, to introduce multi-view constraints, we propose a series of geometry-guided supervision at virtual views in a fine-grained and coarse scheme to encourage 3D consistency and reduce overfitting. We also introduce a dataset and an in-the-wild experiment setting to set up more realistic benchmarks. We demonstrate that MS-GS achieves photorealistic renderings under various challenging sparse-view and multi-appearance conditions and outperforms existing approaches significantly across different datasets.
Learned visuomotor policies are capable of performing increasingly complex manipulation tasks. However, most of these policies are trained on data collected from limited robot positions and camera viewpoints. This leads to poor generalization to novel robot positions, which limits the use of these policies on mobile platforms, especially for precise tasks like pressing buttons or turning faucets. In this work, we formulate the policy mobilization problem: find a mobile robot base pose in a novel environment that is in distribution with respect to a manipulation policy trained on a limited set of camera viewpoints. Compared to retraining the policy itself to be more robust to unseen robot base pose initializations, policy mobilization decouples navigation from manipulation and thus does not require additional demonstrations. Crucially, this problem formulation complements existing efforts to improve manipulation policy robustness to novel viewpoints and remains compatible with them. We propose a novel approach for policy mobilization that bridges navigation and manipulation by optimizing the robot's base pose to align with an in-distribution base pose for a learned policy. Our approach utilizes 3D Gaussian Splatting for novel view synthesis, a score function to evaluate pose suitability, and sampling-based optimization to identify optimal robot poses. To understand policy mobilization in more depth, we also introduce the Mobi-$\pi$ framework, which includes: (1) metrics that quantify the difficulty of mobilizing a given policy, (2) a suite of simulated mobile manipulation tasks based on RoboCasa to evaluate policy mobilization, and (3) visualization tools for analysis. In both our developed simulation task suite and the real world, we show that our approach outperforms baselines, demonstrating its effectiveness for policy mobilization.
We propose a unified solution for mesh reconstruction and material decomposition from multi-view images based on 3D Gaussian Splatting, referred to as GS-2M. Previous works handle these tasks separately and struggle to reconstruct highly reflective surfaces, often relying on priors from external models to enhance the decomposition results. Conversely, our method addresses these two problems by jointly optimizing attributes relevant to the quality of rendered depth and normals, maintaining geometric details while being resilient to reflective surfaces. Although contemporary works effectively solve these tasks together, they often employ sophisticated neural components to learn scene properties, which hinders their performance at scale. To further eliminate these neural components, we propose a novel roughness supervision strategy based on multi-view photometric variation. When combined with a carefully designed loss and optimization process, our unified framework produces reconstruction results comparable to state-of-the-art methods, delivering triangle meshes and their associated material components for downstream tasks. We validate the effectiveness of our approach with widely used datasets from previous works and qualitative comparisons with state-of-the-art surface reconstruction methods.
Lifting 2D open-vocabulary understanding into 3D Gaussian Splatting (3DGS) scenes is a critical challenge. However, mainstream methods suffer from three key flaws: (i) their reliance on costly per-scene retraining prevents plug-and-play application; (ii) their restrictive monosemous design fails to represent complex, multi-concept semantics; and (iii) their vulnerability to cross-view semantic inconsistencies corrupts the final semantic representation. To overcome these limitations, we introduce MUSplat, a training-free framework that abandons feature optimization entirely. Leveraging a pre-trained 2D segmentation model, our pipeline generates and lifts multi-granularity 2D masks into 3D, where we estimate a foreground probability for each Gaussian point to form initial object groups. We then optimize the ambiguous boundaries of these initial groups using semantic entropy and geometric opacity. Subsequently, by interpreting the object's appearance across its most representative viewpoints, a Vision-Language Model (VLM) distills robust textual features that reconciles visual inconsistencies, enabling open-vocabulary querying via semantic matching. By eliminating the costly per-scene training process, MUSplat reduces scene adaptation time from hours to mere minutes. On benchmark tasks for open-vocabulary 3D object selection and semantic segmentation, MUSplat outperforms established training-based frameworks while simultaneously addressing their monosemous limitations.
The increasing demand for 3D assets across various industries necessitates efficient and automated methods for 3D content creation. Leveraging 3D Gaussian Splatting, recent large reconstruction models (LRMs) have demonstrated the ability to efficiently achieve high-quality 3D rendering by integrating multiview diffusion for generation and scalable transformers for reconstruction. However, existing models fail to produce the material properties of assets, which is crucial for realistic rendering in diverse lighting environments. In this paper, we introduce the Large Material Gaussian Model (MGM), a novel framework designed to generate high-quality 3D content with Physically Based Rendering (PBR) materials, ie, albedo, roughness, and metallic properties, rather than merely producing RGB textures with uncontrolled light baking. Specifically, we first fine-tune a new multiview material diffusion model conditioned on input depth and normal maps. Utilizing the generated multiview PBR images, we explore a Gaussian material representation that not only aligns with 2D Gaussian Splatting but also models each channel of the PBR materials. The reconstructed point clouds can then be rendered to acquire PBR attributes, enabling dynamic relighting by applying various ambient light maps. Extensive experiments demonstrate that the materials produced by our method not only exhibit greater visual appeal compared to baseline methods but also enhance material modeling, thereby enabling practical downstream rendering applications.
3D Gaussian splatting (3DGS) is an emerging technique for photorealistic 3D scene rendering. However, rendering city-scale 3DGS scenes on resource-constrained mobile devices in real-time remains a significant challenge due to two compute-intensive stages: level-of-detail (LoD) search and rasterization. In this paper, we propose Voyager, an effective solution to accelerate city-scale 3DGS rendering on mobile devices. Our key insight is that, under normal user motion, the number of newly visible Gaussians within the view frustum remains roughly constant. Leveraging this temporal correlation, we propose a temporal-aware LoD search to identify the necessary Gaussians for the remaining rendering stages. For the remaining rendering process, we accelerate the bottleneck stage, rasterization, via preemptive $\alpha$-filtering. With all optimizations above, our system can deliver low-latency, city-scale 3DGS rendering on mobile devices. Compared to existing solutions, Voyager achieves up to 6.6$\times$ speedup and 85\% energy savings with superior rendering quality.
While generalizable 3D Gaussian splatting enables efficient, high-quality rendering of unseen scenes, it heavily depends on precise camera poses for accurate geometry. In real-world scenarios, obtaining accurate poses is challenging, leading to noisy pose estimates and geometric misalignments. To address this, we introduce SHARE, a pose-free, feed-forward Gaussian splatting framework that overcomes these ambiguities by joint shape and camera rays estimation. Instead of relying on explicit 3D transformations, SHARE builds a pose-aware canonical volume representation that seamlessly integrates multi-view information, reducing misalignment caused by inaccurate pose estimates. Additionally, anchor-aligned Gaussian prediction enhances scene reconstruction by refining local geometry around coarse anchors, allowing for more precise Gaussian placement. Extensive experiments on diverse real-world datasets show that our method achieves robust performance in pose-free generalizable Gaussian splatting.
We introduce Drag4D, an interactive framework that integrates object motion control within text-driven 3D scene generation. This framework enables users to define 3D trajectories for the 3D objects generated from a single image, seamlessly integrating them into a high-quality 3D background. Our Drag4D pipeline consists of three stages. First, we enhance text-to-3D background generation by applying 2D Gaussian Splatting with panoramic images and inpainted novel views, resulting in dense and visually complete 3D reconstructions. In the second stage, given a reference image of the target object, we introduce a 3D copy-and-paste approach: the target instance is extracted in a full 3D mesh using an off-the-shelf image-to-3D model and seamlessly composited into the generated 3D scene. The object mesh is then positioned within the 3D scene via our physics-aware object position learning, ensuring precise spatial alignment. Lastly, the spatially aligned object is temporally animated along a user-defined 3D trajectory. To mitigate motion hallucination and ensure view-consistent temporal alignment, we develop a part-augmented, motion-conditioned video diffusion model that processes multiview image pairs together with their projected 2D trajectories. We demonstrate the effectiveness of our unified architecture through evaluations at each stage and in the final results, showcasing the harmonized alignment of user-controlled object motion within a high-quality 3D background.
High Dynamic Range Novel View Synthesis (HDR NVS) seeks to learn an HDR 3D model from Low Dynamic Range (LDR) training images captured under conventional imaging conditions. Current methods primarily focus on static scenes, implicitly assuming all scene elements remain stationary and non-living. However, real-world scenarios frequently feature dynamic elements, such as moving objects, varying lighting conditions, and other temporal events, thereby presenting a significantly more challenging scenario. To address this gap, we propose a more realistic problem named HDR Dynamic Novel View Synthesis (HDR DNVS), where the additional dimension ``Dynamic'' emphasizes the necessity of jointly modeling temporal radiance variations alongside sophisticated 3D translation between LDR and HDR. To tackle this complex, intertwined challenge, we introduce HDR-4DGS, a Gaussian Splatting-based architecture featured with an innovative dynamic tone-mapping module that explicitly connects HDR and LDR domains, maintaining temporal radiance coherence by dynamically adapting tone-mapping functions according to the evolving radiance distributions across the temporal dimension. As a result, HDR-4DGS achieves both temporal radiance consistency and spatially accurate color translation, enabling photorealistic HDR renderings from arbitrary viewpoints and time instances. Extensive experiments demonstrate that HDR-4DGS surpasses existing state-of-the-art methods in both quantitative performance and visual fidelity. Source code will be released.
3D Gaussian Splatting (3DGS) has emerged as promising alternative in 3D representation. However, it still suffers from high training cost. This paper introduces LiteGS, a high performance framework that systematically optimizes the 3DGS training pipeline from multiple aspects. At the low-level computation layer, we design a ``warp-based raster'' associated with two hardware-aware optimizations to significantly reduce gradient reduction overhead. At the mid-level data management layer, we introduce dynamic spatial sorting based on Morton coding to enable a performant ``Cluster-Cull-Compact'' pipeline and improve data locality, therefore reducing cache misses. At the top-level algorithm layer, we establish a new robust densification criterion based on the variance of the opacity gradient, paired with a more stable opacity control mechanism, to achieve more precise parameter growth. Experimental results demonstrate that LiteGS accelerates the original 3DGS training by up to 13.4x with comparable or superior quality and surpasses the current SOTA in lightweight models by up to 1.4x speedup. For high-quality reconstruction tasks, LiteGS sets a new accuracy record and decreases the training time by an order of magnitude.
We present T2Bs, a framework for generating high-quality, animatable character head morphable models from text by combining static text-to-3D generation with video diffusion. Text-to-3D models produce detailed static geometry but lack motion synthesis, while video diffusion models generate motion with temporal and multi-view geometric inconsistencies. T2Bs bridges this gap by leveraging deformable 3D Gaussian splatting to align static 3D assets with video outputs. By constraining motion with static geometry and employing a view-dependent deformation MLP, T2Bs (i) outperforms existing 4D generation methods in accuracy and expressiveness while reducing video artifacts and view inconsistencies, and (ii) reconstructs smooth, coherent, fully registered 3D geometries designed to scale for building morphable models with diverse, realistic facial motions. This enables synthesizing expressive, animatable character heads that surpass current 4D generation techniques.
A well-designed vectorized representation is crucial for the learning systems natively based on 3D Gaussian Splatting. While 3DGS enables efficient and explicit 3D reconstruction, its parameter-based representation remains hard to learn as features, especially for neural-network-based models. Directly feeding raw Gaussian parameters into learning frameworks fails to address the non-unique and heterogeneous nature of the Gaussian parameterization, yielding highly data-dependent models. This challenge motivates us to explore a more principled approach to represent 3D Gaussian Splatting in neural networks that preserves the underlying color and geometric structure while enforcing unique mapping and channel homogeneity. In this paper, we propose an embedding representation of 3DGS based on continuous submanifold fields that encapsulate the intrinsic information of Gaussian primitives, thereby benefiting the learning of 3DGS.
A few recent works explored incorporating geometric priors to regularize the optimization of Gaussian splatting, further improving its performance. However, those early studies mainly focused on the use of low-order geometric priors (e.g., normal vector), and they might also be unreliably estimated by noise-sensitive methods, like local principal component analysis. To address their limitations, we first present GeoSplat, a general geometry-constrained optimization framework that exploits both first-order and second-order geometric quantities to improve the entire training pipeline of Gaussian splatting, including Gaussian initialization, gradient update, and densification. As an example, we initialize the scales of 3D Gaussian primitives in terms of principal curvatures, leading to a better coverage of the object surface than random initialization. Secondly, based on certain geometric structures (e.g., local manifold), we introduce efficient and noise-robust estimation methods that provide dynamic geometric priors for our framework. We conduct extensive experiments on multiple datasets for novel view synthesis, showing that our framework, GeoSplat, significantly improves the performance of Gaussian splatting and outperforms previous baselines.
As a critical modality for structural biology, cryogenic electron microscopy (cryo-EM) facilitates the determination of macromolecular structures at near-atomic resolution. The core computational task in single-particle cryo-EM is to reconstruct the 3D electrostatic potential of a molecule from noisy 2D projections acquired at unknown orientations. Gaussian mixture models (GMMs) provide a continuous, compact, and physically interpretable representation for molecular density and have recently gained interest in cryo-EM reconstruction. However, existing methods rely on external consensus maps or atomic models for initialization, limiting their use in self-contained pipelines. In parallel, differentiable rendering techniques such as Gaussian splatting have demonstrated remarkable scalability and efficiency for volumetric representations, suggesting a natural fit for GMM-based cryo-EM reconstruction. However, off-the-shelf Gaussian splatting methods are designed for photorealistic view synthesis and remain incompatible with cryo-EM due to mismatches in the image formation physics, reconstruction objectives, and coordinate systems. Addressing these issues, we propose cryoSplat, a GMM-based method that integrates Gaussian splatting with the physics of cryo-EM image formation. In particular, we develop an orthogonal projection-aware Gaussian splatting, with adaptations such as a view-dependent normalization term and FFT-aligned coordinate system tailored for cryo-EM imaging. These innovations enable stable and efficient homogeneous reconstruction directly from raw cryo-EM particle images using random initialization. Experimental results on real datasets validate the effectiveness and robustness of cryoSplat over representative baselines. The code will be released upon publication.
Articulated objects, as prevalent entities in human life, their 3D representations play crucial roles across various applications. However, achieving both high-fidelity textured surface reconstruction and dynamic generation for articulated objects remains challenging for existing methods. In this paper, we present REArtGS, a novel framework that introduces additional geometric and motion constraints to 3D Gaussian primitives, enabling realistic surface reconstruction and generation for articulated objects. Specifically, given multi-view RGB images of arbitrary two states of articulated objects, we first introduce an unbiased Signed Distance Field (SDF) guidance to regularize Gaussian opacity fields, enhancing geometry constraints and improving surface reconstruction quality. Then we establish deformable fields for 3D Gaussians constrained by the kinematic structures of articulated objects, achieving unsupervised generation of surface meshes in unseen states. Extensive experiments on both synthetic and real datasets demonstrate our approach achieves high-quality textured surface reconstruction for given states, and enables high-fidelity surface generation for unseen states. Project site: https://sites.google.com/view/reartgs/home.
Generating 3D scenes is still a challenging task due to the lack of readily available scene data. Most existing methods only produce partial scenes and provide limited navigational freedom. We introduce a practical and scalable solution that uses 360{\deg} video as an intermediate scene representation, capturing the full-scene context and ensuring consistent visual content throughout the generation. We propose WorldPrompter, a generative pipeline that synthesizes traversable 3D scenes from text prompts. WorldPrompter incorporates a conditional 360{\deg} panoramic video generator, capable of producing a 128-frame video that simulates a person walking through and capturing a virtual environment. The resulting video is then reconstructed as Gaussian splats by a fast feedforward 3D reconstructor, enabling a true walkable experience within the 3D scene. Experiments demonstrate that our panoramic video generation model, trained with a mix of image and video data, achieves convincing spatial and temporal consistency for static scenes. This is validated by an average COLMAP matching rate of 94.6\%, allowing for high-quality panoramic Gaussian splat reconstruction and improved navigation throughout the scene. Qualitative and quantitative results also show it outperforms the state-of-the-art 360{\deg} video generators and 3D scene generation models.
To enable AI agents to interact seamlessly with both humans and 3D environments, they must not only perceive the 3D world accurately but also align human language with 3D spatial representations. While prior work has made significant progress by integrating language features into geometrically detailed 3D scene representations using 3D Gaussian Splatting (GS), these approaches rely on computationally intensive offline preprocessing of language features for each input image, limiting adaptability to new environments. In this work, we introduce Online Language Splatting, the first framework to achieve online, near real-time, open-vocabulary language mapping within a 3DGS-SLAM system without requiring pre-generated language features. The key challenge lies in efficiently fusing high-dimensional language features into 3D representations while balancing the computation speed, memory usage, rendering quality and open-vocabulary capability. To this end, we innovatively design: (1) a high-resolution CLIP embedding module capable of generating detailed language feature maps in 18ms per frame, (2) a two-stage online auto-encoder that compresses 768-dimensional CLIP features to 15 dimensions while preserving open-vocabulary capabilities, and (3) a color-language disentangled optimization approach to improve rendering quality. Experimental results show that our online method not only surpasses the state-of-the-art offline methods in accuracy but also achieves more than 40x efficiency boost, demonstrating the potential for dynamic and interactive AI applications.
3D Gaussian Splatting (3DGS) combines classic image-based rendering, pointbased graphics, and modern differentiable techniques, and offers an interesting alternative to traditional physically-based rendering. 3DGS-family models are far from efficient for power-constrained Extended Reality (XR) devices, which need to operate at a Watt-level. This paper introduces PowerGS, the first framework to jointly minimize the rendering and display power in 3DGS under a quality constraint. We present a general problem formulation and show that solving the problem amounts to 1) identifying the iso-quality curve(s) in the landscape subtended by the display and rendering power and 2) identifying the power-minimal point on a given curve, which has a closed-form solution given a proper parameterization of the curves. PowerGS also readily supports foveated rendering for further power savings. Extensive experiments and user studies show that PowerGS achieves up to 86% total power reduction compared to state-of-the-art 3DGS models, with minimal loss in both subjective and objective quality. Code is available at https://github.com/horizon-research/PowerGS.
Current generative models struggle to synthesize dynamic 4D driving scenes that simultaneously support temporal extrapolation and spatial novel view synthesis (NVS) without per-scene optimization. Bridging generation and novel view synthesis remains a major challenge. We present PhiGenesis, a unified framework for 4D scene generation that extends video generation techniques with geometric and temporal consistency. Given multi-view image sequences and camera parameters, PhiGenesis produces temporally continuous 4D Gaussian splatting representations along target 3D trajectories. In its first stage, PhiGenesis leverages a pre-trained video VAE with a novel range-view adapter to enable feed-forward 4D reconstruction from multi-view images. This architecture supports single-frame or video inputs and outputs complete 4D scenes including geometry, semantics, and motion. In the second stage, PhiGenesis introduces a geometric-guided video diffusion model, using rendered historical 4D scenes as priors to generate future views conditioned on trajectories. To address geometric exposure bias in novel views, we propose Stereo Forcing, a novel conditioning strategy that integrates geometric uncertainty during denoising. This method enhances temporal coherence by dynamically adjusting generative influence based on uncertainty-aware perturbations. Our experimental results demonstrate that our method achieves state-of-the-art performance in both appearance and geometric reconstruction, temporal generation and novel view synthesis (NVS) tasks, while simultaneously delivering competitive performance in downstream evaluations. Homepage is at \href{https://jiangxb98.github.io/PhiGensis}{PhiGensis}.
Dynamic 4D Gaussian Splatting (4DGS) effectively extends the high-speed rendering capabilities of 3D Gaussian Splatting (3DGS) to represent volumetric videos. However, the large number of Gaussians, substantial temporal redundancies, and especially the absence of an entropy-aware compression framework result in large storage requirements. Consequently, this poses significant challenges for practical deployment, efficient edge-device processing, and data transmission. In this paper, we introduce a novel end-to-end RD-optimized compression framework tailored for 4DGS, aiming to enable flexible, high-fidelity rendering across varied computational platforms. Leveraging Fully Explicit Dynamic Gaussian Splatting (Ex4DGS), one of the state-of-the-art 4DGS methods, as our baseline, we start from the existing 3DGS compression methods for compatibility while effectively addressing additional challenges introduced by the temporal axis. In particular, instead of storing motion trajectories independently per point, we employ a wavelet transform to reflect the real-world smoothness prior, significantly enhancing storage efficiency. This approach yields significantly improved compression ratios and provides a user-controlled balance between compression efficiency and rendering quality. Extensive experiments demonstrate the effectiveness of our method, achieving up to 91$\times$ compression compared to the original Ex4DGS model while maintaining high visual fidelity. These results highlight the applicability of our framework for real-time dynamic scene rendering in diverse scenarios, from resource-constrained edge devices to high-performance environments. The source code is available at https://github.com/HyeongminLEE/RD4DGS.
With the advancement of AIGC technologies, the modalities generated by models have expanded from images and videos to 3D objects, leading to an increasing number of works focused on 3D Gaussian Splatting (3DGS) generative models. Existing research on copyright protection for generative models has primarily concentrated on watermarking in image and text modalities, with little exploration into the copyright protection of 3D object generative models. In this paper, we propose the first bit watermarking framework for 3DGS generative models, named GaussianSeal, to enable the decoding of bits as copyright identifiers from the rendered outputs of generated 3DGS. By incorporating adaptive bit modulation modules into the generative model and embedding them into the network blocks in an adaptive way, we achieve high-precision bit decoding with minimal training overhead while maintaining the fidelity of the model's outputs. Experiments demonstrate that our method outperforms post-processing watermarking approaches for 3DGS objects, achieving superior performance of watermark decoding accuracy and preserving the quality of the generated results.
This paper presents GS-RoadPatching, an inpainting method for driving scene completion by referring to completely reconstructed regions, which are represented by 3D Gaussian Splatting (3DGS). Unlike existing 3DGS inpainting methods that perform generative completion relying on 2D perspective-view-based diffusion or GAN models to predict limited appearance or depth cues for missing regions, our approach enables substitutional scene inpainting and editing directly through the 3DGS modality, extricating it from requiring spatial-temporal consistency of 2D cross-modals and eliminating the need for time-intensive retraining of Gaussians. Our key insight is that the highly repetitive patterns in driving scenes often share multi-modal similarities within the implicit 3DGS feature space and are particularly suitable for structural matching to enable effective 3DGS-based substitutional inpainting. Practically, we construct feature-embedded 3DGS scenes to incorporate a patch measurement method for abstracting local context at different scales and, subsequently, propose a structural search method to find candidate patches in 3D space effectively. Finally, we propose a simple yet effective substitution-and-fusion optimization for better visual harmony. We conduct extensive experiments on multiple publicly available datasets to demonstrate the effectiveness and efficiency of our proposed method in driving scenes, and the results validate that our method achieves state-of-the-art performance compared to the baseline methods in terms of both quality and interoperability. Additional experiments in general scenes also demonstrate the applicability of the proposed 3D inpainting strategy. The project page and code are available at: https://shanzhaguoo.github.io/GS-RoadPatching/
The integration of aerial and ground images has been a promising solution in 3D modeling of complex scenes, which is seriously restricted by finding reliable correspondences. The primary contribution of this study is a feature matching algorithm for aerial and ground images, whose core idea is to generate intermediate views to alleviate perspective distortions caused by the extensive viewpoint changes. First, by using aerial images only, sparse models are reconstructed through an incremental SfM (Structure from Motion) engine due to their large scene coverage. Second, 3D Gaussian Splatting is then adopted for scene rendering by taking as inputs sparse points and oriented images. For accurate view rendering, a render viewpoint determination algorithm is designed by using the oriented camera poses of aerial images, which is used to generate high-quality intermediate images that can bridge the gap between aerial and ground images. Third, with the aid of intermediate images, reliable feature matching is conducted for match pairs from render-aerial and render-ground images, and final matches can be generated by transmitting correspondences through intermediate views. By using real aerial and ground datasets, the validation of the proposed solution has been verified in terms of feature matching and scene rendering and compared comprehensively with widely used methods. The experimental results demonstrate that the proposed solution can provide reliable feature matches for aerial and ground images with an obvious increase in the number of initial and refined matches, and it can provide enough matches to achieve accurate ISfM reconstruction and complete 3DGS-based scene rendering.
Camera-based perception is critical to autonomous driving yet remains vulnerable to task-specific adversarial manipulations in object detection and monocular depth estimation. Most existing 2D/3D attacks are developed in task silos, lack mechanisms to induce controllable depth bias, and offer no standardized protocol to quantify cross-task transfer, leaving the interaction between detection and depth underexplored. We present BiTAA, a bi-task adversarial attack built on 3D Gaussian Splatting that yields a single perturbation capable of simultaneously degrading detection and biasing monocular depth. Specifically, we introduce a dual-model attack framework that supports both full-image and patch settings and is compatible with common detectors and depth estimators, with optional expectation-over-transformation (EOT) for physical reality. In addition, we design a composite loss that couples detection suppression with a signed, magnitude-controlled log-depth bias within regions of interest (ROIs) enabling controllable near or far misperception while maintaining stable optimization across tasks. We also propose a unified evaluation protocol with cross-task transfer metrics and real-world evaluations, showing consistent cross-task degradation and a clear asymmetry between Det to Depth and from Depth to Det transfer. The results highlight practical risks for multi-task camera-only perception and motivate cross-task-aware defenses in autonomous driving scenarios.
Efficient shape reconstruction for surfaces with complex reflectance properties is crucial for real-time virtual reality. While 3D Gaussian Splatting (3DGS)-based methods offer fast novel view rendering by leveraging their explicit surface representation, their reconstruction quality lags behind that of implicit neural representations, particularly in the case of recovering surfaces with complex reflective reflectance. To address these problems, we propose PolGS, a Polarimetric Gaussian Splatting model allowing fast reflective surface reconstruction in 10 minutes. By integrating polarimetric constraints into the 3DGS framework, PolGS effectively separates specular and diffuse components, enhancing reconstruction quality for challenging reflective materials. Experimental results on the synthetic and real-world dataset validate the effectiveness of our method.
To enable AI agents to interact seamlessly with both humans and 3D environments, they must not only perceive the 3D world accurately but also align human language with 3D spatial representations. While prior work has made significant progress by integrating language features into geometrically detailed 3D scene representations using 3D Gaussian Splatting (GS), these approaches rely on computationally intensive offline preprocessing of language features for each input image, limiting adaptability to new environments. In this work, we introduce Online Language Splatting, the first framework to achieve online, near real-time, open-vocabulary language mapping within a 3DGS-SLAM system without requiring pre-generated language features. The key challenge lies in efficiently fusing high-dimensional language features into 3D representations while balancing the computation speed, memory usage, rendering quality and open-vocabulary capability. To this end, we innovatively design: (1) a high-resolution CLIP embedding module capable of generating detailed language feature maps in 18ms per frame, (2) a two-stage online auto-encoder that compresses 768-dimensional CLIP features to 15 dimensions while preserving open-vocabulary capabilities, and (3) a color-language disentangled optimization approach to improve rendering quality. Experimental results show that our online method not only surpasses the state-of-the-art offline methods in accuracy but also achieves more than 40x efficiency boost, demonstrating the potential for dynamic and interactive AI applications.
GAF: Gaussian Action Field as a 4D Representation for Dynamic World Modeling in Robotic Manipulation
Accurate scene perception is critical for vision-based robotic manipulation. Existing approaches typically follow either a Vision-to-Action (V-A) paradigm, predicting actions directly from visual inputs, or a Vision-to-3D-to-Action (V-3D-A) paradigm, leveraging intermediate 3D representations. However, these methods often struggle with action inaccuracies due to the complexity and dynamic nature of manipulation scenes. In this paper, we adopt a V-4D-A framework that enables direct action reasoning from motion-aware 4D representations via a Gaussian Action Field (GAF). GAF extends 3D Gaussian Splatting (3DGS) by incorporating learnable motion attributes, allowing 4D modeling of dynamic scenes and manipulation actions. To learn time-varying scene geometry and action-aware robot motion, GAF provides three interrelated outputs: reconstruction of the current scene, prediction of future frames, and estimation of init action via Gaussian motion. Furthermore, we employ an action-vision-aligned denoising framework, conditioned on a unified representation that combines the init action and the Gaussian perception, both generated by the GAF, to further obtain more precise actions. Extensive experiments demonstrate significant improvements, with GAF achieving +11.5385 dB PSNR, +0.3864 SSIM and -0.5574 LPIPS improvements in reconstruction quality, while boosting the average +7.3% success rate in robotic manipulation tasks over state-of-the-art methods.
Feed-forward 3D Gaussian Splatting (3DGS) has emerged as a highly effective solution for novel view synthesis. Existing methods predominantly rely on a pixel-aligned Gaussian prediction paradigm, where each 2D pixel is mapped to a 3D Gaussian. We rethink this widely adopted formulation and identify several inherent limitations: it renders the reconstructed 3D models heavily dependent on the number of input views, leads to view-biased density distributions, and introduces alignment errors, particularly when source views contain occlusions or low texture. To address these challenges, we introduce VolSplat, a new multi-view feed-forward paradigm that replaces pixel alignment with voxel-aligned Gaussians. By directly predicting Gaussians from a predicted 3D voxel grid, it overcomes pixel alignment's reliance on error-prone 2D feature matching, ensuring robust multi-view consistency. Furthermore, it enables adaptive control over Gaussian density based on 3D scene complexity, yielding more faithful Gaussian point clouds, improved geometric consistency, and enhanced novel-view rendering quality. Experiments on widely used benchmarks including RealEstate10K and ScanNet demonstrate that VolSplat achieves state-of-the-art performance while producing more plausible and view-consistent Gaussian reconstructions. In addition to superior results, our approach establishes a more scalable framework for feed-forward 3D reconstruction with denser and more robust representations, paving the way for further research in wider communities. The video results, code and trained models are available on our project page: https://lhmd.top/volsplat.
The ability to generate virtual environments is crucial for applications ranging from gaming to physical AI domains such as robotics, autonomous driving, and industrial AI. Current learning-based 3D reconstruction methods rely on the availability of captured real-world multi-view data, which is not always readily available. Recent advancements in video diffusion models have shown remarkable imagination capabilities, yet their 2D nature limits the applications to simulation where a robot needs to navigate and interact with the environment. In this paper, we propose a self-distillation framework that aims to distill the implicit 3D knowledge in the video diffusion models into an explicit 3D Gaussian Splatting (3DGS) representation, eliminating the need for multi-view training data. Specifically, we augment the typical RGB decoder with a 3DGS decoder, which is supervised by the output of the RGB decoder. In this approach, the 3DGS decoder can be purely trained with synthetic data generated by video diffusion models. At inference time, our model can synthesize 3D scenes from either a text prompt or a single image for real-time rendering. Our framework further extends to dynamic 3D scene generation from a monocular input video. Experimental results show that our framework achieves state-of-the-art performance in static and dynamic 3D scene generation.
3D Gaussian Splatting (3DGS) has emerged as a dominant novel-view synthesis technique, but its high memory consumption severely limits its applicability on edge devices. A growing number of 3DGS compression methods have been proposed to make 3DGS more efficient, yet most only focus on storage compression and fail to address the critical bottleneck of rendering memory. To address this problem, we introduce MEGS$^{2}$, a novel memory-efficient framework that tackles this challenge by jointly optimizing two key factors: the total primitive number and the parameters per primitive, achieving unprecedented memory compression. Specifically, we replace the memory-intensive spherical harmonics with lightweight, arbitrarily oriented spherical Gaussian lobes as our color representations. More importantly, we propose a unified soft pruning framework that models primitive-number and lobe-number pruning as a single constrained optimization problem. Experiments show that MEGS$^{2}$ achieves a 50% static VRAM reduction and a 40% rendering VRAM reduction compared to existing methods, while maintaining comparable rendering quality. Project page: https://megs-2.github.io/
3D Gaussian Splatting (3DGS) has become a powerful representation for image-based object reconstruction, yet its performance drops sharply in sparse-view settings. Prior works address this limitation by employing diffusion models to repair corrupted renders, subsequently using them as pseudo ground truths for later optimization. While effective, such approaches incur heavy computation from the diffusion fine-tuning and repair steps. We present WaveletGaussian, a framework for more efficient sparse-view 3D Gaussian object reconstruction. Our key idea is to shift diffusion into the wavelet domain: diffusion is applied only to the low-resolution LL subband, while high-frequency subbands are refined with a lightweight network. We further propose an efficient online random masking strategy to curate training pairs for diffusion fine-tuning, replacing the commonly used, but inefficient, leave-one-out strategy. Experiments across two benchmark datasets, Mip-NeRF 360 and OmniObject3D, show WaveletGaussian achieves competitive rendering quality while substantially reducing training time.
Mirror-containing environments pose unique challenges for 3D reconstruction and novel view synthesis (NVS), as reflective surfaces introduce view-dependent distortions and inconsistencies. While cutting-edge methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) excel in typical scenes, their performance deteriorates in the presence of mirrors. Existing solutions mainly focus on handling mirror surfaces through symmetry mapping but often overlook the rich information carried by mirror reflections. These reflections offer complementary perspectives that can fill in absent details and significantly enhance reconstruction quality. To advance 3D reconstruction in mirror-rich environments, we present MirrorScene3D, a comprehensive dataset featuring diverse indoor scenes, 1256 high-quality images, and annotated mirror masks, providing a benchmark for evaluating reconstruction methods in reflective settings. Building on this, we propose ReflectiveGS, an extension of 3D Gaussian Splatting that utilizes mirror reflections as complementary viewpoints rather than simple symmetry artifacts, enhancing scene geometry and recovering absent details. Experiments on MirrorScene3D show that ReflectiveGaussian outperforms existing methods in SSIM, PSNR, LPIPS, and training speed, setting a new benchmark for 3D reconstruction in mirror-rich environments.
In this paper, we propose the first Structure-from-Motion (SfM)-free deblurring 3D Gaussian Splatting method via event camera, dubbed DeblurSplat. We address the motion-deblurring problem in two ways. First, we leverage the pretrained capability of the dense stereo module (DUSt3R) to directly obtain accurate initial point clouds from blurred images. Without calculating camera poses as an intermediate result, we avoid the cumulative errors transfer from inaccurate camera poses to the initial point clouds' positions. Second, we introduce the event stream into the deblur pipeline for its high sensitivity to dynamic change. By decoding the latent sharp images from the event stream and blurred images, we can provide a fine-grained supervision signal for scene reconstruction optimization. Extensive experiments across a range of scenes demonstrate that DeblurSplat not only excels in generating high-fidelity novel views but also achieves significant rendering efficiency compared to the SOTAs in deblur 3D-GS.
Sparse-view 3D Gaussian Splatting (3DGS) presents significant challenges in reconstructing high-quality novel views, as it often overfits to the widely-varying high-frequency (HF) details of the sparse training views. While frequency regularization can be a promising approach, its typical reliance on Fourier transforms causes difficult parameter tuning and biases towards detrimental HF learning. We propose DWTGS, a framework that rethinks frequency regularization by leveraging wavelet-space losses that provide additional spatial supervision. Specifically, we supervise only the low-frequency (LF) LL subbands at multiple DWT levels, while enforcing sparsity on the HF HH subband in a self-supervised manner. Experiments across benchmarks show that DWTGS consistently outperforms Fourier-based counterparts, as this LF-centric strategy improves generalization and reduces HF hallucinations.
Recently, 3D Gaussian Splatting (3DGS) has demonstrated remarkable success in 3D reconstruction and novel view synthesis. However, reconstructing 3D scenes from sparse viewpoints remains highly challenging due to insufficient visual information, which results in noticeable artifacts persisting across the 3D representation. To address this limitation, recent methods have resorted to generative priors to remove artifacts and complete missing content in under-constrained areas. Despite their effectiveness, these approaches struggle to ensure multi-view consistency, resulting in blurred structures and implausible details. In this work, we propose FixingGS, a training-free method that fully exploits the capabilities of the existing diffusion model for sparse-view 3DGS reconstruction enhancement. At the core of FixingGS is our distillation approach, which delivers more accurate and cross-view coherent diffusion priors, thereby enabling effective artifact removal and inpainting. In addition, we propose an adaptive progressive enhancement scheme that further refines reconstructions in under-constrained regions. Extensive experiments demonstrate that FixingGS surpasses existing state-of-the-art methods with superior visual quality and reconstruction performance. Our code will be released publicly.
Recently, 3D Gaussian Splatting has emerged as a promising approach for modeling 3D scenes using mixtures of Gaussians. The predominant optimization method for these models relies on backpropagating gradients through a differentiable rendering pipeline, which struggles with catastrophic forgetting when dealing with continuous streams of data. To address this limitation, we propose Variational Bayes Gaussian Splatting (VBGS), a novel approach that frames training a Gaussian splat as variational inference over model parameters. By leveraging the conjugacy properties of multivariate Gaussians, we derive a closed-form variational update rule, allowing efficient updates from partial, sequential observations without the need for replay buffers. Our experiments show that VBGS not only matches state-of-the-art performance on static datasets, but also enables continual learning from sequentially streamed 2D and 3D data, drastically improving performance in this setting.
EmbodiedSplat: Personalized Real-to-Sim-to-Real Navigation with Gaussian Splats from a Mobile Device
The field of Embodied AI predominantly relies on simulation for training and evaluation, often using either fully synthetic environments that lack photorealism or high-fidelity real-world reconstructions captured with expensive hardware. As a result, sim-to-real transfer remains a major challenge. In this paper, we introduce EmbodiedSplat, a novel approach that personalizes policy training by efficiently capturing the deployment environment and fine-tuning policies within the reconstructed scenes. Our method leverages 3D Gaussian Splatting (GS) and the Habitat-Sim simulator to bridge the gap between realistic scene capture and effective training environments. Using iPhone-captured deployment scenes, we reconstruct meshes via GS, enabling training in settings that closely approximate real-world conditions. We conduct a comprehensive analysis of training strategies, pre-training datasets, and mesh reconstruction techniques, evaluating their impact on sim-to-real predictivity in real-world scenarios. Experimental results demonstrate that agents fine-tuned with EmbodiedSplat outperform both zero-shot baselines pre-trained on large-scale real-world datasets (HM3D) and synthetically generated datasets (HSSD), achieving absolute success rate improvements of 20% and 40% on real-world Image Navigation task. Moreover, our approach yields a high sim-vs-real correlation (0.87-0.97) for the reconstructed meshes, underscoring its effectiveness in adapting policies to diverse environments with minimal effort. Project page: https://gchhablani.github.io/embodied-splat.
Large vision-language models have driven remarkable progress in open-vocabulary robot policies, e.g., generalist robot manipulation policies, that enable robots to complete complex tasks specified in natural language. Despite these successes, open-vocabulary autonomous drone navigation remains an unsolved challenge due to the scarcity of large-scale demonstrations, real-time control demands of drones for stabilization, and lack of reliable external pose estimation modules. In this work, we present SINGER for language-guided autonomous drone navigation in the open world using only onboard sensing and compute. To train robust, open-vocabulary navigation policies, SINGER leverages three central components: (i) a photorealistic language-embedded flight simulator with minimal sim-to-real gap using Gaussian Splatting for efficient data generation, (ii) an RRT-inspired multi-trajectory generation expert for collision-free navigation demonstrations, and these are used to train (iii) a lightweight end-to-end visuomotor policy for real-time closed-loop control. Through extensive hardware flight experiments, we demonstrate superior zero-shot sim-to-real transfer of our policy to unseen environments and unseen language-conditioned goal objects. When trained on ~700k-1M observation action pairs of language conditioned visuomotor data and deployed on hardware, SINGER outperforms a velocity-controlled semantic guidance baseline by reaching the query 23.33% more on average, and maintains the query in the field of view 16.67% more on average, with 10% fewer collisions.
Recently, 3D Gaussian Splatting (3DGS) has emerged as a powerful alternative to NeRF-based approaches, enabling real-time, high-quality novel view synthesis through explicit, optimizable 3D Gaussians. However, 3DGS suffers from significant memory overhead due to its reliance on per-Gaussian parameters to model view-dependent effects and anisotropic shapes. While recent works propose compressing 3DGS with neural fields, these methods struggle to capture high-frequency spatial variations in Gaussian properties, leading to degraded reconstruction of fine details. We present Hybrid Radiance Fields (HyRF), a novel scene representation that combines the strengths of explicit Gaussians and neural fields. HyRF decomposes the scene into (1) a compact set of explicit Gaussians storing only critical high-frequency parameters and (2) grid-based neural fields that predict remaining properties. To enhance representational capacity, we introduce a decoupled neural field architecture, separately modeling geometry (scale, opacity, rotation) and view-dependent color. Additionally, we propose a hybrid rendering scheme that composites Gaussian splatting with a neural field-predicted background, addressing limitations in distant scene representation. Experiments demonstrate that HyRF achieves state-of-the-art rendering quality while reducing model size by over 20 times compared to 3DGS and maintaining real-time performance. Our project page is available at https://wzpscott.github.io/hyrf/.
Reconstructing dynamic humans together with static scenes from monocular videos remains difficult, especially under fast motion, where RGB frames suffer from motion blur. Event cameras exhibit distinct advantages, e.g., microsecond temporal resolution, making them a superior sensing choice for dynamic human reconstruction. Accordingly, we present a novel event-guided human-scene reconstruction framework that jointly models human and scene from a single monocular event camera via 3D Gaussian Splatting. Specifically, a unified set of 3D Gaussians carries a learnable semantic attribute; only Gaussians classified as human undergo deformation for animation, while scene Gaussians stay static. To combat blur, we propose an event-guided loss that matches simulated brightness changes between consecutive renderings with the event stream, improving local fidelity in fast-moving regions. Our approach removes the need for external human masks and simplifies managing separate Gaussian sets. On two benchmark datasets, ZJU-MoCap-Blur and MMHPSD-Blur, it delivers state-of-the-art human-scene reconstruction, with notable gains over strong baselines in PSNR/SSIM and reduced LPIPS, especially for high-speed subjects.
Gaussian Herding across Pens: An Optimal Transport Perspective on Global Gaussian Reduction for 3DGS
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for radiance field rendering, but it typically requires millions of redundant Gaussian primitives, overwhelming memory and rendering budgets. Existing compaction approaches address this by pruning Gaussians based on heuristic importance scores, without global fidelity guarantee. To bridge this gap, we propose a novel optimal transport perspective that casts 3DGS compaction as global Gaussian mixture reduction. Specifically, we first minimize the composite transport divergence over a KD- tree partition to produce a compact geometric representation, and then decouple appearance from geometry by fine-tuning color and opacity attributes with far fewer Gaussian primitives. Experiments on benchmark datasets show that our method (i) yields negligible loss in rendering quality (PSNR, SSIM, LPIPS) compared to vanilla 3DGS with only 10% Gaussians; and (ii) consistently outperforms state- of-the-art 3DGS compaction techniques. Notably, our method is applicable to any stage of vanilla or accelerated 3DGS pipelines, providing an efficient and agnostic pathway to lightweight neural rendering. The code is publicly available at https://github.com/DrunkenPoet/GHAP
We introduce BridgeSplat, a novel approach for deformable surgical navigation that couples intraoperative 3D reconstruction with preoperative CT data to bridge the gap between surgical video and volumetric patient data. Our method rigs 3D Gaussians to a CT mesh, enabling joint optimization of Gaussian parameters and mesh deformation through photometric supervision. By parametrizing each Gaussian relative to its parent mesh triangle, we enforce alignment between Gaussians and mesh and obtain deformations that can be propagated back to update the CT. We demonstrate BridgeSplat's effectiveness on visceral pig surgeries and synthetic data of a human liver under simulation, showing sensible deformations of the preoperative CT on monocular RGB data. Code, data, and additional resources can be found at https://maxfehrentz.github.io/ct-informed-splatting/ .
Radiance fields have gained tremendous success with applications ranging from novel view synthesis to geometry reconstruction, especially with the advent of Gaussian splatting. However, they sacrifice modeling of material reflective properties and lighting conditions, leading to significant geometric ambiguities and the inability to easily perform relighting. One way to address these limitations is to incorporate physically-based rendering, but it has been prohibitively expensive to include full global illumination within the inner loop of the optimization. Therefore, previous works adopt simplifications that make the whole optimization with global illumination effects efficient but less accurate. In this work, we adopt Gaussian surfels as the primitives and build an efficient framework for differentiable light transport, inspired from the classic radiosity theory. The whole framework operates in the coefficient space of spherical harmonics, enabling both diffuse and specular materials. We extend the classic radiosity into non-binary visibility and semi-opaque primitives, propose novel solvers to efficiently solve the light transport, and derive the backward pass for gradient optimizations, which is more efficient than auto-differentiation. During inference, we achieve view-independent rendering where light transport need not be recomputed under viewpoint changes, enabling hundreds of FPS for global illumination effects, including view-dependent reflections using a spherical harmonics representation. Through extensive qualitative and quantitative experiments, we demonstrate superior geometry reconstruction, view synthesis and relighting than previous inverse rendering baselines, or data-driven baselines given relatively sparse datasets with known or unknown lighting conditions.
Generating 3D scenes is still a challenging task due to the lack of readily available scene data. Most existing methods only produce partial scenes and provide limited navigational freedom. We introduce a practical and scalable solution that uses 360{\deg} video as an intermediate scene representation, capturing the full-scene context and ensuring consistent visual content throughout the generation. We propose WorldPrompter, a generative pipeline that synthesizes traversable 3D scenes from text prompts. WorldPrompter incorporates a conditional 360{\deg} panoramic video generator, capable of producing a 128-frame video that simulates a person walking through and capturing a virtual environment. The resulting video is then reconstructed as Gaussian splats by a fast feedforward 3D reconstructor, enabling a true walkable experience within the 3D scene. Experiments demonstrate that our panoramic video generation model, trained with a mix of image and video data, achieves convincing spatial and temporal consistency for static scenes. This is validated by an average COLMAP matching rate of 94.6\%, allowing for high-quality panoramic Gaussian splat reconstruction and improved navigation throughout the scene. Qualitative and quantitative results also show it outperforms the state-of-the-art 360{\deg} video generators and 3D scene generation models.
This paper presents SeHDR, a novel high dynamic range 3D Gaussian Splatting (HDR-3DGS) approach for generating HDR novel views given multi-view LDR images. Unlike existing methods that typically require the multi-view LDR input images to be captured from different exposures, which are tedious to capture and more likely to suffer from errors (e.g., object motion blurs and calibration/alignment inaccuracies), our approach learns the HDR scene representation from multi-view LDR images of a single exposure. Our key insight to this ill-posed problem is that by first estimating Bracketed 3D Gaussians (i.e., with different exposures) from single-exposure multi-view LDR images, we may then be able to merge these bracketed 3D Gaussians into an HDR scene representation. Specifically, SeHDR first learns base 3D Gaussians from single-exposure LDR inputs, where the spherical harmonics parameterize colors in a linear color space. We then estimate multiple 3D Gaussians with identical geometry but varying linear colors conditioned on exposure manipulations. Finally, we propose the Differentiable Neural Exposure Fusion (NeEF) to integrate the base and estimated 3D Gaussians into HDR Gaussians for novel view rendering. Extensive experiments demonstrate that SeHDR outperforms existing methods as well as carefully designed baselines.
Reconstructing accurate surfaces with radiance fields has achieved remarkable progress in recent years. However, prevailing approaches, primarily based on Gaussian Splatting, are increasingly constrained by representational bottlenecks. In this paper, we introduce GeoSVR, an explicit voxel-based framework that explores and extends the under-investigated potential of sparse voxels for achieving accurate, detailed, and complete surface reconstruction. As strengths, sparse voxels support preserving the coverage completeness and geometric clarity, while corresponding challenges also arise from absent scene constraints and locality in surface refinement. To ensure correct scene convergence, we first propose a Voxel-Uncertainty Depth Constraint that maximizes the effect of monocular depth cues while presenting a voxel-oriented uncertainty to avoid quality degradation, enabling effective and robust scene constraints yet preserving highly accurate geometries. Subsequently, Sparse Voxel Surface Regularization is designed to enhance geometric consistency for tiny voxels and facilitate the voxel-based formation of sharp and accurate surfaces. Extensive experiments demonstrate our superior performance compared to existing methods across diverse challenging scenarios, excelling in geometric accuracy, detail preservation, and reconstruction completeness while maintaining high efficiency. Code is available at https://github.com/Fictionarry/GeoSVR.
Generating 3D scenes is still a challenging task due to the lack of readily available scene data. Most existing methods only produce partial scenes and provide limited navigational freedom. We introduce a practical and scalable solution that uses 360{\deg} video as an intermediate scene representation, capturing the full-scene context and ensuring consistent visual content throughout the generation. We propose WorldPrompter, a generative pipeline that synthesizes traversable 3D scenes from text prompts. WorldPrompter incorporates a conditional 360{\deg} panoramic video generator, capable of producing a 128-frame video that simulates a person walking through and capturing a virtual environment. The resulting video is then reconstructed as Gaussian splats by a fast feedforward 3D reconstructor, enabling a true walkable experience within the 3D scene. Experiments demonstrate that our panoramic video generation model, trained with a mix of image and video data, achieves convincing spatial and temporal consistency for static scenes. This is validated by an average COLMAP matching rate of 94.6\%, allowing for high-quality panoramic Gaussian splat reconstruction and improved navigation throughout the scene. Qualitative and quantitative results also show it outperforms the state-of-the-art 360{\deg} video generators and 3D scene generation models.
In-the-wild photo collections often contain limited volumes of imagery and exhibit multiple appearances, e.g., taken at different times of day or seasons, posing significant challenges to scene reconstruction and novel view synthesis. Although recent adaptations of Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS) have improved in these areas, they tend to oversmooth and are prone to overfitting. In this paper, we present MS-GS, a novel framework designed with Multi-appearance capabilities in Sparse-view scenarios using 3DGS. To address the lack of support due to sparse initializations, our approach is built on the geometric priors elicited from monocular depth estimations. The key lies in extracting and utilizing local semantic regions with a Structure-from-Motion (SfM) points anchored algorithm for reliable alignment and geometry cues. Then, to introduce multi-view constraints, we propose a series of geometry-guided supervision at virtual views in a fine-grained and coarse scheme to encourage 3D consistency and reduce overfitting. We also introduce a dataset and an in-the-wild experiment setting to set up more realistic benchmarks. We demonstrate that MS-GS achieves photorealistic renderings under various challenging sparse-view and multi-appearance conditions and outperforms existing approaches significantly across different datasets.
Multi-objective optimization (MOO) is essential for solving complex real-world problems involving multiple conflicting objectives. However, many practical applications - including engineering design, autonomous systems, and machine learning - often yield non-convex, degenerate, or discontinuous Pareto frontiers, which involve traditional scalarization and Pareto Set Learning (PSL) methods that struggle to approximate accurately. Existing PSL approaches perform well on convex fronts but tend to fail in capturing the diversity and structure of irregular Pareto sets commonly observed in real-world scenarios. In this paper, we propose Gaussian-PSL, a novel framework that integrates Gaussian Splatting into PSL to address the challenges posed by non-convex Pareto frontiers. Our method dynamically partitions the preference vector space, enabling simple MLP networks to learn localized features within each region, which are then integrated by an additional MLP aggregator. This partition-aware strategy enhances both exploration and convergence, reduces sensi- tivity to initialization, and improves robustness against local optima. We first provide the mathematical formulation for controllable Pareto set learning using Gaussian Splat- ting. Then, we introduce the Gaussian-PSL architecture and evaluate its performance on synthetic and real-world multi-objective benchmarks. Experimental results demonstrate that our approach outperforms standard PSL models in learning irregular Pareto fronts while maintaining computational efficiency and model simplicity. This work offers a new direction for effective and scalable MOO under challenging frontier geometries.
Achieving truly practical dynamic 3D reconstruction requires online operation, global pose and map consistency, detailed appearance modeling, and the flexibility to handle both RGB and RGB-D inputs. However, existing SLAM methods typically merely remove the dynamic parts or require RGB-D input, while offline methods are not scalable to long video sequences, and current transformer-based feedforward methods lack global consistency and appearance details. To this end, we achieve online dynamic scene reconstruction by disentangling the static and dynamic parts within a SLAM system. The poses are tracked robustly with a novel motion masking strategy, and dynamic parts are reconstructed leveraging a progressive adaptation of a Motion Scaffolds graph. Our method yields novel view renderings competitive to offline methods and achieves on-par tracking with state-of-the-art dynamic SLAM methods.
Underwater image degradation poses significant challenges for 3D reconstruction, where simplified physical models often fail in complex scenes. We propose \textbf{R-Splatting}, a unified framework that bridges underwater image restoration (UIR) with 3D Gaussian Splatting (3DGS) to improve both rendering quality and geometric fidelity. Our method integrates multiple enhanced views produced by diverse UIR models into a single reconstruction pipeline. During inference, a lightweight illumination generator samples latent codes to support diverse yet coherent renderings, while a contrastive loss ensures disentangled and stable illumination representations. Furthermore, we propose \textit{Uncertainty-Aware Opacity Optimization (UAOO)}, which models opacity as a stochastic function to regularize training. This suppresses abrupt gradient responses triggered by illumination variation and mitigates overfitting to noisy or view-specific artifacts. Experiments on Seathru-NeRF and our new BlueCoral3D dataset demonstrate that R-Splatting outperforms strong baselines in both rendering quality and geometric accuracy.
This paper proposes Neural-MMGS, a novel neural 3DGS framework for multimodal large-scale scene reconstruction that fuses multiple sensing modalities in a per-gaussian compact, learnable embedding. While recent works focusing on large-scale scene reconstruction have incorporated LiDAR data to provide more accurate geometric constraints, we argue that LiDAR's rich physical properties remain underexplored. Similarly, semantic information has been used for object retrieval, but could provide valuable high-level context for scene reconstruction. Traditional approaches append these properties to Gaussians as separate parameters, increasing memory usage and limiting information exchange across modalities. Instead, our approach fuses all modalities -- image, LiDAR, and semantics -- into a compact, learnable embedding that implicitly encodes optical, physical, and semantic features in each Gaussian. We then train lightweight neural decoders to map these embeddings to Gaussian parameters, enabling the reconstruction of each sensing modality with lower memory overhead and improved scalability. We evaluate Neural-MMGS on the Oxford Spires and KITTI-360 datasets. On Oxford Spires, we achieve higher-quality reconstructions, while on KITTI-360, our method reaches competitive results with less storage consumption compared with current approaches in LiDAR-based novel-view synthesis.
3D Gaussian Splatting (3DGS) has shown impressive results in real-time novel view synthesis. However, it often struggles under sparse-view settings, producing undesirable artifacts such as floaters, inaccurate geometry, and overfitting due to limited observations. We find that a key contributing factor is uncontrolled densification, where adding Gaussian primitives rapidly without guidance can harm geometry and cause artifacts. We propose AD-GS, a novel alternating densification framework that interleaves high and low densification phases. During high densification, the model densifies aggressively, followed by photometric loss based training to capture fine-grained scene details. Low densification then primarily involves aggressive opacity pruning of Gaussians followed by regularizing their geometry through pseudo-view consistency and edge-aware depth smoothness. This alternating approach helps reduce overfitting by carefully controlling model capacity growth while progressively refining the scene representation. Extensive experiments on challenging datasets demonstrate that AD-GS significantly improves rendering quality and geometric consistency compared to existing methods. The source code for our model can be found on our project page: https://gurutvapatle.github.io/publications/2025/ADGS.html .
EmbodiedSplat: Personalized Real-to-Sim-to-Real Navigation with Gaussian Splats from a Mobile Device
The field of Embodied AI predominantly relies on simulation for training and evaluation, often using either fully synthetic environments that lack photorealism or high-fidelity real-world reconstructions captured with expensive hardware. As a result, sim-to-real transfer remains a major challenge. In this paper, we introduce EmbodiedSplat, a novel approach that personalizes policy training by efficiently capturing the deployment environment and fine-tuning policies within the reconstructed scenes. Our method leverages 3D Gaussian Splatting (GS) and the Habitat-Sim simulator to bridge the gap between realistic scene capture and effective training environments. Using iPhone-captured deployment scenes, we reconstruct meshes via GS, enabling training in settings that closely approximate real-world conditions. We conduct a comprehensive analysis of training strategies, pre-training datasets, and mesh reconstruction techniques, evaluating their impact on sim-to-real predictivity in real-world scenarios. Experimental results demonstrate that agents fine-tuned with EmbodiedSplat outperform both zero-shot baselines pre-trained on large-scale real-world datasets (HM3D) and synthetically generated datasets (HSSD), achieving absolute success rate improvements of 20\% and 40\% on real-world Image Navigation task. Moreover, our approach yields a high sim-vs-real correlation (0.87--0.97) for the reconstructed meshes, underscoring its effectiveness in adapting policies to diverse environments with minimal effort. Project page: https://gchhablani.github.io/embodied-splat
While 3D Gaussian Splatting (3DGS) has revolutionized photorealistic rendering, its vast ecosystem of assets remains incompatible with high-performance LiDAR simulation, a critical tool for robotics and autonomous driving. We present \textbf{FGGS-LiDAR}, a framework that bridges this gap with a truly plug-and-play approach. Our method converts \textit{any} pretrained 3DGS model into a high-fidelity, watertight mesh without requiring LiDAR-specific supervision or architectural alterations. This conversion is achieved through a general pipeline of volumetric discretization and Truncated Signed Distance Field (TSDF) extraction. We pair this with a highly optimized, GPU-accelerated ray-casting module that simulates LiDAR returns at over 500 FPS. We validate our approach on indoor and outdoor scenes, demonstrating exceptional geometric fidelity; By enabling the direct reuse of 3DGS assets for geometrically accurate depth sensing, our framework extends their utility beyond visualization and unlocks new capabilities for scalable, multimodal simulation. Our open-source implementation is available at https://github.com/TATP-233/FGGS-LiDAR.
Smoke in real-world scenes can severely degrade the quality of images and hamper visibility. Recent methods for image restoration either rely on data-driven priors that are susceptible to hallucinations, or are limited to static low-density smoke. We introduce SmokeSeer, a method for simultaneous 3D scene reconstruction and smoke removal from a video capturing multiple views of a scene. Our method uses thermal and RGB images, leveraging the fact that the reduced scattering in thermal images enables us to see through the smoke. We build upon 3D Gaussian splatting to fuse information from the two image modalities, and decompose the scene explicitly into smoke and non-smoke components. Unlike prior approaches, SmokeSeer handles a broad range of smoke densities and can adapt to temporally varying smoke. We validate our approach on synthetic data and introduce a real-world multi-view smoke dataset with RGB and thermal images. We provide open-source code and data at the project website.
We introduce SPFSplatV2, an efficient feed-forward framework for 3D Gaussian splatting from sparse multi-view images, requiring no ground-truth poses during training and inference. It employs a shared feature extraction backbone, enabling simultaneous prediction of 3D Gaussian primitives and camera poses in a canonical space from unposed inputs. A masked attention mechanism is introduced to efficiently estimate target poses during training, while a reprojection loss enforces pixel-aligned Gaussian primitives, providing stronger geometric constraints. We further demonstrate the compatibility of our training framework with different reconstruction architectures, resulting in two model variants. Remarkably, despite the absence of pose supervision, our method achieves state-of-the-art performance in both in-domain and out-of-domain novel view synthesis, even under extreme viewpoint changes and limited image overlap, and surpasses recent methods that rely on geometric supervision for relative pose estimation. By eliminating dependence on ground-truth poses, our method offers the scalability to leverage larger and more diverse datasets. Code and pretrained models will be available on our project page: https://ranrhuang.github.io/spfsplatv2/.
Recent advancements in static feed-forward scene reconstruction have demonstrated significant progress in high-quality novel view synthesis. However, these models often struggle with generalizability across diverse environments and fail to effectively handle dynamic content. We present BTimer (short for BulletTimer), the first motion-aware feed-forward model for real-time reconstruction and novel view synthesis of dynamic scenes. Our approach reconstructs the full scene in a 3D Gaussian Splatting representation at a given target ('bullet') timestamp by aggregating information from all the context frames. Such a formulation allows BTimer to gain scalability and generalization by leveraging both static and dynamic scene datasets. Given a casual monocular dynamic video, BTimer reconstructs a bullet-time scene within 150ms while reaching state-of-the-art performance on both static and dynamic scene datasets, even compared with optimization-based approaches.
In the realm of driving scenarios, the presence of rapidly moving vehicles, pedestrians in motion, and large-scale static backgrounds poses significant challenges for 3D scene reconstruction. Recent methods based on 3D Gaussian Splatting address the motion blur problem by decoupling dynamic and static components within the scene. However, these decoupling strategies overlook background optimization with adequate geometry relationships and rely solely on fitting each training view by adding Gaussians. Therefore, these models exhibit limited robustness in rendering novel views and lack an accurate geometric representation. To address the above issues, we introduce DriveSplat, a high-quality reconstruction method for driving scenarios based on neural Gaussian representations with dynamic-static decoupling. To better accommodate the predominantly linear motion patterns of driving viewpoints, a region-wise voxel initialization scheme is employed, which partitions the scene into near, middle, and far regions to enhance close-range detail representation. Deformable neural Gaussians are introduced to model non-rigid dynamic actors, whose parameters are temporally adjusted by a learnable deformation network. The entire framework is further supervised by depth and normal priors from pre-trained models, improving the accuracy of geometric structures. Our method has been rigorously evaluated on the Waymo and KITTI datasets, demonstrating state-of-the-art performance in novel-view synthesis for driving scenarios.
Recently, 3D Gaussian Splatting (3DGS) has emerged as a powerful alternative to NeRF-based approaches, enabling real-time, high-quality novel view synthesis through explicit, optimizable 3D Gaussians. However, 3DGS suffers from significant memory overhead due to its reliance on per-Gaussian parameters to model view-dependent effects and anisotropic shapes. While recent works propose compressing 3DGS with neural fields, these methods struggle to capture high-frequency spatial variations in Gaussian properties, leading to degraded reconstruction of fine details. We present Hybrid Radiance Fields (HyRF), a novel scene representation that combines the strengths of explicit Gaussians and neural fields. HyRF decomposes the scene into (1) a compact set of explicit Gaussians storing only critical high-frequency parameters and (2) grid-based neural fields that predict remaining properties. To enhance representational capacity, we introduce a decoupled neural field architecture, separately modeling geometry (scale, opacity, rotation) and view-dependent color. Additionally, we propose a hybrid rendering scheme that composites Gaussian splatting with a neural field-predicted background, addressing limitations in distant scene representation. Experiments demonstrate that HyRF achieves state-of-the-art rendering quality while reducing model size by over 20 times compared to 3DGS and maintaining real-time performance. Our project page is available at https://wzpscott.github.io/hyrf/.
Surgical simulation is essential for medical training, enabling practitioners to develop crucial skills in a risk-free environment while improving patient safety and surgical outcomes. However, conventional methods for building simulation environments are cumbersome, time-consuming, and difficult to scale, often resulting in poor details and unrealistic simulations. In this paper, we propose a Gaussian Splatting-based framework to directly reconstruct interactive surgical scenes from endoscopic data while ensuring efficiency, rendering quality, and realism. A key challenge in this data-driven simulation paradigm is the restricted movement of endoscopic cameras, which limits viewpoint diversity. As a result, the Gaussian Splatting representation overfits specific perspectives, leading to reduced geometric accuracy. To address this issue, we introduce a novel virtual camera-based regularization method that adaptively samples virtual viewpoints around the scene and incorporates them into the optimization process to mitigate overfitting. An effective depth-based regularization is applied to both real and virtual views to further refine the scene geometry. To enable fast deformation simulation, we propose a sparse control node-based Material Point Method, which integrates physical properties into the reconstructed scene while significantly reducing computational costs. Experimental results on representative surgical data demonstrate that our method can efficiently reconstruct and simulate surgical scenes from sparse endoscopic views. Notably, our method takes only a few minutes to reconstruct the surgical scene and is able to produce physically plausible deformations in real-time with user-defined interactions.
3D Gaussian Splatting (3DGS) has recently emerged as a powerful paradigm for photorealistic view synthesis, representing scenes with spatially distributed Gaussian primitives. While highly effective for rendering, achieving accurate and complete surface reconstruction remains challenging due to the unstructured nature of the representation and the absence of explicit geometric supervision. In this work, we propose DiGS, a unified framework that embeds Signed Distance Field (SDF) learning directly into the 3DGS pipeline, thereby enforcing strong and interpretable surface priors. By associating each Gaussian with a learnable SDF value, DiGS explicitly aligns primitives with underlying geometry and improves cross-view consistency. To further ensure dense and coherent coverage, we design a geometry-guided grid growth strategy that adaptively distributes Gaussians along geometry-consistent regions under a multi-scale hierarchy. Extensive experiments on standard benchmarks, including DTU, Mip-NeRF 360, and Tanks& Temples, demonstrate that DiGS consistently improves reconstruction accuracy and completeness while retaining high rendering fidelity.
Audio-driven talking head generation is crucial for applications in virtual reality, digital avatars, and film production. While NeRF-based methods enable high-fidelity reconstruction, they suffer from low rendering efficiency and suboptimal audio-visual synchronization. This work presents PGSTalker, a real-time audio-driven talking head synthesis framework based on 3D Gaussian Splatting (3DGS). To improve rendering performance, we propose a pixel-aware density control strategy that adaptively allocates point density, enhancing detail in dynamic facial regions while reducing redundancy elsewhere. Additionally, we introduce a lightweight Multimodal Gated Fusion Module to effectively fuse audio and spatial features, thereby improving the accuracy of Gaussian deformation prediction. Extensive experiments on public datasets demonstrate that PGSTalker outperforms existing NeRF- and 3DGS-based approaches in rendering quality, lip-sync precision, and inference speed. Our method exhibits strong generalization capabilities and practical potential for real-world deployment.
We introduce ConfidentSplat, a novel 3D Gaussian Splatting (3DGS)-based SLAM system for robust, highfidelity RGB-only reconstruction. Addressing geometric inaccuracies in existing RGB-only 3DGS SLAM methods that stem from unreliable depth estimation, ConfidentSplat incorporates a core innovation: a confidence-weighted fusion mechanism. This mechanism adaptively integrates depth cues from multiview geometry with learned monocular priors (Omnidata ViT), dynamically weighting their contributions based on explicit reliability estimates-derived predominantly from multi-view geometric consistency-to generate high-fidelity proxy depth for map supervision. The resulting proxy depth guides the optimization of a deformable 3DGS map, which efficiently adapts online to maintain global consistency following pose updates from a DROID-SLAM-inspired frontend and backend optimizations (loop closure, global bundle adjustment). Extensive validation on standard benchmarks (TUM-RGBD, ScanNet) and diverse custom mobile datasets demonstrates significant improvements in reconstruction accuracy (L1 depth error) and novel view synthesis fidelity (PSNR, SSIM, LPIPS) over baselines, particularly in challenging conditions. ConfidentSplat underscores the efficacy of principled, confidence-aware sensor fusion for advancing state-of-the-art dense visual SLAM.
Multi-modal three-dimensional (3D) medical imaging data, derived from ultrasound, magnetic resonance imaging (MRI), and potentially computed tomography (CT), provide a widely adopted approach for non-invasive anatomical visualization. Accurate modeling, registration, and visualization in this setting depend on surface reconstruction and frame-to-frame interpolation. Traditional methods often face limitations due to image noise and incomplete information between frames. To address these challenges, we present MedGS, a semi-supervised neural implicit surface reconstruction framework that employs a Gaussian Splatting (GS)-based interpolation mechanism. In this framework, medical imaging data are represented as consecutive two-dimensional (2D) frames embedded in 3D space and modeled using Gaussian-based distributions. This representation enables robust frame interpolation and high-fidelity surface reconstruction across imaging modalities. As a result, MedGS offers more efficient training than traditional neural implicit methods. Its explicit GS-based representation enhances noise robustness, allows flexible editing, and supports precise modeling of complex anatomical structures with fewer artifacts. These features make MedGS highly suitable for scalable and practical applications in medical imaging.
3D Gaussian Splatting (3DGS) has demonstrated impressive performance in novel view synthesis under dense-view settings. However, in sparse-view scenarios, despite the realistic renderings in training views, 3DGS occasionally manifests appearance artifacts in novel views. This paper investigates the appearance artifacts in sparse-view 3DGS and uncovers a core limitation of current approaches: the optimized Gaussians are overly-entangled with one another to aggressively fit the training views, which leads to a neglect of the real appearance distribution of the underlying scene and results in appearance artifacts in novel views. The analysis is based on a proposed metric, termed Co-Adaptation Score (CA), which quantifies the entanglement among Gaussians, i.e., co-adaptation, by computing the pixel-wise variance across multiple renderings of the same viewpoint, with different random subsets of Gaussians. The analysis reveals that the degree of co-adaptation is naturally alleviated as the number of training views increases. Based on the analysis, we propose two lightweight strategies to explicitly mitigate the co-adaptation in sparse-view 3DGS: (1) random gaussian dropout; (2) multiplicative noise injection to the opacity. Both strategies are designed to be plug-and-play, and their effectiveness is validated across various methods and benchmarks. We hope that our insights into the co-adaptation effect will inspire the community to achieve a more comprehensive understanding of sparse-view 3DGS.
Recent works in volume rendering, \textit{e.g.} NeRF and 3D Gaussian Splatting (3DGS), significantly advance the rendering quality and efficiency with the help of the learned implicit neural radiance field or 3D Gaussians. Rendering on top of an explicit representation, the vanilla 3DGS and its variants deliver real-time efficiency by optimizing the parametric model with single-view supervision per iteration during training which is adopted from NeRF. Consequently, certain views are overfitted, leading to unsatisfying appearance in novel-view synthesis and imprecise 3D geometries. To solve aforementioned problems, we propose a new 3DGS optimization method embodying four key novel contributions: 1) We transform the conventional single-view training paradigm into a multi-view training strategy. With our proposed multi-view regulation, 3D Gaussian attributes are further optimized without overfitting certain training views. As a general solution, we improve the overall accuracy in a variety of scenarios and different Gaussian variants. 2) Inspired by the benefit introduced by additional views, we further propose a cross-intrinsic guidance scheme, leading to a coarse-to-fine training procedure concerning different resolutions. 3) Built on top of our multi-view regulated training, we further propose a cross-ray densification strategy, densifying more Gaussian kernels in the ray-intersect regions from a selection of views. 4) By further investigating the densification strategy, we found that the effect of densification should be enhanced when certain views are distinct dramatically. As a solution, we propose a novel multi-view augmented densification strategy, where 3D Gaussians are encouraged to get densified to a sufficient number accordingly, resulting in improved reconstruction accuracy.