Skip to the content.

gaussian splatting - 2025_10

Home / Papers / gaussian splatting

Papers

📅 2025-10-29 | 💬 10 pages. A presentation video of our approach is available at https://youtu.be/_SGNhhNz0fE
While recent advances in Gaussian Splatting have enabled fast reconstruction of high-quality 3D scenes from images, extracting accurate surface meshes remains a challenge. Current approaches extract the surface through costly post-processing steps, resulting in the loss of fine geometric details or requiring significant time and leading to very dense meshes with millions of vertices. More fundamentally, the a posteriori conversion from a volumetric to a surface representation limits the ability of the final mesh to preserve all geometric structures captured during training. We present MILo, a novel Gaussian Splatting framework that bridges the gap between volumetric and surface representations by differentiably extracting a mesh from the 3D Gaussians. We design a fully differentiable procedure that constructs the mesh-including both vertex locations and connectivity-at every iteration directly from the parameters of the Gaussians, which are the only quantities optimized during training. Our method introduces three key technical contributions: a bidirectional consistency framework ensuring both representations-Gaussians and the extracted mesh-capture the same underlying geometry during training; an adaptive mesh extraction process performed at each training iteration, which uses Gaussians as differentiable pivots for Delaunay triangulation; a novel method for computing signed distance values from the 3D Gaussians that enables precise surface extraction while avoiding geometric erosion. Our approach can reconstruct complete scenes, including backgrounds, with state-of-the-art quality while requiring an order of magnitude fewer mesh vertices than previous methods. Due to their light weight and empty interior, our meshes are well suited for downstream applications such as physics simulations or animation.
📅 2025-10-29 | 💬 Accepted to NeurIPS 2025. Project page: https://echopickle.github.io/HAIF-GS.github.io/
Reconstructing dynamic 3D scenes from monocular videos remains a fundamental challenge in 3D vision. While 3D Gaussian Splatting (3DGS) achieves real-time rendering in static settings, extending it to dynamic scenes is challenging due to the difficulty of learning structured and temporally consistent motion representations. This challenge often manifests as three limitations in existing methods: redundant Gaussian updates, insufficient motion supervision, and weak modeling of complex non-rigid deformations. These issues collectively hinder coherent and efficient dynamic reconstruction. To address these limitations, we propose HAIF-GS, a unified framework that enables structured and consistent dynamic modeling through sparse anchor-driven deformation. It first identifies motion-relevant regions via an Anchor Filter to suppress redundant updates in static areas. A self-supervised Induced Flow-Guided Deformation module induces anchor motion using multi-frame feature aggregation, eliminating the need for explicit flow labels. To further handle fine-grained deformations, a Hierarchical Anchor Propagation mechanism increases anchor resolution based on motion complexity and propagates multi-level transformations. Extensive experiments on synthetic and real-world benchmarks validate that HAIF-GS significantly outperforms prior dynamic 3DGS methods in rendering quality, temporal coherence, and reconstruction efficiency.
📅 2025-10-29
Reconstructing dynamic driving scenes from dashcam videos has attracted increasing attention due to its significance in autonomous driving and scene understanding. While recent advances have made impressive progress, most methods still unify all background elements into a single representation, hindering both instance-level understanding and flexible scene editing. Some approaches attempt to lift 2D segmentation into 3D space, but often rely on pre-processed instance IDs or complex pipelines to map continuous features to discrete identities. Moreover, these methods are typically designed for indoor scenes with rich viewpoints, making them less applicable to outdoor driving scenarios. In this paper, we present InstDrive, an instance-aware 3D Gaussian Splatting framework tailored for the interactive reconstruction of dynamic driving scene. We use masks generated by SAM as pseudo ground-truth to guide 2D feature learning via contrastive loss and pseudo-supervised objectives. At the 3D level, we introduce regularization to implicitly encode instance identities and enforce consistency through a voxel-based loss. A lightweight static codebook further bridges continuous features and discrete identities without requiring data pre-processing or complex optimization. Quantitative and qualitative experiments demonstrate the effectiveness of InstDrive, and to the best of our knowledge, it is the first framework to achieve 3D instance segmentation in dynamic, open-world driving scenes.More visualizations are available at our project page.
📅 2025-10-29
Recently, Gaussian Splatting (GS) has shown great potential for urban scene reconstruction in the field of autonomous driving. However, current urban scene reconstruction methods often depend on multimodal sensors as inputs, \textit{i.e.} LiDAR and images. Though the geometry prior provided by LiDAR point clouds can largely mitigate ill-posedness in reconstruction, acquiring such accurate LiDAR data is still challenging in practice: i) precise spatiotemporal calibration between LiDAR and other sensors is required, as they may not capture data simultaneously; ii) reprojection errors arise from spatial misalignment when LiDAR and cameras are mounted at different locations. To avoid the difficulty of acquiring accurate LiDAR depth, we propose $D^2GS$, a LiDAR-free urban scene reconstruction framework. In this work, we obtain geometry priors that are as effective as LiDAR while being denser and more accurate. $\textbf{First}$, we initialize a dense point cloud by back-projecting multi-view metric depth predictions. This point cloud is then optimized by a Progressive Pruning strategy to improve the global consistency. $\textbf{Second}$, we jointly refine Gaussian geometry and predicted dense metric depth via a Depth Enhancer. Specifically, we leverage diffusion priors from a depth foundation model to enhance the depth maps rendered by Gaussians. In turn, the enhanced depths provide stronger geometric constraints during Gaussian training. $\textbf{Finally}$, we improve the accuracy of ground geometry by constraining the shape and normal attributes of Gaussians within road regions. Extensive experiments on the Waymo dataset demonstrate that our method consistently outperforms state-of-the-art methods, producing more accurate geometry even when compared with those using ground-truth LiDAR data.
📅 2025-10-29 | 💬 18 pages, 11 figures. NeurIPS 2025; Project page: https://zju3dv.github.io/AtlasGS/
3D reconstruction of indoor and urban environments is a prominent research topic with various downstream applications. However, existing geometric priors for addressing low-texture regions in indoor and urban settings often lack global consistency. Moreover, Gaussian Splatting and implicit SDF fields often suffer from discontinuities or exhibit computational inefficiencies, resulting in a loss of detail. To address these issues, we propose an Atlanta-world guided implicit-structured Gaussian Splatting that achieves smooth indoor and urban scene reconstruction while preserving high-frequency details and rendering efficiency. By leveraging the Atlanta-world model, we ensure the accurate surface reconstruction for low-texture regions, while the proposed novel implicit-structured GS representations provide smoothness without sacrificing efficiency and high-frequency details. Specifically, we propose a semantic GS representation to predict the probability of all semantic regions and deploy a structure plane regularization with learnable plane indicators for global accurate surface reconstruction. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in both indoor and urban scenes, delivering superior surface reconstruction quality.
📅 2025-10-28 | 💬 9 pages, 10 figures
We present NVSim, a framework that automatically constructs large-scale, navigable indoor simulators from only common image sequences, overcoming the cost and scalability limitations of traditional 3D scanning. Our approach adapts 3D Gaussian Splatting to address visual artifacts on sparsely observed floors a common issue in robotic traversal data. We introduce Floor-Aware Gaussian Splatting to ensure a clean, navigable ground plane, and a novel mesh-free traversability checking algorithm that constructs a topological graph by directly analyzing rendered views. We demonstrate our system's ability to generate valid, large-scale navigation graphs from real-world data. A video demonstration is avilable at https://youtu.be/tTiIQt6nXC8
📅 2025-10-28
Navigating to a designated goal using visual information is a fundamental capability for intelligent robots. Most classical visual navigation methods are restricted to single-goal, single-modality, and closed set goal settings. To address the practical demands of multi-modal, open-vocabulary goal queries and multi-goal visual navigation, we propose LagMemo, a navigation system that leverages a language 3D Gaussian Splatting memory. During exploration, LagMemo constructs a unified 3D language memory. With incoming task goals, the system queries the memory, predicts candidate goal locations, and integrates a local perception-based verification mechanism to dynamically match and validate goals during navigation. For fair and rigorous evaluation, we curate GOAT-Core, a high-quality core split distilled from GOAT-Bench tailored to multi-modal open-vocabulary multi-goal visual navigation. Experimental results show that LagMemo's memory module enables effective multi-modal open-vocabulary goal localization, and that LagMemo outperforms state-of-the-art methods in multi-goal visual navigation. Project page: https://weekgoodday.github.io/lagmemo
📅 2025-10-28 | 💬 17 pages, 6 figures
Traditional SLAM algorithms excel at camera tracking, but typically produce incomplete and low-resolution maps that are not tightly integrated with semantics prediction. Recent work integrates Gaussian Splatting (GS) into SLAM to enable dense, photorealistic 3D mapping, yet existing GS-based SLAM methods require per-scene optimization that is slow and consumes an excessive number of Gaussians. We present GS4, the first generalizable GS-based semantic SLAM system. Compared with prior approaches, GS4 runs 10x faster, uses 10x fewer Gaussians, and achieves state-of-the-art performance across color, depth, semantic mapping and camera tracking. From an RGB-D video stream, GS4 incrementally builds and updates a set of 3D Gaussians using a feed-forward network. First, the Gaussian Prediction Model estimates a sparse set of Gaussian parameters from input frame, which integrates both color and semantic prediction with the same backbone. Then, the Gaussian Refinement Network merges new Gaussians with the existing set while avoiding redundancy. Finally, we propose to optimize GS for only 1-5 iterations that corrects drift and floaters when significant pose changes are detected. Experiments on the real-world ScanNet and ScanNet++ benchmarks demonstrate state-of-the-art semantic SLAM performance, with strong generalization capability shown through zero-shot transfer to the NYUv2 and TUM RGB-D datasets.
📅 2025-10-28
This survey comprehensively reviews the evolving field of multi-robot collaborative Simultaneous Localization and Mapping (SLAM) using 3D Gaussian Splatting (3DGS). As an explicit scene representation, 3DGS has enabled unprecedented real-time, high-fidelity rendering, ideal for robotics. However, its use in multi-robot systems introduces significant challenges in maintaining global consistency, managing communication, and fusing data from heterogeneous sources. We systematically categorize approaches by their architecture -- centralized, distributed -- and analyze core components like multi-agent consistency and alignment, communication-efficient, Gaussian representation, semantic distillation, fusion and pose optimization, and real-time scalability. In addition, a summary of critical datasets and evaluation metrics is provided to contextualize performance. Finally, we identify key open challenges and chart future research directions, including lifelong mapping, semantic association and mapping, multi-model for robustness, and bridging the Sim2Real gap.
📅 2025-10-27 | 💬 Accepted in IEEE Robotics and Automation Letters September 2025
Remembering where object segments were predicted in the past is useful for improving the accuracy and consistency of class-agnostic video segmentation algorithms. Existing video segmentation algorithms typically use either no object-level memory (e.g. FastSAM) or they use implicit memories in the form of recurrent neural network features (e.g. SAM2). In this paper, we augment both types of segmentation models using an explicit 3D memory and show that the resulting models have more accurate and consistent predictions. For this, we develop an online 3D Gaussian Splatting (3DGS) technique to store predicted object-level segments generated throughout the duration of a video. Based on this 3DGS representation, a set of fusion techniques are developed, named FastSAM-Splat and SAM2-Splat, that use the explicit 3DGS memory to improve their respective foundation models' predictions. Ablation experiments are used to validate the proposed techniques' design and hyperparameter settings. Results from both real-world and simulated benchmarking experiments show that models which use explicit 3D memories result in more accurate and consistent predictions than those which use no memory or only implicit neural network memories. Project Page: https://topipari.com/projects/FastSAM-Splat/
📅 2025-10-27 | 💬 This work received the Best Paper Honorable Mention at the AMFG Workshop, ICCV 2025
We present a novel, zero-shot pipeline for creating hyperrealistic, identity-preserving 3D avatars from a few unstructured phone images. Existing methods face several challenges: single-view approaches suffer from geometric inconsistencies and hallucinations, degrading identity preservation, while models trained on synthetic data fail to capture high-frequency details like skin wrinkles and fine hair, limiting realism. Our method introduces two key contributions: (1) a generative canonicalization module that processes multiple unstructured views into a standardized, consistent representation, and (2) a transformer-based model trained on a new, large-scale dataset of high-fidelity Gaussian splatting avatars derived from dome captures of real people. This "Capture, Canonicalize, Splat" pipeline produces static quarter-body avatars with compelling realism and robust identity preservation from unstructured photos.
📅 2025-10-27 | 💬 Accepted by NeurIPS2025
End-to-end autonomous driving (E2E-AD) has emerged as a promising paradigm that unifies perception, prediction, and planning into a holistic, data-driven framework. However, achieving robustness to varying camera viewpoints, a common real-world challenge due to diverse vehicle configurations, remains an open problem. In this work, we propose VR-Drive, a novel E2E-AD framework that addresses viewpoint generalization by jointly learning 3D scene reconstruction as an auxiliary task to enable planning-aware view synthesis. Unlike prior scene-specific synthesis approaches, VR-Drive adopts a feed-forward inference strategy that supports online training-time augmentation from sparse views without additional annotations. To further improve viewpoint consistency, we introduce a viewpoint-mixed memory bank that facilitates temporal interaction across multiple viewpoints and a viewpoint-consistent distillation strategy that transfers knowledge from original to synthesized views. Trained in a fully end-to-end manner, VR-Drive effectively mitigates synthesis-induced noise and improves planning under viewpoint shifts. In addition, we release a new benchmark dataset to evaluate E2E-AD performance under novel camera viewpoints, enabling comprehensive analysis. Our results demonstrate that VR-Drive is a scalable and robust solution for the real-world deployment of end-to-end autonomous driving systems.
📅 2025-10-27
In robot-assisted minimally invasive surgery, accurate 3D reconstruction from endoscopic video is vital for downstream tasks and improved outcomes. However, endoscopic scenarios present unique challenges, including photometric inconsistencies, non-rigid tissue motion, and view-dependent highlights. Most 3DGS-based methods that rely solely on appearance constraints for optimizing 3DGS are often insufficient in this context, as these dynamic visual artifacts can mislead the optimization process and lead to inaccurate reconstructions. To address these limitations, we present EndoWave, a unified spatio-temporal Gaussian Splatting framework by incorporating an optical flow-based geometric constraint and a multi-resolution rational wavelet supervision. First, we adopt a unified spatio-temporal Gaussian representation that directly optimizes primitives in a 4D domain. Second, we propose a geometric constraint derived from optical flow to enhance temporal coherence and effectively constrain the 3D structure of the scene. Third, we propose a multi-resolution rational orthogonal wavelet as a constraint, which can effectively separate the details of the endoscope and enhance the rendering performance. Extensive evaluations on two real surgical datasets, EndoNeRF and StereoMIS, demonstrate that our method EndoWave achieves state-of-the-art reconstruction quality and visual accuracy compared to the baseline method.
📅 2025-10-27 | 💬 https://github.com/Arlo0o/UniScene-Unified-Occupancy-centric-Driving-Scene-Generation/tree/v2
Driving scene generation is a critical domain for autonomous driving, enabling downstream applications, including perception and planning evaluation. Occupancy-centric methods have recently achieved state-of-the-art results by offering consistent conditioning across frames and modalities; however, their performance heavily depends on annotated occupancy data, which still remains scarce. To overcome this limitation, we curate Nuplan-Occ, the largest semantic occupancy dataset to date, constructed from the widely used Nuplan benchmark. Its scale and diversity facilitate not only large-scale generative modeling but also autonomous driving downstream applications. Based on this dataset, we develop a unified framework that jointly synthesizes high-quality semantic occupancy, multi-view videos, and LiDAR point clouds. Our approach incorporates a spatio-temporal disentangled architecture to support high-fidelity spatial expansion and temporal forecasting of 4D dynamic occupancy. To bridge modal gaps, we further propose two novel techniques: a Gaussian splatting-based sparse point map rendering strategy that enhances multi-view video generation, and a sensor-aware embedding strategy that explicitly models LiDAR sensor properties for realistic multi-LiDAR simulation. Extensive experiments demonstrate that our method achieves superior generation fidelity and scalability compared to existing approaches, and validates its practical value in downstream tasks. Repo: https://github.com/Arlo0o/UniScene-Unified-Occupancy-centric-Driving-Scene-Generation/tree/v2
📅 2025-10-27
Modeling open-vocabulary language fields in 3D is essential for intuitive human-AI interaction and querying within physical environments. State-of-the-art approaches, such as LangSplat, leverage 3D Gaussian Splatting to efficiently construct these language fields, encoding features distilled from high-dimensional models like CLIP. However, this efficiency is currently offset by the requirement to train a scene-specific language autoencoder for feature compression, introducing a costly, per-scene optimization bottleneck that hinders deployment scalability. In this work, we introduce Gen-LangSplat, that eliminates this requirement by replacing the scene-wise autoencoder with a generalized autoencoder, pre-trained extensively on the large-scale ScanNet dataset. This architectural shift enables the use of a fixed, compact latent space for language features across any new scene without any scene-specific training. By removing this dependency, our entire language field construction process achieves a efficiency boost while delivering querying performance comparable to, or exceeding, the original LangSplat method. To validate our design choice, we perform a thorough ablation study empirically determining the optimal latent embedding dimension and quantifying representational fidelity using Mean Squared Error and cosine similarity between the original and reprojected 512-dimensional CLIP embeddings. Our results demonstrate that generalized embeddings can efficiently and accurately support open-vocabulary querying in novel 3D scenes, paving the way for scalable, real-time interactive 3D AI applications.
📅 2025-10-27
Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have advanced 3D reconstruction and novel view synthesis, but remain heavily dependent on accurate camera poses and dense viewpoint coverage. These requirements limit their applicability in sparse-view settings, where pose estimation becomes unreliable and supervision is insufficient. To overcome these challenges, we introduce Gesplat, a 3DGS-based framework that enables robust novel view synthesis and geometrically consistent reconstruction from unposed sparse images. Unlike prior works that rely on COLMAP for sparse point cloud initialization, we leverage the VGGT foundation model to obtain more reliable initial poses and dense point clouds. Our approach integrates several key innovations: 1) a hybrid Gaussian representation with dual position-shape optimization enhanced by inter-view matching consistency; 2) a graph-guided attribute refinement module to enhance scene details; and 3) flow-based depth regularization that improves depth estimation accuracy for more effective supervision. Comprehensive quantitative and qualitative experiments demonstrate that our approach achieves more robust performance on both forward-facing and large-scale complex datasets compared to other pose-free methods.
📅 2025-10-27 | 💬 Accepted to NeurIPS 2025
This paper presents a unified framework that allows high-quality dynamic Gaussian Splatting from both defocused and motion-blurred monocular videos. Due to the significant difference between the formation processes of defocus blur and motion blur, existing methods are tailored for either one of them, lacking the ability to simultaneously deal with both of them. Although the two can be jointly modeled as blur kernel-based convolution, the inherent difficulty in estimating accurate blur kernels greatly limits the progress in this direction. In this work, we go a step further towards this direction. Particularly, we propose to estimate per-pixel reliable blur kernels using a blur prediction network that exploits blur-related scene and camera information and is subject to a blur-aware sparsity constraint. Besides, we introduce a dynamic Gaussian densification strategy to mitigate the lack of Gaussians for incomplete regions, and boost the performance of novel view synthesis by incorporating unseen view information to constrain scene optimization. Extensive experiments show that our method outperforms the state-of-the-art methods in generating photorealistic novel view synthesis from defocused and motion-blurred monocular videos. Our code is available at \href{https://github.com/hhhddddddd/dydeblur}{\textcolor{cyan}{https://github.com/hhhddddddd/dydeblur}}.
📅 2025-10-27 | 💬 Accepted by NeurIPS 2025. Project page: https://planargs.github.io
Three-dimensional Gaussian Splatting (3DGS) has recently emerged as an efficient representation for novel-view synthesis, achieving impressive visual quality. However, in scenes dominated by large and low-texture regions, common in indoor environments, the photometric loss used to optimize 3DGS yields ambiguous geometry and fails to recover high-fidelity 3D surfaces. To overcome this limitation, we introduce PlanarGS, a 3DGS-based framework tailored for indoor scene reconstruction. Specifically, we design a pipeline for Language-Prompted Planar Priors (LP3) that employs a pretrained vision-language segmentation model and refines its region proposals via cross-view fusion and inspection with geometric priors. 3D Gaussians in our framework are optimized with two additional terms: a planar prior supervision term that enforces planar consistency, and a geometric prior supervision term that steers the Gaussians toward the depth and normal cues. We have conducted extensive experiments on standard indoor benchmarks. The results show that PlanarGS reconstructs accurate and detailed 3D surfaces, consistently outperforming state-of-the-art methods by a large margin. Project page: https://planargs.github.io
📅 2025-10-26 | 💬 NeurIPS 2025. Project page: https://vulab-ai.github.io/Segment-then-Splat/
Open-vocabulary querying in 3D space is crucial for enabling more intelligent perception in applications such as robotics, autonomous systems, and augmented reality. However, most existing methods rely on 2D pixel-level parsing, leading to multi-view inconsistencies and poor 3D object retrieval. Moreover, they are limited to static scenes and struggle with dynamic scenes due to the complexities of motion modeling. In this paper, we propose Segment then Splat, a 3D-aware open vocabulary segmentation approach for both static and dynamic scenes based on Gaussian Splatting. Segment then Splat reverses the long established approach of "segmentation after reconstruction" by dividing Gaussians into distinct object sets before reconstruction. Once reconstruction is complete, the scene is naturally segmented into individual objects, achieving true 3D segmentation. This design eliminates both geometric and semantic ambiguities, as well as Gaussian-object misalignment issues in dynamic scenes. It also accelerates the optimization process, as it eliminates the need for learning a separate language field. After optimization, a CLIP embedding is assigned to each object to enable open-vocabulary querying. Extensive experiments one various datasets demonstrate the effectiveness of our proposed method in both static and dynamic scenarios.
📅 2025-10-26 | 💬 10 Pages, 5 Figures
We introduce Region-Adaptive Learned Hierarchical Encoding (RALHE) for 3D Gaussian Splatting (3DGS) data. While 3DGS has recently become popular for novel view synthesis, the size of trained models limits its deployment in bandwidth-constrained applications such as volumetric media streaming. To address this, we propose a learned hierarchical latent representation that builds upon the principles of "overfitted" learned image compression (e.g., Cool-Chic and C3) to efficiently encode 3DGS attributes. Unlike images, 3DGS data have irregular spatial distributions of Gaussians (geometry) and consist of multiple attributes (signals) defined on the irregular geometry. Our codec is designed to account for these differences between images and 3DGS. Specifically, we leverage the octree structure of the voxelized 3DGS geometry to obtain a hierarchical multi-resolution representation. Our approach overfits latents to each Gaussian attribute under a global rate constraint. These latents are decoded independently through a lightweight decoder network. To estimate the bitrate during training, we employ an autoregressive probability model that leverages octree-derived contexts from the 3D point structure. The multi-resolution latents, decoder, and autoregressive entropy coding networks are jointly optimized for each Gaussian attribute. Experiments demonstrate that the proposed RALHE compression framework achieves a rendering PSNR gain of up to 2dB at low bitrates (less than 1 MB) compared to the baseline 3DGS compression methods.
📅 2025-10-26 | 💬 5 pages and 7 figures, submitted for possible publication
Gaussian splatting (GS) struggles with degraded rendering quality on low-cost devices. To address this issue, we present edge collaborative GS (ECO-GS), where each user can switch between a local small GS model to guarantee timeliness and a remote large GS model to guarantee fidelity. However, deciding how to engage the large GS model is nontrivial, due to the interdependency between rendering requirements and resource conditions. To this end, we propose integrated rendering and communication (IRAC), which jointly optimizes collaboration status (i.e., deciding whether to engage large GS) and edge power allocation (i.e., enabling remote rendering) under communication constraints across different users by minimizing a newly-derived GS switching function. Despite the nonconvexity of the problem, we propose an efficient penalty majorization minimization (PMM) algorithm to obtain the critical point solution. Furthermore, we develop an imitation learning optimization (ILO) algorithm, which reduces the computational time by over 100x compared to PMM. Experiments demonstrate the superiority of PMM and the real-time execution capability of ILO.
📅 2025-10-26
3D Gaussian Splatting SLAM has emerged as a widely used technique for high-fidelity mapping in spatial intelligence. However, existing methods often rely on a single representation scheme, which limits their performance in large-scale dynamic outdoor scenes and leads to cumulative pose errors and scale ambiguity. To address these challenges, we propose \textbf{LVD-GS}, a novel LiDAR-Visual 3D Gaussian Splatting SLAM system. Motivated by the human chain-of-thought process for information seeking, we introduce a hierarchical collaborative representation module that facilitates mutual reinforcement for mapping optimization, effectively mitigating scale drift and enhancing reconstruction robustness. Furthermore, to effectively eliminate the influence of dynamic objects, we propose a joint dynamic modeling module that generates fine-grained dynamic masks by fusing open-world segmentation with implicit residual constraints, guided by uncertainty estimates from DINO-Depth features. Extensive evaluations on KITTI, nuScenes, and self-collected datasets demonstrate that our approach achieves state-of-the-art performance compared to existing methods.
📅 2025-10-26
Learning effective multi-modal 3D representations of objects is essential for numerous applications, such as augmented reality and robotics. Existing methods often rely on task-specific embeddings that are tailored either for semantic understanding or geometric reconstruction. As a result, these embeddings typically cannot be decoded into explicit geometry and simultaneously reused across tasks. In this paper, we propose Object-X, a versatile multi-modal object representation framework capable of encoding rich object embeddings (e.g. images, point cloud, text) and decoding them back into detailed geometric and visual reconstructions. Object-X operates by geometrically grounding the captured modalities in a 3D voxel grid and learning an unstructured embedding fusing the information from the voxels with the object attributes. The learned embedding enables 3D Gaussian Splatting-based object reconstruction, while also supporting a range of downstream tasks, including scene alignment, single-image 3D object reconstruction, and localization. Evaluations on two challenging real-world datasets demonstrate that Object-X produces high-fidelity novel-view synthesis comparable to standard 3D Gaussian Splatting, while significantly improving geometric accuracy. Moreover, Object-X achieves competitive performance with specialized methods in scene alignment and localization. Critically, our object-centric descriptors require 3-4 orders of magnitude less storage compared to traditional image- or point cloud-based approaches, establishing Object-X as a scalable and highly practical solution for multi-modal 3D scene representation.
📅 2025-10-26 | 💬 Accepted by TPAMI
Neural View Synthesis (NVS), such as NeRF and 3D Gaussian Splatting, effectively creates photorealistic scenes from sparse viewpoints, typically evaluated by quality assessment methods like PSNR, SSIM, and LPIPS. However, these full-reference methods, which compare synthesized views to reference views, may not fully capture the perceptual quality of neurally synthesized scenes (NSS), particularly due to the limited availability of dense reference views. Furthermore, the challenges in acquiring human perceptual labels hinder the creation of extensive labeled datasets, risking model overfitting and reduced generalizability. To address these issues, we propose NVS-SQA, a NSS quality assessment method to learn no-reference quality representations through self-supervision without reliance on human labels. Traditional self-supervised learning predominantly relies on the "same instance, similar representation" assumption and extensive datasets. However, given that these conditions do not apply in NSS quality assessment, we employ heuristic cues and quality scores as learning objectives, along with a specialized contrastive pair preparation process to improve the effectiveness and efficiency of learning. The results show that NVS-SQA outperforms 17 no-reference methods by a large margin (i.e., on average 109.5% in SRCC, 98.6% in PLCC, and 91.5% in KRCC over the second best) and even exceeds 16 full-reference methods across all evaluation metrics (i.e., 22.9% in SRCC, 19.1% in PLCC, and 18.6% in KRCC over the second best).
📅 2025-10-26 | 💬 13 pages, 11 figures, under review
The reliability of Simultaneous Localization and Mapping (SLAM) is severely constrained in environments where visual inputs suffer from noise and low illumination. Although recent 3D Gaussian Splatting (3DGS) based SLAM frameworks achieve high-fidelity mapping under clean conditions, they remain vulnerable to compounded degradations that degrade mapping and tracking performance. A key observation underlying our work is that the original 3DGS rendering pipeline inherently behaves as an implicit low-pass filter, attenuating high-frequency noise but also risking over-smoothing. Building on this insight, we propose RoGER-SLAM, a robust 3DGS SLAM system tailored for noise and low-light resilience. The framework integrates three innovations: a Structure-Preserving Robust Fusion (SP-RoFusion) mechanism that couples rendered appearance, depth, and edge cues; an adaptive tracking objective with residual balancing regularization; and a Contrastive Language-Image Pretraining (CLIP)-based enhancement module, selectively activated under compounded degradations to restore semantic and structural fidelity. Comprehensive experiments on Replica, TUM, and real-world sequences show that RoGER-SLAM consistently improves trajectory accuracy and reconstruction quality compared with other 3DGS-SLAM systems, especially under adverse imaging conditions.
📅 2025-10-26
We present GS-ProCams, the first Gaussian Splatting-based framework for projector-camera systems (ProCams). GS-ProCams is not only view-agnostic but also significantly enhances the efficiency of projection mapping (PM) that requires establishing geometric and radiometric mappings between the projector and the camera. Previous CNN-based ProCams are constrained to a specific viewpoint, limiting their applicability to novel perspectives. In contrast, NeRF-based ProCams support view-agnostic projection mapping, however, they require an additional co-located light source and demand significant computational and memory resources. To address this issue, we propose GS-ProCams that employs 2D Gaussian for scene representations, and enables efficient view-agnostic ProCams applications. In particular, we explicitly model the complex geometric and photometric mappings of ProCams using projector responses, the projection surface's geometry and materials represented by Gaussians, and the global illumination component. Then, we employ differentiable physically-based rendering to jointly estimate them from captured multi-view projections. Compared to state-of-the-art NeRF-based methods, our GS-ProCams eliminates the need for additional devices, achieving superior ProCams simulation quality. It also uses only 1/10 of the GPU memory for training and is 900 times faster in inference speed. Please refer to our project page for the code and dataset: https://realqingyue.github.io/GS-ProCams/.
📅 2025-10-26
Recent advancements in 2D and 3D generative models have expanded the capabilities of computer vision. However, generating high-quality 4D dynamic content from a single static image remains a significant challenge. Traditional methods have limitations in modeling temporal dependencies and accurately capturing dynamic geometry changes, especially when considering variations in camera perspective. To address this issue, we propose DynaPose4D, an innovative solution that integrates 4D Gaussian Splatting (4DGS) techniques with Category-Agnostic Pose Estimation (CAPE) technology. This framework uses 3D Gaussian Splatting to construct a 3D model from single images, then predicts multi-view pose keypoints based on one-shot support from a chosen view, leveraging supervisory signals to enhance motion consistency. Experimental results show that DynaPose4D achieves excellent coherence, consistency, and fluidity in dynamic motion generation. These findings not only validate the efficacy of the DynaPose4D framework but also indicate its potential applications in the domains of computer vision and animation production.
📅 2025-10-25 | 💬 Project Page: https://dynamictree-dev.github.io/DynamicTree.github.io/
Generating dynamic and interactive 3D objects, such as trees, has wide applications in virtual reality, games, and world simulation. Nevertheless, existing methods still face various challenges in generating realistic 4D motion for complex real trees. In this paper, we propose DynamicTree, the first framework that can generate long-term, interactive animation of 3D Gaussian Splatting trees. Unlike prior optimization-based methods, our approach generates dynamics in a fast feed-forward manner. The key success of our approach is the use of a compact sparse voxel spectrum to represent the tree movement. Given a 3D tree from Gaussian Splatting reconstruction, our pipeline first generates mesh motion using the sparse voxel spectrum and then binds Gaussians to deform the mesh. Additionally, the proposed sparse voxel spectrum can also serve as a basis for fast modal analysis under external forces, allowing real-time interactive responses. To train our model, we also introduce 4DTree, the first large-scale synthetic 4D tree dataset containing 8,786 animated tree meshes with semantic labels and 100-frame motion sequences. Extensive experiments demonstrate that our method achieves realistic and responsive tree animations, significantly outperforming existing approaches in both visual quality and computational efficiency.
📅 2025-10-24 | 💬 NeurIPS 2025. Project Page: https://hjhyunjinkim.github.io/MH-3DGS
We propose an adaptive sampling framework for 3D Gaussian Splatting (3DGS) that leverages comprehensive multi-view photometric error signals within a unified Metropolis-Hastings approach. Vanilla 3DGS heavily relies on heuristic-based density-control mechanisms (e.g., cloning, splitting, and pruning), which can lead to redundant computations or premature removal of beneficial Gaussians. Our framework overcomes these limitations by reformulating densification and pruning as a probabilistic sampling process, dynamically inserting and relocating Gaussians based on aggregated multi-view errors and opacity scores. Guided by Bayesian acceptance tests derived from these error-based importance scores, our method substantially reduces reliance on heuristics, offers greater flexibility, and adaptively infers Gaussian distributions without requiring predefined scene complexity. Experiments on benchmark datasets, including Mip-NeRF360, Tanks and Temples and Deep Blending, show that our approach reduces the number of Gaussians needed, achieving faster convergence while matching or modestly surpassing the view-synthesis quality of state-of-the-art models.
📅 2025-10-24 | 💬 Accepted to NeurIPS 2025
Gaussian Splatting (GS) has recently emerged as an efficient representation for rendering 3D scenes from 2D images and has been extended to images, videos, and dynamic 4D content. However, applying style transfer to GS-based representations, especially beyond simple color changes, remains challenging. In this work, we introduce CLIPGaussian, the first unified style transfer framework that supports text- and image-guided stylization across multiple modalities: 2D images, videos, 3D objects, and 4D scenes. Our method operates directly on Gaussian primitives and integrates into existing GS pipelines as a plug-in module, without requiring large generative models or retraining from scratch. The CLIPGaussian approach enables joint optimization of color and geometry in 3D and 4D settings, and achieves temporal coherence in videos, while preserving the model size. We demonstrate superior style fidelity and consistency across all tasks, validating CLIPGaussian as a universal and efficient solution for multimodal style transfer.
📅 2025-10-24 | 💬 Download link of InteriorGS: https://huggingface.co/datasets/spatialverse/InteriorGS
3D Gaussian Splatting (3DGS), a 3D representation method with photorealistic real-time rendering capabilities, is regarded as an effective tool for narrowing the sim-to-real gap. However, it lacks fine-grained semantics and physical executability for Visual-Language Navigation (VLN). To address this, we propose SAGE-3D (Semantically and Physically Aligned Gaussian Environments for 3D Navigation), a new paradigm that upgrades 3DGS into an executable, semantically and physically aligned environment. It comprises two components: (1) Object-Centric Semantic Grounding, which adds object-level fine-grained annotations to 3DGS; and (2) Physics-Aware Execution Jointing, which embeds collision objects into 3DGS and constructs rich physical interfaces. We release InteriorGS, containing 1K object-annotated 3DGS indoor scene data, and introduce SAGE-Bench, the first 3DGS-based VLN benchmark with 2M VLN data. Experiments show that 3DGS scene data is more difficult to converge, while exhibiting strong generalizability, improving baseline performance by 31% on the VLN-CE Unseen task. The data and code will be available soon.
📅 2025-10-24
In-the-wild photo collections often contain limited volumes of imagery and exhibit multiple appearances, e.g., taken at different times of day or seasons, posing significant challenges to scene reconstruction and novel view synthesis. Although recent adaptations of Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS) have improved in these areas, they tend to oversmooth and are prone to overfitting. In this paper, we present MS-GS, a novel framework designed with Multi-appearance capabilities in Sparse-view scenarios using 3DGS. To address the lack of support due to sparse initializations, our approach is built on the geometric priors elicited from monocular depth estimations. The key lies in extracting and utilizing local semantic regions with a Structure-from-Motion (SfM) points anchored algorithm for reliable alignment and geometry cues. Then, to introduce multi-view constraints, we propose a series of geometry-guided supervision steps at virtual views in pixel and feature levels to encourage 3D consistency and reduce overfitting. We also introduce a dataset and an in-the-wild experiment setting to set up more realistic benchmarks. We demonstrate that MS-GS achieves photorealistic renderings under various challenging sparse-view and multi-appearance conditions, and outperforms existing approaches significantly across different datasets.
📅 2025-10-23
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.
📅 2025-10-23 | 💬 Code is at https://github.com/ChampagneAndfragrance/Dino_Diffusion_Parking_Official
Parking is a critical pillar of driving safety. While recent end-to-end (E2E) approaches have achieved promising in-domain results, robustness under domain shifts (e.g., weather and lighting changes) remains a key challenge. Rather than relying on additional data, in this paper, we propose Dino-Diffusion Parking (DDP), a domain-agnostic autonomous parking pipeline that integrates visual foundation models with diffusion-based planning to enable generalized perception and robust motion planning under distribution shifts. We train our pipeline in CARLA at regular setting and transfer it to more adversarial settings in a zero-shot fashion. Our model consistently achieves a parking success rate above 90% across all tested out-of-distribution (OOD) scenarios, with ablation studies confirming that both the network architecture and algorithmic design significantly enhance cross-domain performance over existing baselines. Furthermore, testing in a 3D Gaussian splatting (3DGS) environment reconstructed from a real-world parking lot demonstrates promising sim-to-real transfer.
📅 2025-10-23 | 💬 Accepted to SUI 2025 Demo Track
We present Instant Skinned Gaussian Avatars, a real-time and cross-platform 3D avatar system. Many approaches have been proposed to animate Gaussian Splatting, but they often require camera arrays, long preprocessing times, or high-end GPUs. Some methods attempt to convert Gaussian Splatting into mesh-based representations, achieving lightweight performance but sacrificing visual fidelity. In contrast, our system efficiently animates Gaussian Splatting by leveraging parallel splat-wise processing to dynamically follow the underlying skinned mesh in real time while preserving high visual fidelity. From smartphone-based 3D scanning to on-device preprocessing, the entire process takes just around five minutes, with the avatar generation step itself completed in only about 30 seconds. Our system enables users to instantly transform their real-world appearance into a 3D avatar, making it ideal for seamless integration with social media and metaverse applications. Website: https://gaussian-vrm.github.io/
📅 2025-10-23 | 💬 NeurIPS 2025. The code is publicly available at \href{https://github.com/Runsong123/COS3D}{https://github.com/Runsong123/COS3D}
Open-vocabulary 3D segmentation is a fundamental yet challenging task, requiring a mutual understanding of both segmentation and language. However, existing Gaussian-splatting-based methods rely either on a single 3D language field, leading to inferior segmentation, or on pre-computed class-agnostic segmentations, suffering from error accumulation. To address these limitations, we present COS3D, a new collaborative prompt-segmentation framework that contributes to effectively integrating complementary language and segmentation cues throughout its entire pipeline. We first introduce the new concept of collaborative field, comprising an instance field and a language field, as the cornerstone for collaboration. During training, to effectively construct the collaborative field, our key idea is to capture the intrinsic relationship between the instance field and language field, through a novel instance-to-language feature mapping and designing an efficient two-stage training strategy. During inference, to bridge distinct characteristics of the two fields, we further design an adaptive language-to-instance prompt refinement, promoting high-quality prompt-segmentation inference. Extensive experiments not only demonstrate COS3D's leading performance over existing methods on two widely-used benchmarks but also show its high potential to various applications,~\ie, novel image-based 3D segmentation, hierarchical segmentation, and robotics. The code is publicly available at \href{https://github.com/Runsong123/COS3D}{https://github.com/Runsong123/COS3D}.
📅 2025-10-23 | 💬 This work is accepted by ICCV 2025
We present Multi-Baseline Gaussian Splatting (MuGS), a generalized feed-forward approach for novel view synthesis that effectively handles diverse baseline settings, including sparse input views with both small and large baselines. Specifically, we integrate features from Multi-View Stereo (MVS) and Monocular Depth Estimation (MDE) to enhance feature representations for generalizable reconstruction. Next, We propose a projection-and-sampling mechanism for deep depth fusion, which constructs a fine probability volume to guide the regression of the feature map. Furthermore, We introduce a reference-view loss to improve geometry and optimization efficiency. We leverage 3D Gaussian representations to accelerate training and inference time while enhancing rendering quality. MuGS achieves state-of-the-art performance across multiple baseline settings and diverse scenarios ranging from simple objects (DTU) to complex indoor and outdoor scenes (RealEstate10K). We also demonstrate promising zero-shot performance on the LLFF and Mip-NeRF 360 datasets. Code is available at https://github.com/EuclidLou/MuGS.
📅 2025-10-22
The field of Novel View Synthesis has been revolutionized by 3D Gaussian Splatting (3DGS), which enables high-quality scene reconstruction that can be rendered in real-time. 3DGS-based techniques typically suffer from high GPU memory and disk storage requirements which limits their practical application on consumer-grade devices. We propose Opti3DGS, a novel frequency-modulated coarse-to-fine optimization framework that aims to minimize the number of Gaussian primitives used to represent a scene, thus reducing memory and storage demands. Opti3DGS leverages image frequency modulation, initially enforcing a coarse scene representation and progressively refining it by modulating frequency details in the training images. On the baseline 3DGS, we demonstrate an average reduction of 62% in Gaussians, a 40% reduction in the training GPU memory requirements and a 20% reduction in optimization time without sacrificing the visual quality. Furthermore, we show that our method integrates seamlessly with many 3DGS-based techniques, consistently reducing the number of Gaussian primitives while maintaining, and often improving, visual quality. Additionally, Opti3DGS inherently produces a level-of-detail scene representation at no extra cost, a natural byproduct of the optimization pipeline. Results and code will be made publicly available.
📅 2025-10-22 | 💬 Accepted to ICCV 2025
Computed Tomography (CT) enables detailed cross-sectional imaging but continues to face challenges in balancing reconstruction quality and computational efficiency. While deep learning-based methods have significantly improved image quality and noise reduction, they typically require large-scale training data and intensive computation. Recent advances in scene reconstruction, such as Neural Radiance Fields and 3D Gaussian Splatting, offer alternative perspectives but are not well-suited for direct volumetric CT reconstruction. In this work, we propose Discretized Gaussian Representation (DGR), a novel framework that reconstructs the 3D volume directly using a set of discretized Gaussian functions in an end-to-end manner. To further enhance efficiency, we introduce Fast Volume Reconstruction, a highly parallelized technique that aggregates Gaussian contributions into the voxel grid with minimal overhead. Extensive experiments on both real-world and synthetic datasets demonstrate that DGR achieves superior reconstruction quality and runtime performance across various CT reconstruction scenarios. Our code is publicly available at https://github.com/wskingdom/DGR.
📅 2025-10-22 | 💬 10 pages, 7 figures
Feed-forward surround-view autonomous driving scene reconstruction offers fast, generalizable inference ability, which faces the core challenge of ensuring generalization while elevating novel view quality. Due to the surround-view with minimal overlap regions, existing methods typically fail to ensure geometric consistency and reconstruction quality for novel views. To tackle this tension, we claim that geometric information must be learned explicitly, and the resulting features should be leveraged to guide the elevating of semantic quality in novel views. In this paper, we introduce \textbf{Visual Gaussian Driving (VGD)}, a novel feed-forward end-to-end learning framework designed to address this challenge. To achieve generalizable geometric estimation, we design a lightweight variant of the VGGT architecture to efficiently distill its geometric priors from the pre-trained VGGT to the geometry branch. Furthermore, we design a Gaussian Head that fuses multi-scale geometry tokens to predict Gaussian parameters for novel view rendering, which shares the same patch backbone as the geometry branch. Finally, we integrate multi-scale features from both geometry and Gaussian head branches to jointly supervise a semantic refinement model, optimizing rendering quality through feature-consistent learning. Experiments on nuScenes demonstrate that our approach significantly outperforms state-of-the-art methods in both objective metrics and subjective quality under various settings, which validates VGD's scalability and high-fidelity surround-view reconstruction.
📅 2025-10-22 | 💬 21 pages. Project Page: https://mingrui-zhao.github.io/4DRep-GMI/
We present a survey on 4D generation and reconstruction, a fast-evolving subfield of computer graphics whose developments have been propelled by recent advances in neural fields, geometric and motion deep learning, as well 3D generative artificial intelligence (GenAI). While our survey is not the first of its kind, we build our coverage of the domain from a unique and distinctive perspective of 4D representations\/}, to model 3D geometry evolving over time while exhibiting motion and interaction. Specifically, instead of offering an exhaustive enumeration of many works, we take a more selective approach by focusing on representative works to highlight both the desirable properties and ensuing challenges of each representation under different computation, application, and data scenarios. The main take-away message we aim to convey to the readers is on how to select and then customize the appropriate 4D representations for their tasks. Organizationally, we separate the 4D representations based on three key pillars: geometry, motion, and interaction. Our discourse will not only encompass the most popular representations of today, such as neural radiance fields (NeRFs) and 3D Gaussian Splatting (3DGS), but also bring attention to relatively under-explored representations in the 4D context, such as structured models and long-range motions. Throughout our survey, we will reprise the role of large language models (LLMs) and video foundational models (VFMs) in a variety of 4D applications, while steering our discussion towards their current limitations and how they can be addressed. We also provide a dedicated coverage on what 4D datasets are currently available, as well as what is lacking, in driving the subfield forward. Project page:https://mingrui-zhao.github.io/4DRep-GMI/
📅 2025-10-22
Recent advances in dynamic scene reconstruction have significantly benefited from 3D Gaussian Splatting, yet existing methods show inconsistent performance across diverse scenes, indicating no single approach effectively handles all dynamic challenges. To overcome these limitations, we propose Mixture of Experts for Dynamic Gaussian Splatting (MoE-GS), a unified framework integrating multiple specialized experts via a novel Volume-aware Pixel Router. Our router adaptively blends expert outputs by projecting volumetric Gaussian-level weights into pixel space through differentiable weight splatting, ensuring spatially and temporally coherent results. Although MoE-GS improves rendering quality, the increased model capacity and reduced FPS are inherent to the MoE architecture. To mitigate this, we explore two complementary directions: (1) single-pass multi-expert rendering and gate-aware Gaussian pruning, which improve efficiency within the MoE framework, and (2) a distillation strategy that transfers MoE performance to individual experts, enabling lightweight deployment without architectural changes. To the best of our knowledge, MoE-GS is the first approach incorporating Mixture-of-Experts techniques into dynamic Gaussian splatting. Extensive experiments on the N3V and Technicolor datasets demonstrate that MoE-GS consistently outperforms state-of-the-art methods with improved efficiency. Video demonstrations are available at https://anonymous.4open.science/w/MoE-GS-68BA/.
📅 2025-10-22 | 💬 Accepted IROS 2025
Achieving dexterous robotic grasping with multi-fingered hands remains a significant challenge. While existing methods rely on complete 3D scans to predict grasp poses, these approaches face limitations due to the difficulty of acquiring high-quality 3D data in real-world scenarios. In this paper, we introduce GRASPLAT, a novel grasping framework that leverages consistent 3D information while being trained solely on RGB images. Our key insight is that by synthesizing physically plausible images of a hand grasping an object, we can regress the corresponding hand joints for a successful grasp. To achieve this, we utilize 3D Gaussian Splatting to generate high-fidelity novel views of real hand-object interactions, enabling end-to-end training with RGB data. Unlike prior methods, our approach incorporates a photometric loss that refines grasp predictions by minimizing discrepancies between rendered and real images. We conduct extensive experiments on both synthetic and real-world grasping datasets, demonstrating that GRASPLAT improves grasp success rates up to 36.9% over existing image-based methods. Project page: https://mbortolon97.github.io/grasplat/
📅 2025-10-22
When viewing a 3D Gaussian Splatting (3DGS) model from camera positions significantly outside the training data distribution, substantial visual noise commonly occurs. These artifacts result from the lack of training data in these extrapolated regions, leading to uncertain density, color, and geometry predictions from the model. To address this issue, we propose a novel real-time render-aware filtering method. Our approach leverages sensitivity scores derived from intermediate gradients, explicitly targeting instabilities caused by anisotropic orientations rather than isotropic variance. This filtering method directly addresses the core issue of generative uncertainty, allowing 3D reconstruction systems to maintain high visual fidelity even when users freely navigate outside the original training viewpoints. Experimental evaluation demonstrates that our method substantially improves visual quality, realism, and consistency compared to existing Neural Radiance Field (NeRF)-based approaches such as BayesRays. Critically, our filter seamlessly integrates into existing 3DGS rendering pipelines in real-time, unlike methods that require extensive post-hoc retraining or fine-tuning. Code and results at https://damian-bowness.github.io/EV3DGS
📅 2025-10-21
3D Gaussian Splatting (3DGS) has emerged as a pivotal technique for real-time view synthesis in colonoscopy, enabling critical applications such as virtual colonoscopy and lesion tracking. However, the vanilla 3DGS assumes static illumination and that observed appearance depends solely on viewing angle, which causes incompatibility with the photometric variations in colonoscopic scenes induced by dynamic light source/camera. This mismatch forces most 3DGS methods to introduce structure-violating vaporous Gaussian blobs between the camera and tissues to compensate for illumination attenuation, ultimately degrading the quality of 3D reconstructions. Previous works only consider the illumination attenuation caused by light distance, ignoring the physical characters of light source and camera. In this paper, we propose ColIAGS, an improved 3DGS framework tailored for colonoscopy. To mimic realistic appearance under varying illumination, we introduce an Improved Appearance Modeling with two types of illumination attenuation factors, which enables Gaussians to adapt to photometric variations while preserving geometry accuracy. To ensure the geometry approximation condition of appearance modeling, we propose an Improved Geometry Modeling using high-dimensional view embedding to enhance Gaussian geometry attribute prediction. Furthermore, another cosine embedding input is leveraged to generate illumination attenuation solutions in an implicit manner. Comprehensive experimental results on standard benchmarks demonstrate that our proposed ColIAGS achieves the dual capabilities of novel view synthesis and accurate geometric reconstruction. It notably outperforms other state-of-the-art methods by achieving superior rendering fidelity while significantly reducing Depth MSE. Code will be available.
📅 2025-10-21 | 💬 Paper accepted to NeurIPS 2025 Workshop SpaVLE. Project page: https://shigon255.github.io/4DGRT-project-page/
Common computer vision systems typically assume ideal pinhole cameras but fail when facing real-world camera effects such as fisheye distortion and rolling shutter, mainly due to the lack of learning from training data with camera effects. Existing data generation approaches suffer from either high costs, sim-to-real gaps or fail to accurately model camera effects. To address this bottleneck, we propose 4D Gaussian Ray Tracing (4D-GRT), a novel two-stage pipeline that combines 4D Gaussian Splatting with physically-based ray tracing for camera effect simulation. Given multi-view videos, 4D-GRT first reconstructs dynamic scenes, then applies ray tracing to generate videos with controllable, physically accurate camera effects. 4D-GRT achieves the fastest rendering speed while performing better or comparable rendering quality compared to existing baselines. Additionally, we construct eight synthetic dynamic scenes in indoor environments across four camera effects as a benchmark to evaluate generated videos with camera effects.
📅 2025-10-21 | 💬 ICIP 2025 (Best Student Paper Award) Code available at: https://github.com/youngju-na/SHARE
While generalizable 3D Gaussian splatting enables efficient, high-quality rendering of unseen scenes, it heavily depends on precise camera poses for accurate geometry. In real-world scenarios, obtaining accurate poses is challenging, leading to noisy pose estimates and geometric misalignments. To address this, we introduce SHARE, a pose-free, feed-forward Gaussian splatting framework that overcomes these ambiguities by joint shape and camera rays estimation. Instead of relying on explicit 3D transformations, SHARE builds a pose-aware canonical volume representation that seamlessly integrates multi-view information, reducing misalignment caused by inaccurate pose estimates. Additionally, anchor-aligned Gaussian prediction enhances scene reconstruction by refining local geometry around coarse anchors, allowing for more precise Gaussian placement. Extensive experiments on diverse real-world datasets show that our method achieves robust performance in pose-free generalizable Gaussian splatting. Code is avilable at https://github.com/youngju-na/SHARE
📅 2025-10-21 | 💬 Project page is available at https://liujf1226.github.io/Mono4DGS-HDR/
We introduce Mono4DGS-HDR, the first system for reconstructing renderable 4D high dynamic range (HDR) scenes from unposed monocular low dynamic range (LDR) videos captured with alternating exposures. To tackle such a challenging problem, we present a unified framework with two-stage optimization approach based on Gaussian Splatting. The first stage learns a video HDR Gaussian representation in orthographic camera coordinate space, eliminating the need for camera poses and enabling robust initial HDR video reconstruction. The second stage transforms video Gaussians into world space and jointly refines the world Gaussians with camera poses. Furthermore, we propose a temporal luminance regularization strategy to enhance the temporal consistency of the HDR appearance. Since our task has not been studied before, we construct a new evaluation benchmark using publicly available datasets for HDR video reconstruction. Extensive experiments demonstrate that Mono4DGS-HDR significantly outperforms alternative solutions adapted from state-of-the-art methods in both rendering quality and speed.
📅 2025-10-21
Dynamic scene reconstruction poses a persistent challenge in 3D vision. Deformable 3D Gaussian Splatting has emerged as an effective method for this task, offering real-time rendering and high visual fidelity. This approach decomposes a dynamic scene into a static representation in a canonical space and time-varying scene motion. Scene motion is defined as the collective movement of all Gaussian points, and for compactness, existing approaches commonly adopt implicit neural fields or sparse control points. However, these methods predominantly rely on gradient-based optimization for all motion information. Due to the high degree of freedom, they struggle to converge on real-world datasets exhibiting complex motion. To preserve the compactness of motion representation and address convergence challenges, this paper proposes heterogeneous 3D control points, termed \textbf{H3D control points}, whose attributes are obtained using a hybrid strategy combining optical flow back-projection and gradient-based methods. This design decouples directly observable motion components from those that are geometrically occluded. Specifically, components of 3D motion that project onto the image plane are directly acquired via optical flow back projection, while unobservable portions are refined through gradient-based optimization. Experiments on the Neu3DV and CMU-Panoptic datasets demonstrate that our method achieves superior performance over state-of-the-art deformable 3D Gaussian splatting techniques. Remarkably, our method converges within just 100 iterations and achieves a per-frame processing speed of 2 seconds on a single NVIDIA RTX 4070 GPU.
📅 2025-10-21
Understanding 3D scenes is pivotal for autonomous driving, robotics, and augmented reality. Recent semantic Gaussian Splatting approaches leverage large-scale 2D vision models to project 2D semantic features onto 3D scenes. However, they suffer from two major limitations: (1) insufficient contextual cues for individual masks during preprocessing and (2) inconsistencies and missing details when fusing multi-view features from these 2D models. In this paper, we introduce \textbf{OpenInsGaussian}, an \textbf{Open}-vocabulary \textbf{Ins}tance \textbf{Gaussian} segmentation framework with Context-aware Cross-view Fusion. Our method consists of two modules: Context-Aware Feature Extraction, which augments each mask with rich semantic context, and Attention-Driven Feature Aggregation, which selectively fuses multi-view features to mitigate alignment errors and incompleteness. Through extensive experiments on benchmark datasets, OpenInsGaussian achieves state-of-the-art results in open-vocabulary 3D Gaussian segmentation, outperforming existing baselines by a large margin. These findings underscore the robustness and generality of our proposed approach, marking a significant step forward in 3D scene understanding and its practical deployment across diverse real-world scenarios.
📅 2025-10-21
3D Gaussian Splatting (3D-GS) achieves real-time photorealistic novel view synthesis, yet struggles with complex scenes due to over-reconstruction artifacts, manifesting as local blurring and needle-shape distortions. While recent approaches attribute these issues to insufficient splitting of large-scale Gaussians, we identify two fundamental limitations: gradient magnitude dilution during densification and the primitive frozen phenomenon, where essential Gaussian densification is inhibited in complex regions while suboptimally scaled Gaussians become trapped in local optima. To address these challenges, we introduce ReAct-GS, a method founded on the principle of re-activation. Our approach features: (1) an importance-aware densification criterion incorporating $\alpha$-blending weights from multiple viewpoints to re-activate stalled primitive growth in complex regions, and (2) a re-activation mechanism that revitalizes frozen primitives through adaptive parameter perturbations. Comprehensive experiments across diverse real-world datasets demonstrate that ReAct-GS effectively eliminates over-reconstruction artifacts and achieves state-of-the-art performance on standard novel view synthesis metrics while preserving intricate geometric details. Additionally, our re-activation mechanism yields consistent improvements when integrated with other 3D-GS variants such as Pixel-GS, demonstrating its broad applicability.
📅 2025-10-20 | 💬 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
Commercial plant phenotyping systems using fixed cameras cannot perceive many plant details due to leaf occlusion. In this paper, we present Botany-Bot, a system for building detailed "annotated digital twins" of living plants using two stereo cameras, a digital turntable inside a lightbox, an industrial robot arm, and 3D segmentated Gaussian Splat models. We also present robot algorithms for manipulating leaves to take high-resolution indexable images of occluded details such as stem buds and the underside/topside of leaves. Results from experiments suggest that Botany-Bot can segment leaves with 90.8% accuracy, detect leaves with 86.2% accuracy, lift/push leaves with 77.9% accuracy, and take detailed overside/underside images with 77.3% accuracy. Code, videos, and datasets are available at https://berkeleyautomation.github.io/Botany-Bot/.
📅 2025-10-20
3D Gaussian Splatting (3DGS) under raindrop conditions suffers from severe occlusions and optical distortions caused by raindrop contamination on the camera lens, substantially degrading reconstruction quality. Existing benchmarks typically evaluate 3DGS using synthetic raindrop images with known camera poses (constrained images), assuming ideal conditions. However, in real-world scenarios, raindrops often interfere with accurate camera pose estimation and point cloud initialization. Moreover, a significant domain gap between synthetic and real raindrops further impairs generalization. To tackle these issues, we introduce RaindropGS, a comprehensive benchmark designed to evaluate the full 3DGS pipeline-from unconstrained, raindrop-corrupted images to clear 3DGS reconstructions. Specifically, the whole benchmark pipeline consists of three parts: data preparation, data processing, and raindrop-aware 3DGS evaluation, including types of raindrop interference, camera pose estimation and point cloud initialization, single image rain removal comparison, and 3D Gaussian training comparison. First, we collect a real-world raindrop reconstruction dataset, in which each scene contains three aligned image sets: raindrop-focused, background-focused, and rain-free ground truth, enabling a comprehensive evaluation of reconstruction quality under different focus conditions. Through comprehensive experiments and analyses, we reveal critical insights into the performance limitations of existing 3DGS methods on unconstrained raindrop images and the varying impact of different pipeline components: the impact of camera focus position on 3DGS reconstruction performance, and the interference caused by inaccurate pose and point cloud initialization on reconstruction. These insights establish clear directions for developing more robust 3DGS methods under raindrop conditions.
📅 2025-10-20 | 💬 A preprint paper
Sparse-view 3D Gaussian Splatting (3DGS) often overfits to the training views, leading to artifacts like blurring in novel view rendering. Prior work addresses it either by enhancing the initialization (\emph{i.e.}, the point cloud from Structure-from-Motion (SfM)) or by adding training-time constraints (regularization) to the 3DGS optimization. Yet our controlled ablations reveal that initialization is the decisive factor: it determines the attainable performance band in sparse-view 3DGS, while training-time constraints yield only modest within-band improvements at extra cost. Given initialization's primacy, we focus our design there. Although SfM performs poorly under sparse views due to its reliance on feature matching, it still provides reliable seed points. Thus, building on SfM, our effort aims to supplement the regions it fails to cover as comprehensively as possible. Specifically, we design: (i) frequency-aware SfM that improves low-texture coverage via low-frequency view augmentation and relaxed multi-view correspondences; (ii) 3DGS self-initialization that lifts photometric supervision into additional points, compensating SfM-sparse regions with learned Gaussian centers; and (iii) point-cloud regularization that enforces multi-view consistency and uniform spatial coverage through simple geometric/visibility priors, yielding a clean and reliable point cloud. Our experiments on LLFF and Mip-NeRF360 demonstrate consistent gains in sparse-view settings, establishing our approach as a stronger initialization strategy. Code is available at https://github.com/zss171999645/ItG-GS.
📅 2025-10-20 | 💬 Our code and results can be publicly accessed at: https://github.com/robotics-upo/gaussian-rio-cpp
4D millimeter-wave (mmWave) radars are sensors that provide robustness against adverse weather conditions (rain, snow, fog, etc.), and as such they are increasingly used for odometry and SLAM (Simultaneous Location and Mapping). However, the noisy and sparse nature of the returned scan data proves to be a challenging obstacle for existing registration algorithms, especially those originally intended for more accurate sensors such as LiDAR. Following the success of 3D Gaussian Splatting for vision, in this paper we propose a summarized representation for radar scenes based on global simultaneous optimization of 3D Gaussians as opposed to voxel-based approaches, and leveraging its inherent probability distribution function for registration. Moreover, we propose tackling the problem of radar noise by optimizing multiple scan matching hypotheses in order to further increase the robustness of the system against local optima of the function. Finally, following existing practice we implement an Extended Kalman Filter-based Radar-Inertial Odometry pipeline in order to evaluate the effectiveness of our system. Experiments using publicly available 4D radar datasets show that our Gaussian approach is comparable to existing registration algorithms, outperforming them in several sequences.
📅 2025-10-20
Planes are fundamental primitives of 3D sences, especially in man-made environments such as indoor spaces and urban streets. Representing these planes in a structured and parameterized format facilitates scene editing and physical simulations in downstream applications. Recently, Gaussian Splatting (GS) has demonstrated remarkable effectiveness in the Novel View Synthesis task, with extensions showing great potential in accurate surface reconstruction. However, even state-of-the-art GS representations often struggle to reconstruct planar regions with sufficient smoothness and precision. To address this issue, we propose GSPlane, which recovers accurate geometry and produces clean and well-structured mesh connectivity for plane regions in the reconstructed scene. By leveraging off-the-shelf segmentation and normal prediction models, GSPlane extracts robust planar priors to establish structured representations for planar Gaussian coordinates, which help guide the training process by enforcing geometric consistency. To further enhance training robustness, a Dynamic Gaussian Re-classifier is introduced to adaptively reclassify planar Gaussians with persistently high gradients as non-planar, ensuring more reliable optimization. Furthermore, we utilize the optimized planar priors to refine the mesh layouts, significantly improving topological structure while reducing the number of vertices and faces. We also explore applications of the structured planar representation, which enable decoupling and flexible manipulation of objects on supportive planes. Extensive experiments demonstrate that, with no sacrifice in rendering quality, the introduction of planar priors significantly improves the geometric accuracy of the extracted meshes across various baselines.
📅 2025-10-20 | 💬 Accepted at the Conference on Graphics, Patterns and Images (SIBGRAPI), math focused, 5 equations, 5 Figure, 5 pages of text and 1 of bibligraphy
The problem of 3D reconstruction from posed images is undergoing a fundamental transformation, driven by continuous advances in 3D Gaussian Splatting (3DGS). By modeling scenes explicitly as collections of 3D Gaussians, 3DGS enables efficient rasterization through volumetric splatting, offering thus a seamless integration with common graphics pipelines. Despite its real-time rendering capabilities for novel view synthesis, 3DGS suffers from a high memory footprint, the tendency to bake lighting effects directly into its representation, and limited support for secondary-ray effects. This tutorial provides a concise yet comprehensive overview of the 3DGS pipeline, starting from its splatting formulation and then exploring the main efforts in addressing its limitations. Finally, we survey a range of applications that leverage 3DGS for surface reconstruction, avatar modeling, animation, and content generation-highlighting its efficient rendering and suitability for feed-forward pipelines.
📅 2025-10-20 | 💬 Published on ICCV 2025
We introduce HouseTour, a method for spatially-aware 3D camera trajectory and natural language summary generation from a collection of images depicting an existing 3D space. Unlike existing vision-language models (VLMs), which struggle with geometric reasoning, our approach generates smooth video trajectories via a diffusion process constrained by known camera poses and integrates this information into the VLM for 3D-grounded descriptions. We synthesize the final video using 3D Gaussian splatting to render novel views along the trajectory. To support this task, we present the HouseTour dataset, which includes over 1,200 house-tour videos with camera poses, 3D reconstructions, and real estate descriptions. Experiments demonstrate that incorporating 3D camera trajectories into the text generation process improves performance over methods handling each task independently. We evaluate both individual and end-to-end performance, introducing a new joint metric. Our work enables automated, professional-quality video creation for real estate and touristic applications without requiring specialized expertise or equipment.
📅 2025-10-19
Recent advancements in 3D Gaussian Splatting (3DGS) have greatly influenced neural fields, as it enables high-fidelity rendering with impressive visual quality. However, 3DGS has difficulty accurately representing surfaces. In contrast, 2DGS transforms the 3D volume into a collection of 2D planar Gaussian disks. Despite advancements in geometric fidelity, rendering quality remains compromised, highlighting the challenge of achieving both high-quality rendering and precise geometric structures. This indicates that optimizing both geometric and rendering quality in a single training stage is currently unfeasible. To overcome this limitation, we present 2DGS-R, a new method that uses a hierarchical training approach to improve rendering quality while maintaining geometric accuracy. 2DGS-R first trains the original 2D Gaussians with the normal consistency regularization. Then 2DGS-R selects the 2D Gaussians with inadequate rendering quality and applies a novel in-place cloning operation to enhance the 2D Gaussians. Finally, we fine-tune the 2DGS-R model with opacity frozen. Experimental results show that compared to the original 2DGS, our method requires only 1\% more storage and minimal additional training time. Despite this negligible overhead, it achieves high-quality rendering results while preserving fine geometric structures. These findings indicate that our approach effectively balances efficiency with performance, leading to improvements in both visual fidelity and geometric reconstruction accuracy.
📅 2025-10-19
Accurate 6D pose estimation of 3D objects is a fundamental task in computer vision, and current research typically predicts the 6D pose by establishing correspondences between 2D image features and 3D model features. However, these methods often face difficulties with textureless objects and varying illumination conditions. To overcome these limitations, we propose GS2POSE, a novel approach for 6D object pose estimation. GS2POSE formulates a pose regression algorithm inspired by the principles of Bundle Adjustment (BA). By leveraging Lie algebra, we extend the capabilities of 3DGS to develop a pose-differentiable rendering pipeline, which iteratively optimizes the pose by comparing the input image to the rendered image. Additionally, GS2POSE updates color parameters within the 3DGS model, enhancing its adaptability to changes in illumination. Compared to previous models, GS2POSE demonstrates accuracy improvements of 1.4\%, 2.8\% and 2.5\% on the T-LESS, LineMod-Occlusion and LineMod datasets, respectively.
📅 2025-10-19 | 💬 Accepted by NeurIPS 2025. Project Page: https://wen-yuan-zhang.github.io/MaterialRefGS
Modeling reflections from 2D images is essential for photorealistic rendering and novel view synthesis. Recent approaches enhance Gaussian primitives with reflection-related material attributes to enable physically based rendering (PBR) with Gaussian Splatting. However, the material inference often lacks sufficient constraints, especially under limited environment modeling, resulting in illumination aliasing and reduced generalization. In this work, we revisit the problem from a multi-view perspective and show that multi-view consistent material inference with more physically-based environment modeling is key to learning accurate reflections with Gaussian Splatting. To this end, we enforce 2D Gaussians to produce multi-view consistent material maps during deferred shading. We also track photometric variations across views to identify highly reflective regions, which serve as strong priors for reflection strength terms. To handle indirect illumination caused by inter-object occlusions, we further introduce an environment modeling strategy through ray tracing with 2DGS, enabling photorealistic rendering of indirect radiance. Experiments on widely used benchmarks show that our method faithfully recovers both illumination and geometry, achieving state-of-the-art rendering quality in novel views synthesis.
📅 2025-10-18 | 💬 ACM International Conference on Multimedia 2025
Recent advances in 3D Gaussian Splatting (3DGS) have enabled fast, photorealistic rendering of dynamic 3D scenes, showing strong potential in immersive communication. However, in digital human encoding and transmission, the compression methods based on general 3DGS representations are limited by the lack of human priors, resulting in suboptimal bitrate efficiency and reconstruction quality at the decoder side, which hinders their application in streamable 3D avatar systems. We propose HGC-Avatar, a novel Hierarchical Gaussian Compression framework designed for efficient transmission and high-quality rendering of dynamic avatars. Our method disentangles the Gaussian representation into a structural layer, which maps poses to Gaussians via a StyleUNet-based generator, and a motion layer, which leverages the SMPL-X model to represent temporal pose variations compactly and semantically. This hierarchical design supports layer-wise compression, progressive decoding, and controllable rendering from diverse pose inputs such as video sequences or text. Since people are most concerned with facial realism, we incorporate a facial attention mechanism during StyleUNet training to preserve identity and expression details under low-bitrate constraints. Experimental results demonstrate that HGC-Avatar provides a streamable solution for rapid 3D avatar rendering, while significantly outperforming prior methods in both visual quality and compression efficiency.
📅 2025-10-18
Bridging the gap between complex human instructions and precise 3D object grounding remains a significant challenge in vision and robotics. Existing 3D segmentation methods often struggle to interpret ambiguous, reasoning-based instructions, while 2D vision-language models that excel at such reasoning lack intrinsic 3D spatial understanding. In this paper, we introduce REALM, an innovative MLLM-agent framework that enables open-world reasoning-based segmentation without requiring extensive 3D-specific post-training. We perform segmentation directly on 3D Gaussian Splatting representations, capitalizing on their ability to render photorealistic novel views that are highly suitable for MLLM comprehension. As directly feeding one or more rendered views to the MLLM can lead to high sensitivity to viewpoint selection, we propose a novel Global-to-Local Spatial Grounding strategy. Specifically, multiple global views are first fed into the MLLM agent in parallel for coarse-level localization, aggregating responses to robustly identify the target object. Then, several close-up novel views of the object are synthesized to perform fine-grained local segmentation, yielding accurate and consistent 3D masks. Extensive experiments show that REALM achieves remarkable performance in interpreting both explicit and implicit instructions across LERF, 3D-OVS, and our newly introduced REALM3D benchmarks. Furthermore, our agent framework seamlessly supports a range of 3D interaction tasks, including object removal, replacement, and style transfer, demonstrating its practical utility and versatility. Project page: https://ChangyueShi.github.io/REALM.
📅 2025-10-18 | 💬 10 pages, 5 figures
Generating realistic 3D objects from single-view images requires natural appearance, 3D consistency, and the ability to capture multiple plausible interpretations of unseen regions. Existing approaches often rely on fine-tuning pretrained 2D diffusion models or directly generating 3D information through fast network inference or 3D Gaussian Splatting, but their results generally suffer from poor multiview consistency and lack geometric detail. To tackle these issues, we present a novel method that seamlessly integrates geometry and perception information without requiring additional model training to reconstruct detailed 3D objects from a single image. Specifically, we incorporate geometry and perception priors to initialize the Gaussian branches and guide their parameter optimization. The geometry prior captures the rough 3D shapes, while the perception prior utilizes the 2D pretrained diffusion model to enhance multiview information. Subsequently, we introduce a stable Score Distillation Sampling for fine-grained prior distillation to ensure effective knowledge transfer. The model is further enhanced by a reprojection-based strategy that enforces depth consistency. Experimental results show that we outperform existing methods on novel view synthesis and 3D reconstruction, demonstrating robust and consistent 3D object generation.
📅 2025-10-17 | 💬 Our paper has been accepted by the 24th International Conference on Cyberworlds and recieved the Best Paper Honorable Mention
3D Gaussian Splatting (3DGS) is a powerful and computationally efficient representation for 3D reconstruction. Despite its strengths, 3DGS often produces floating artifacts, which are erroneous structures detached from the actual geometry and significantly degrade visual fidelity. The underlying mechanisms causing these artifacts, particularly in low-quality initialization scenarios, have not been fully explored. In this paper, we investigate the origins of floating artifacts from a frequency-domain perspective and identify under-optimized Gaussians as the primary source. Based on our analysis, we propose \textit{Eliminating-Floating-Artifacts} Gaussian Splatting (EFA-GS), which selectively expands under-optimized Gaussians to prioritize accurate low-frequency learning. Additionally, we introduce complementary depth-based and scale-based strategies to dynamically refine Gaussian expansion, effectively mitigating detail erosion. Extensive experiments on both synthetic and real-world datasets demonstrate that EFA-GS substantially reduces floating artifacts while preserving high-frequency details, achieving an improvement of 1.68 dB in PSNR over baseline method on our RWLQ dataset. Furthermore, we validate the effectiveness of our approach in downstream 3D editing tasks. Project Website: https://jcwang-gh.github.io/EFA-GS
📅 2025-10-17
We present a novel, zero-shot pipeline for creating hyperrealistic, identity-preserving 3D avatars from a few unstructured phone images. Existing methods face several challenges: single-view approaches suffer from geometric inconsistencies and hallucinations, degrading identity preservation, while models trained on synthetic data fail to capture high-frequency details like skin wrinkles and fine hair, limiting realism. Our method introduces two key contributions: (1) a generative canonicalization module that processes multiple unstructured views into a standardized, consistent representation, and (2) a transformer-based model trained on a new, large-scale dataset of high-fidelity Gaussian splatting avatars derived from dome captures of real people. This "Capture, Canonicalize, Splat" pipeline produces static quarter-body avatars with compelling realism and robust identity preservation from unstructured photos.
📅 2025-10-17
Recent advances in 3D Gaussian Splatting (3DGS) have enabled high-quality, real-time novel-view synthesis from multi-view images. However, most existing methods assume the object is captured in a single, static pose, resulting in incomplete reconstructions that miss occluded or self-occluded regions. We introduce PFGS, a pose-aware 3DGS framework that addresses the practical challenge of reconstructing complete objects from multi-pose image captures. Given images of an object in one main pose and several auxiliary poses, PFGS iteratively fuses each auxiliary set into a unified 3DGS representation of the main pose. Our pose-aware fusion strategy combines global and local registration to merge views effectively and refine the 3DGS model. While recent advances in 3D foundation models have improved registration robustness and efficiency, they remain limited by high memory demands and suboptimal accuracy. PFGS overcomes these challenges by incorporating them more intelligently into the registration process: it leverages background features for per-pose camera pose estimation and employs foundation models for cross-pose registration. This design captures the best of both approaches while resolving background inconsistency issues. Experimental results demonstrate that PFGS consistently outperforms strong baselines in both qualitative and quantitative evaluations, producing more complete reconstructions and higher-fidelity 3DGS models.
📅 2025-10-17
We present a novel approach for photorealistic robot simulation that integrates 3D Gaussian Splatting as a drop-in renderer within vectorized physics simulators such as IsaacGym. This enables unprecedented speed -- exceeding 100,000 steps per second on consumer GPUs -- while maintaining high visual fidelity, which we showcase across diverse tasks. We additionally demonstrate its applicability in a sim-to-real robotics setting. Beyond depth-based sensing, our results highlight how rich visual semantics improve navigation and decision-making, such as avoiding undesirable regions. We further showcase the ease of incorporating thousands of environments from iPhone scans, large-scale scene datasets (e.g., GrandTour, ARKit), and outputs from generative video models like Veo, enabling rapid creation of realistic training worlds. This work bridges high-throughput simulation and high-fidelity perception, advancing scalable and generalizable robot learning. All code and data will be open-sourced for the community to build upon. Videos, code, and data available at https://escontrela.me/gauss_gym/.
📅 2025-10-17 | 💬 Project Page: https://x2-gaussian.github.io/
Four-dimensional computed tomography (4D CT) reconstruction is crucial for capturing dynamic anatomical changes but faces inherent limitations from conventional phase-binning workflows. Current methods discretize temporal resolution into fixed phases with respiratory gating devices, introducing motion misalignment and restricting clinical practicality. In this paper, We propose X$^2$-Gaussian, a novel framework that enables continuous-time 4D-CT reconstruction by integrating dynamic radiative Gaussian splatting with self-supervised respiratory motion learning. Our approach models anatomical dynamics through a spatiotemporal encoder-decoder architecture that predicts time-varying Gaussian deformations, eliminating phase discretization. To remove dependency on external gating devices, we introduce a physiology-driven periodic consistency loss that learns patient-specific breathing cycles directly from projections via differentiable optimization. Extensive experiments demonstrate state-of-the-art performance, achieving a 9.93 dB PSNR gain over traditional methods and 2.25 dB improvement against prior Gaussian splatting techniques. By unifying continuous motion modeling with hardware-free period learning, X$^2$-Gaussian advances high-fidelity 4D CT reconstruction for dynamic clinical imaging. Code is publicly available at: https://x2-gaussian.github.io/.
📅 2025-10-17 | 💬 Accept by ACM MM 2025
3D Gaussian Splatting has exhibited remarkable capabilities in 3D scene reconstruction. However, reconstructing high-quality 3D scenes from motion-blurred images caused by camera motion poses a significant challenge.The performance of existing 3DGS-based deblurring methods are limited due to their inherent mechanisms, such as extreme dependence on the accuracy of camera poses and inability to effectively control erroneous Gaussian primitives densification caused by motion blur. To solve these problems, we introduce a novel framework, Bi-Stage 3D Gaussian Splatting, to accurately reconstruct 3D scenes from motion-blurred images. BSGS contains two stages. First, Camera Pose Refinement roughly optimizes camera poses to reduce motion-induced distortions. Second, with fixed rough camera poses, Global RigidTransformation further corrects motion-induced blur distortions. To alleviate multi-subframe gradient conflicts, we propose a subframe gradient aggregation strategy to optimize both stages. Furthermore, a space-time bi-stage optimization strategy is introduced to dynamically adjust primitive densification thresholds and prevent premature noisy Gaussian generation in blurred regions. Comprehensive experiments verify the effectiveness of our proposed deblurring method and show its superiority over the state of the arts.Our source code is available at https://github.com/wsxujm/bsgs
📅 2025-10-17 | 💬 Project page: https://gynjn.github.io/iLRM/
Feed-forward 3D modeling has emerged as a promising approach for rapid and high-quality 3D reconstruction. In particular, directly generating explicit 3D representations, such as 3D Gaussian splatting, has attracted significant attention due to its fast and high-quality rendering, as well as numerous applications. However, many state-of-the-art methods, primarily based on transformer architectures, suffer from severe scalability issues because they rely on full attention across image tokens from multiple input views, resulting in prohibitive computational costs as the number of views or image resolution increases. Toward a scalable and efficient feed-forward 3D reconstruction, we introduce an iterative Large 3D Reconstruction Model (iLRM) that generates 3D Gaussian representations through an iterative refinement mechanism, guided by three core principles: (1) decoupling the scene representation from input-view images to enable compact 3D representations; (2) decomposing fully-attentional multi-view interactions into a two-stage attention scheme to reduce computational costs; and (3) injecting high-resolution information at every layer to achieve high-fidelity reconstruction. Experimental results on widely used datasets, such as RE10K and DL3DV, demonstrate that iLRM outperforms existing methods in both reconstruction quality and speed.
📅 2025-10-17
Human behaviors are the major causes of scene dynamics and inherently contain rich cues regarding the dynamics. This paper formalizes a new task of proactive scene decomposition and reconstruction, an online approach that leverages human-object interactions to iteratively disassemble and reconstruct the environment. By observing these intentional interactions, we can dynamically refine the decomposition and reconstruction process, addressing inherent ambiguities in static object-level reconstruction. The proposed system effectively integrates multiple tasks in dynamic environments such as accurate camera and object pose estimation, instance decomposition, and online map updating, capitalizing on cues from human-object interactions in egocentric live streams for a flexible, progressive alternative to conventional object-level reconstruction methods. Aided by the Gaussian splatting technique, accurate and consistent dynamic scene modeling is achieved with photorealistic and efficient rendering. The efficacy is validated in multiple real-world scenarios with promising advantages.
📅 2025-10-17
We present GaSLight, a method that generates spatially-varying lighting from regular images. Our method proposes using HDR Gaussian Splats as light source representation, marking the first time regular images can serve as light sources in a 3D renderer. Our two-stage process first enhances the dynamic range of images plausibly and accurately by leveraging the priors embedded in diffusion models. Next, we employ Gaussian Splats to model 3D lighting, achieving spatially variant lighting. Our approach yields state-of-the-art results on HDR estimations and their applications in illuminating virtual objects and scenes. To facilitate the benchmarking of images as light sources, we introduce a novel dataset of calibrated and unsaturated HDR to evaluate images as light sources. We assess our method using a combination of this novel dataset and an existing dataset from the literature. Project page: https://lvsn.github.io/gaslight/
📅 2025-10-16 | 💬 Accepted to ICCV 2025 Workshop on ECLR
Compression techniques for 3D Gaussian Splatting (3DGS) have recently achieved considerable success in minimizing storage overhead for 3D Gaussians while preserving high rendering quality. Despite the impressive storage reduction, the lack of learned priors restricts further advances in the rate-distortion trade-off for 3DGS compression tasks. To address this, we introduce a novel 3DGS compression framework that leverages the powerful representational capacity of learned image priors to recover compression-induced quality degradation. Built upon initially compressed Gaussians, our restoration network effectively models the compression artifacts in the image space between degraded and original Gaussians. To enhance the rate-distortion performance, we provide coarse rendering residuals into the restoration network as side information. By leveraging the supervision of restored images, the compressed Gaussians are refined, resulting in a highly compact representation with enhanced rendering performance. Our framework is designed to be compatible with existing Gaussian compression methods, making it broadly applicable across different baselines. Extensive experiments validate the effectiveness of our framework, demonstrating superior rate-distortion performance and outperforming the rendering quality of state-of-the-art 3DGS compression methods while requiring substantially less storage.
📅 2025-10-16 | 💬 Accepted by ASP-DAC 2026
3D Gaussian Splatting (3DGS) has emerged as a promising 3D reconstruction technique. The traditional 3DGS training pipeline follows three sequential steps: Gaussian densification, Gaussian projection, and color splatting. Despite its promising reconstruction quality, this conventional approach suffers from three critical inefficiencies: (1) Skewed density allocation during Gaussian densification, (2) Imbalanced computation workload during Gaussian projection and (3) Fragmented memory access during color splatting. To tackle the above challenges, we introduce BalanceGS, the algorithm-system co-design for efficient training in 3DGS. (1) At the algorithm level, we propose heuristic workload-sensitive Gaussian density control to automatically balance point distributions - removing 80% redundant Gaussians in dense regions while filling gaps in sparse areas. (2) At the system level, we propose Similarity-based Gaussian sampling and merging, which replaces the static one-to-one thread-pixel mapping with adaptive workload distribution - threads now dynamically process variable numbers of Gaussians based on local cluster density. (3) At the mapping level, we propose reordering-based memory access mapping strategy that restructures RGB storage and enables batch loading in shared memory. Extensive experiments demonstrate that compared with 3DGS, our approach achieves a 1.44$\times$ training speedup on a NVIDIA A100 GPU with negligible quality degradation.
📅 2025-10-16
Scene reconstruction has emerged as a central challenge in computer vision, with approaches such as Neural Radiance Fields (NeRF) and Gaussian Splatting achieving remarkable progress. While Gaussian Splatting demonstrates strong performance on large-scale datasets, it often struggles to capture fine details or maintain realism in regions with sparse coverage, largely due to the inherent limitations of sparse 3D training data. In this work, we propose GauSSmart, a hybrid method that effectively bridges 2D foundational models and 3D Gaussian Splatting reconstruction. Our approach integrates established 2D computer vision techniques, including convex filtering and semantic feature supervision from foundational models such as DINO, to enhance Gaussian-based scene reconstruction. By leveraging 2D segmentation priors and high-dimensional feature embeddings, our method guides the densification and refinement of Gaussian splats, improving coverage in underrepresented areas and preserving intricate structural details. We validate our approach across three datasets, where GauSSmart consistently outperforms existing Gaussian Splatting in the majority of evaluated scenes. Our results demonstrate the significant potential of hybrid 2D-3D approaches, highlighting how the thoughtful combination of 2D foundational models with 3D reconstruction pipelines can overcome the limitations inherent in either approach alone.
📅 2025-10-16
Generative models have been widely applied to world modeling for environment simulation and future state prediction. With advancements in autonomous driving, there is a growing demand not only for high-fidelity video generation under various controls, but also for producing diverse and meaningful information such as depth estimation. To address this, we propose CVD-STORM, a cross-view video diffusion model utilizing a spatial-temporal reconstruction Variational Autoencoder (VAE) that generates long-term, multi-view videos with 4D reconstruction capabilities under various control inputs. Our approach first fine-tunes the VAE with an auxiliary 4D reconstruction task, enhancing its ability to encode 3D structures and temporal dynamics. Subsequently, we integrate this VAE into the video diffusion process to significantly improve generation quality. Experimental results demonstrate that our model achieves substantial improvements in both FID and FVD metrics. Additionally, the jointly-trained Gaussian Splatting Decoder effectively reconstructs dynamic scenes, providing valuable geometric information for comprehensive scene understanding. Our project page is https://sensetime-fvg.github.io/CVD-STORM.
📅 2025-10-16
We present HuGDiffusion, a generalizable 3D Gaussian splatting (3DGS) learning pipeline to achieve novel view synthesis (NVS) of human characters from single-view input images. Existing approaches typically require monocular videos or calibrated multi-view images as inputs, whose applicability could be weakened in real-world scenarios with arbitrary and/or unknown camera poses. In this paper, we aim to generate the set of 3DGS attributes via a diffusion-based framework conditioned on human priors extracted from a single image. Specifically, we begin with carefully integrated human-centric feature extraction procedures to deduce informative conditioning signals. Based on our empirical observations that jointly learning the whole 3DGS attributes is challenging to optimize, we design a multi-stage generation strategy to obtain different types of 3DGS attributes. To facilitate the training process, we investigate constructing proxy ground-truth 3D Gaussian attributes as high-quality attribute-level supervision signals. Through extensive experiments, our HuGDiffusion shows significant performance improvements over the state-of-the-art methods. Our code will be made publicly available.
📅 2025-10-16 | 💬 Accepted to SIGGRAPH Asia 2025
We introduce a framework that enables both multi-view character consistency and 3D camera control in video diffusion models through a novel customization data pipeline. We train the character consistency component with recorded volumetric capture performances re-rendered with diverse camera trajectories via 4D Gaussian Splatting (4DGS), lighting variability obtained with a video relighting model. We fine-tune state-of-the-art open-source video diffusion models on this data to provide strong multi-view identity preservation, precise camera control, and lighting adaptability. Our framework also supports core capabilities for virtual production, including multi-subject generation using two approaches: joint training and noise blending, the latter enabling efficient composition of independently customized models at inference time; it also achieves scene and real-life video customization as well as control over motion and spatial layout during customization. Extensive experiments show improved video quality, higher personalization accuracy, and enhanced camera control and lighting adaptability, advancing the integration of video generation into virtual production. Our project page is available at: https://eyeline-labs.github.io/Virtually-Being.
📅 2025-10-16 | 💬 4 pages, 3 figures, 3 tables
We tackle the challenge of efficiently reconstructing 3D scenes with high detail on objects of interest. Existing 3D Gaussian Splatting (3DGS) methods allocate resources uniformly across the scene, limiting fine detail to Regions Of Interest (ROIs) and leading to inflated model size. We propose ROI-GS, an object-aware framework that enhances local details through object-guided camera selection, targeted Object training, and seamless integration of high-fidelity object of interest reconstructions into the global scene. Our method prioritizes higher resolution details on chosen objects while maintaining real-time performance. Experiments show that ROI-GS significantly improves local quality (up to 2.96 dB PSNR), while reducing overall model size by $\approx 17\%$ of baseline and achieving faster training for a scene with a single object of interest, outperforming existing methods.
📅 2025-10-16
Recent advances in 3D Gaussian Splatting (3DGS) have enabled generalizable, on-the-fly reconstruction of sequential input views. However, existing methods often predict per-pixel Gaussians and combine Gaussians from all views as the scene representation, leading to substantial redundancies and geometric inconsistencies in long-duration video sequences. To address this, we propose SaLon3R, a novel framework for Structure-aware, Long-term 3DGS Reconstruction. To our best knowledge, SaLon3R is the first online generalizable GS method capable of reconstructing over 50 views in over 10 FPS, with 50% to 90% redundancy removal. Our method introduces compact anchor primitives to eliminate redundancy through differentiable saliency-aware Gaussian quantization, coupled with a 3D Point Transformer that refines anchor attributes and saliency to resolve cross-frame geometric and photometric inconsistencies. Specifically, we first leverage a 3D reconstruction backbone to predict dense per-pixel Gaussians and a saliency map encoding regional geometric complexity. Redundant Gaussians are compressed into compact anchors by prioritizing high-complexity regions. The 3D Point Transformer then learns spatial structural priors in 3D space from training data to refine anchor attributes and saliency, enabling regionally adaptive Gaussian decoding for geometric fidelity. Without known camera parameters or test-time optimization, our approach effectively resolves artifacts and prunes the redundant 3DGS in a single feed-forward pass. Experiments on multiple datasets demonstrate our state-of-the-art performance on both novel view synthesis and depth estimation, demonstrating superior efficiency, robustness, and generalization ability for long-term generalizable 3D reconstruction. Project Page: https://wrld.github.io/SaLon3R/.
📅 2025-10-15 | 💬 Project page: https://gohyojun15.github.io/VIST3A/
The rapid progress of large, pretrained models for both visual content generation and 3D reconstruction opens up new possibilities for text-to-3D generation. Intuitively, one could obtain a formidable 3D scene generator if one were able to combine the power of a modern latent text-to-video model as "generator" with the geometric abilities of a recent (feedforward) 3D reconstruction system as "decoder". We introduce VIST3A, a general framework that does just that, addressing two main challenges. First, the two components must be joined in a way that preserves the rich knowledge encoded in their weights. We revisit model stitching, i.e., we identify the layer in the 3D decoder that best matches the latent representation produced by the text-to-video generator and stitch the two parts together. That operation requires only a small dataset and no labels. Second, the text-to-video generator must be aligned with the stitched 3D decoder, to ensure that the generated latents are decodable into consistent, perceptually convincing 3D scene geometry. To that end, we adapt direct reward finetuning, a popular technique for human preference alignment. We evaluate the proposed VIST3A approach with different video generators and 3D reconstruction models. All tested pairings markedly improve over prior text-to-3D models that output Gaussian splats. Moreover, by choosing a suitable 3D base model, VIST3A also enables high-quality text-to-pointmap generation.
📅 2025-10-15 | 💬 Accepted at ICCV-2025, project page: https://dynamic-ugsdf.github.io/
Dynamic scene rendering and reconstruction play a crucial role in computer vision and augmented reality. Recent methods based on 3D Gaussian Splatting (3DGS), have enabled accurate modeling of dynamic urban scenes, but for urban scenes they require both camera and LiDAR data, ground-truth 3D segmentations and motion data in the form of tracklets or pre-defined object templates such as SMPL. In this work, we explore whether a combination of 2D object agnostic priors in the form of depth and point tracking coupled with a signed distance function (SDF) representation for dynamic objects can be used to relax some of these requirements. We present a novel approach that integrates Signed Distance Functions (SDFs) with 3D Gaussian Splatting (3DGS) to create a more robust object representation by harnessing the strengths of both methods. Our unified optimization framework enhances the geometric accuracy of 3D Gaussian splatting and improves deformation modeling within the SDF, resulting in a more adaptable and precise representation. We demonstrate that our method achieves state-of-the-art performance in rendering metrics even without LiDAR data on urban scenes. When incorporating LiDAR, our approach improved further in reconstructing and generating novel views across diverse object categories, without ground-truth 3D motion annotation. Additionally, our method enables various scene editing tasks, including scene decomposition, and scene composition.
📅 2025-10-15
Edge Gaussian splatting (EGS), which aggregates data from distributed clients and trains a global GS model at the edge server, is an emerging paradigm for scene reconstruction. Unlike traditional edge resource management methods that emphasize communication throughput or general-purpose learning performance, EGS explicitly aims to maximize the GS qualities, rendering existing approaches inapplicable. To address this problem, this paper formulates a novel GS-oriented objective function that distinguishes the heterogeneous view contributions of different clients. However, evaluating this function in turn requires clients' images, leading to a causality dilemma. To this end, this paper further proposes a sample-then-transmit EGS (or STT-GS for short) strategy, which first samples a subset of images as pilot data from each client for loss prediction. Based on the first-stage evaluation, communication resources are then prioritized towards more valuable clients. To achieve efficient sampling, a feature-domain clustering (FDC) scheme is proposed to select the most representative data and pilot transmission time minimization (PTTM) is adopted to reduce the pilot overhead.Subsequently, we develop a joint client selection and power control (JCSPC) framework to maximize the GS-oriented function under communication resource constraints. Despite the nonconvexity of the problem, we propose a low-complexity efficient solution based on the penalty alternating majorization minimization (PAMM) algorithm. Experiments unveil that the proposed scheme significantly outperforms existing benchmarks on real-world datasets. It is found that the GS-oriented objective can be accurately predicted with low sampling ratios (e.g.,10%), and our method achieves an excellent tradeoff between view contributions and communication costs.
📅 2025-10-15 | 💬 ICCV 2025, Project Page: https://cl-splats.github.io
In dynamic 3D environments, accurately updating scene representations over time is crucial for applications in robotics, mixed reality, and embodied AI. As scenes evolve, efficient methods to incorporate changes are needed to maintain up-to-date, high-quality reconstructions without the computational overhead of re-optimizing the entire scene. This paper introduces CL-Splats, which incrementally updates Gaussian splatting-based 3D representations from sparse scene captures. CL-Splats integrates a robust change-detection module that segments updated and static components within the scene, enabling focused, local optimization that avoids unnecessary re-computation. Moreover, CL-Splats supports storing and recovering previous scene states, facilitating temporal segmentation and new scene-analysis applications. Our extensive experiments demonstrate that CL-Splats achieves efficient updates with improved reconstruction quality over the state-of-the-art. This establishes a robust foundation for future real-time adaptation in 3D scene reconstruction tasks.
📅 2025-10-15
We present a novel, zero-shot pipeline for creating hyperrealistic, identity-preserving 3D avatars from a few unstructured phone images. Existing methods face several challenges: single-view approaches suffer from geometric inconsistencies and hallucinations, degrading identity preservation, while models trained on synthetic data fail to capture high-frequency details like skin wrinkles and fine hair, limiting realism. Our method introduces two key contributions: (1) a generative canonicalization module that processes multiple unstructured views into a standardized, consistent representation, and (2) a transformer-based model trained on a new, large-scale dataset of high-fidelity Gaussian splatting avatars derived from dome captures of real people. This "Capture, Canonicalize, Splat" pipeline produces static quarter-body avatars with compelling realism and robust identity preservation from unstructured photos.
📅 2025-10-15 | 💬 Accepted to SUI 2025 Demo Track
We present Instant Skinned Gaussian Avatars, a real-time and cross-platform 3D avatar system. Many approaches have been proposed to animate Gaussian Splatting, but they often require camera arrays, long preprocessing times, or high-end GPUs. Some methods attempt to convert Gaussian Splatting into mesh-based representations, achieving lightweight performance but sacrificing visual fidelity. In contrast, our system efficiently animates Gaussian Splatting by leveraging parallel splat-wise processing to dynamically follow the underlying skinned mesh in real time while preserving high visual fidelity. From smartphone-based 3D scanning to on-device preprocessing, the entire process takes just around five minutes, with the avatar generation step itself completed in only about 30 seconds. Our system enables users to instantly transform their real-world appearance into a 3D avatar, making it ideal for seamless integration with social media and metaverse applications. Website: https://sites.google.com/view/gaussian-vrm
📅 2025-10-15 | 💬 Published at ICCV 2025
We introduce InsideOut, an extension of 3D Gaussian splatting (3DGS) that bridges the gap between high-fidelity RGB surface details and subsurface X-ray structures. The fusion of RGB and X-ray imaging is invaluable in fields such as medical diagnostics, cultural heritage restoration, and manufacturing. We collect new paired RGB and X-ray data, perform hierarchical fitting to align RGB and X-ray radiative Gaussian splats, and propose an X-ray reference loss to ensure consistent internal structures. InsideOut effectively addresses the challenges posed by disparate data representations between the two modalities and limited paired datasets. This approach significantly extends the applicability of 3DGS, enhancing visualization, simulation, and non-destructive testing capabilities across various domains.
📅 2025-10-14 | 💬 Project page: https://tamu-visual-ai.github.io/usplat4d/
Reconstructing dynamic 3D scenes from monocular input is fundamentally under-constrained, with ambiguities arising from occlusion and extreme novel views. While dynamic Gaussian Splatting offers an efficient representation, vanilla models optimize all Gaussian primitives uniformly, ignoring whether they are well or poorly observed. This limitation leads to motion drifts under occlusion and degraded synthesis when extrapolating to unseen views. We argue that uncertainty matters: Gaussians with recurring observations across views and time act as reliable anchors to guide motion, whereas those with limited visibility are treated as less reliable. To this end, we introduce USplat4D, a novel Uncertainty-aware dynamic Gaussian Splatting framework that propagates reliable motion cues to enhance 4D reconstruction. Our key insight is to estimate time-varying per-Gaussian uncertainty and leverages it to construct a spatio-temporal graph for uncertainty-aware optimization. Experiments on diverse real and synthetic datasets show that explicitly modeling uncertainty consistently improves dynamic Gaussian Splatting models, yielding more stable geometry under occlusion and high-quality synthesis at extreme viewpoints.
📅 2025-10-14
3D Gaussian Splatting has exhibited remarkable capabilities in 3D scene reconstruction.However, reconstructing high-quality 3D scenes from motion-blurred images caused by camera motion poses a significant challenge.The performance of existing 3DGS-based deblurring methods are limited due to their inherent mechanisms, such as extreme dependence on the accuracy of camera poses and inability to effectively control erroneous Gaussian primitives densification caused by motion blur.To solve these problems, we introduce a novel framework, Bi-Stage 3D Gaussian Splatting, to accurately reconstruct 3D scenes from motion-blurred images.BSGS contains two stages. First, Camera Pose Refinement roughly optimizes camera poses to reduce motion-induced distortions. Second, with fixed rough camera poses, Global RigidTransformation further corrects motion-induced blur distortions.To alleviate multi-subframe gradient conflicts, we propose a subframe gradient aggregation strategy to optimize both stages.Furthermore, a space-time bi-stage optimization strategy is introduced to dynamically adjust primitive densification thresholds and prevent premature noisy Gaussian generation in blurred regions. Comprehensive experiments verify the effectiveness of our proposed deblurring method and show its superiority over the state of the arts.
📅 2025-10-14 | 💬 ICCV 2025 RealADSim Workshop
This paper describes the Qualcomm AI Research solution to the RealADSim-NVS challenge, hosted at the RealADSim Workshop at ICCV 2025. The challenge concerns novel view synthesis in street scenes, and participants are required to generate, starting from car-centric frames captured during some training traversals, renders of the same urban environment as viewed from a different traversal (e.g. different street lane or car direction). Our solution is inspired by hybrid methods in scene generation and generative simulators merging gaussian splatting and diffusion models, and it is composed of two stages: First, we fit a 3D reconstruction of the scene and render novel views as seen from the target cameras. Then, we enhance the resulting frames with a dedicated single-step diffusion model. We discuss specific choices made in the initialization of gaussian primitives as well as the finetuning of the enhancer model and its training data curation. We report the performance of our model design and we ablate its components in terms of novel view quality as measured by PSNR, SSIM and LPIPS. On the public leaderboard reporting test results, our proposal reaches an aggregated score of 0.432, achieving the second place overall.
📅 2025-10-14
Reconstructing dynamic 3D urban scenes is crucial for autonomous driving, yet current methods face a stark trade-off between fidelity and computational cost. This inefficiency stems from their semantically agnostic design, which allocates resources uniformly, treating static backgrounds and safety-critical objects with equal importance. To address this, we introduce Priority-Adaptive Gaussian Splatting (PAGS), a framework that injects task-aware semantic priorities directly into the 3D reconstruction and rendering pipeline. PAGS introduces two core contributions: (1) Semantically-Guided Pruning and Regularization strategy, which employs a hybrid importance metric to aggressively simplify non-critical scene elements while preserving fine-grained details on objects vital for navigation. (2) Priority-Driven Rendering pipeline, which employs a priority-based depth pre-pass to aggressively cull occluded primitives and accelerate the final shading computations. Extensive experiments on the Waymo and KITTI datasets demonstrate that PAGS achieves exceptional reconstruction quality, particularly on safety-critical objects, while significantly reducing training time and boosting rendering speeds to over 350 FPS.
📅 2025-10-14
In this paper, we propose UniGS, a unified map representation and differentiable framework for high-fidelity multimodal 3D reconstruction based on 3D Gaussian Splatting. Our framework integrates a CUDA-accelerated rasterization pipeline capable of rendering photo-realistic RGB images, geometrically accurate depth maps, consistent surface normals, and semantic logits simultaneously. We redesign the rasterization to render depth via differentiable ray-ellipsoid intersection rather than using Gaussian centers, enabling effective optimization of rotation and scale attribute through analytic depth gradients. Furthermore, we derive the analytic gradient formulation for surface normal rendering, ensuring geometric consistency among reconstructed 3D scenes. To improve computational and storage efficiency, we introduce a learnable attribute that enables differentiable pruning of Gaussians with minimal contribution during training. Quantitative and qualitative experiments demonstrate state-of-the-art reconstruction accuracy across all modalities, validating the efficacy of our geometry-aware paradigm. Source code and multimodal viewer will be available on GitHub.
📅 2025-10-14 | 💬 Project page: https://dali-jack.github.io/g4splat-web/
Despite recent advances in leveraging generative prior from pre-trained diffusion models for 3D scene reconstruction, existing methods still face two critical limitations. First, due to the lack of reliable geometric supervision, they struggle to produce high-quality reconstructions even in observed regions, let alone in unobserved areas. Second, they lack effective mechanisms to mitigate multi-view inconsistencies in the generated images, leading to severe shape-appearance ambiguities and degraded scene geometry. In this paper, we identify accurate geometry as the fundamental prerequisite for effectively exploiting generative models to enhance 3D scene reconstruction. We first propose to leverage the prevalence of planar structures to derive accurate metric-scale depth maps, providing reliable supervision in both observed and unobserved regions. Furthermore, we incorporate this geometry guidance throughout the generative pipeline to improve visibility mask estimation, guide novel view selection, and enhance multi-view consistency when inpainting with video diffusion models, resulting in accurate and consistent scene completion. Extensive experiments on Replica, ScanNet++, and DeepBlending show that our method consistently outperforms existing baselines in both geometry and appearance reconstruction, particularly for unobserved regions. Moreover, our method naturally supports single-view inputs and unposed videos, with strong generalizability in both indoor and outdoor scenarios with practical real-world applicability. The project page is available at https://dali-jack.github.io/g4splat-web/.
📅 2025-10-14 | 💬 Autonomous Driving, Novel view Synthesis, Multi task Learning
Real-time, high-fidelity reconstruction of dynamic driving scenes is challenged by complex dynamics and sparse views, with prior methods struggling to balance quality and efficiency. We propose DrivingScene, an online, feed-forward framework that reconstructs 4D dynamic scenes from only two consecutive surround-view images. Our key innovation is a lightweight residual flow network that predicts the non-rigid motion of dynamic objects per camera on top of a learned static scene prior, explicitly modeling dynamics via scene flow. We also introduce a coarse-to-fine training paradigm that circumvents the instabilities common to end-to-end approaches. Experiments on nuScenes dataset show our image-only method simultaneously generates high-quality depth, scene flow, and 3D Gaussian point clouds online, significantly outperforming state-of-the-art methods in both dynamic reconstruction and novel view synthesis.
📅 2025-10-13
Event cameras offer various advantages for novel view rendering compared to synchronously operating RGB cameras, and efficient event-based techniques supporting rigid scenes have been recently demonstrated in the literature. In the case of non-rigid objects, however, existing approaches additionally require sparse RGB inputs, which can be a substantial practical limitation; it remains unknown if similar models could be learned from event streams only. This paper sheds light on this challenging open question and introduces Ev4DGS, i.e., the first approach for novel view rendering of non-rigidly deforming objects in the explicit observation space (i.e., as RGB or greyscale images) from monocular event streams. Our method regresses a deformable 3D Gaussian Splatting representation through 1) a loss relating the outputs of the estimated model with the 2D event observation space, and 2) a coarse 3D deformation model trained from binary masks generated from events. We perform experimental comparisons on existing synthetic and newly recorded real datasets with non-rigid objects. The results demonstrate the validity of Ev4DGS and its superior performance compared to multiple naive baselines that can be applied in our setting. We will release our models and the datasets used in the evaluation for research purposes; see the project webpage: https://4dqv.mpi-inf.mpg.de/Ev4DGS/.
📅 2025-10-13
Learning robotic manipulation policies directly in the real world can be expensive and time-consuming. While reinforcement learning (RL) policies trained in simulation present a scalable alternative, effective sim-to-real transfer remains challenging, particularly for tasks that require precise dynamics. To address this, we propose Phys2Real, a real-to-sim-to-real RL pipeline that combines vision-language model (VLM)-inferred physical parameter estimates with interactive adaptation through uncertainty-aware fusion. Our approach consists of three core components: (1) high-fidelity geometric reconstruction with 3D Gaussian splatting, (2) VLM-inferred prior distributions over physical parameters, and (3) online physical parameter estimation from interaction data. Phys2Real conditions policies on interpretable physical parameters, refining VLM predictions with online estimates via ensemble-based uncertainty quantification. On planar pushing tasks of a T-block with varying center of mass (CoM) and a hammer with an off-center mass distribution, Phys2Real achieves substantial improvements over a domain randomization baseline: 100% vs 79% success rate for the bottom-weighted T-block, 57% vs 23% in the challenging top-weighted T-block, and 15% faster average task completion for hammer pushing. Ablation studies indicate that the combination of VLM and interaction information is essential for success. Project website: https://phys2real.github.io/ .
📅 2025-10-13 | 💬 Accepted by NeurIPS 2025
3D Gaussian Splatting has recently emerged as an efficient solution for high-quality and real-time novel view synthesis. However, its capability for accurate surface reconstruction remains underexplored. Due to the discrete and unstructured nature of Gaussians, supervision based solely on image rendering loss often leads to inaccurate geometry and inconsistent multi-view alignment. In this work, we propose a novel method that enhances the geometric representation of 3D Gaussians through view alignment (VA). Specifically, we incorporate edge-aware image cues into the rendering loss to improve surface boundary delineation. To enforce geometric consistency across views, we introduce a visibility-aware photometric alignment loss that models occlusions and encourages accurate spatial relationships among Gaussians. To further mitigate ambiguities caused by lighting variations, we incorporate normal-based constraints to refine the spatial orientation of Gaussians and improve local surface estimation. Additionally, we leverage deep image feature embeddings to enforce cross-view consistency, enhancing the robustness of the learned geometry under varying viewpoints and illumination. Extensive experiments on standard benchmarks demonstrate that our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis. The source code is available at https://github.com/LeoQLi/VA-GS.
📅 2025-10-13 | 💬 Accepted by NeurIPS 2025. Project Page: https://wen-yuan-zhang.github.io/MaterialRefGS
Modeling reflections from 2D images is essential for photorealistic rendering and novel view synthesis. Recent approaches enhance Gaussian primitives with reflection-related material attributes to enable physically based rendering (PBR) with Gaussian Splatting. However, the material inference often lacks sufficient constraints, especially under limited environment modeling, resulting in illumination aliasing and reduced generalization. In this work, we revisit the problem from a multi-view perspective and show that multi-view consistent material inference with more physically-based environment modeling is key to learning accurate reflections with Gaussian Splatting. To this end, we enforce 2D Gaussians to produce multi-view consistent material maps during deferred shading. We also track photometric variations across views to identify highly reflective regions, which serve as strong priors for reflection strength terms. To handle indirect illumination caused by inter-object occlusions, we further introduce an environment modeling strategy through ray tracing with 2DGS, enabling photorealistic rendering of indirect radiance. Experiments on widely used benchmarks show that our method faithfully recovers both illumination and geometry, achieving state-of-the-art rendering quality in novel views synthesis.
📅 2025-10-13
We present LiDAR-GS, a Gaussian Splatting (GS) method for real-time, high-fidelity re-simulation of LiDAR scans in public urban road scenes. Recent GS methods proposed for cameras have achieved significant advancements in real-time rendering beyond Neural Radiance Fields (NeRF). However, applying GS representation to LiDAR, an active 3D sensor type, poses several challenges that must be addressed to preserve high accuracy and unique characteristics. Specifically, LiDAR-GS designs a differentiable laser beam splatting, using range-view representation for precise surface splatting by projecting lasers onto micro cross-sections, effectively eliminating artifacts associated with local affine approximations. Furthermore, LiDAR-GS leverages Neural Gaussian Representation, which further integrate view-dependent clues, to represent key LiDAR properties that are influenced by the incident direction and external factors. Combining these practices with some essential adaptations, e.g., dynamic instances decomposition, LiDAR-GS succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets when compared with the methods using explicit mesh or implicit NeRF. Our source code is publicly available at https://www.github.com/cqf7419/LiDAR-GS.