Skip to the content.

gaussian splatting - 2025_11

Home / Papers / gaussian splatting

Papers

📅 2025-11-20 | 💬 15 pages, 12 figures
We present \textbf{Upsample Anything}, a lightweight test-time optimization (TTO) framework that restores low-resolution features to high-resolution, pixel-wise outputs without any training. Although Vision Foundation Models demonstrate strong generalization across diverse downstream tasks, their representations are typically downsampled by 14x/16x (e.g., ViT), which limits their direct use in pixel-level applications. Existing feature upsampling approaches depend on dataset-specific retraining or heavy implicit optimization, restricting scalability and generalization. Upsample Anything addresses these issues through a simple per-image optimization that learns an anisotropic Gaussian kernel combining spatial and range cues, effectively bridging Gaussian Splatting and Joint Bilateral Upsampling. The learned kernel acts as a universal, edge-aware operator that transfers seamlessly across architectures and modalities, enabling precise high-resolution reconstruction of features, depth, or probability maps. It runs in only $\approx0.419 \text{s}$ per 224x224 image and achieves state-of-the-art performance on semantic segmentation, depth estimation, and both depth and probability map upsampling.
📅 2025-11-20
Image-based 3D scene reconstruction, which transforms multi-view images into a structured 3D representation of the surrounding environment, is a common task across many modern applications. 3D Gaussian Splatting (3DGS) is a new paradigm to address this problem and offers considerable efficiency as compared to the previous methods. Motivated by this, and considering various benefits of mobile device deployment (data privacy, operating without internet connectivity, and potentially faster responses), this paper develops Texture3dgs, an optimized mapping of 3DGS for a mobile GPU. A critical challenge in this area turns out to be optimizing for the two-dimensional (2D) texture cache, which needs to be exploited for faster executions on mobile GPUs. As a sorting method dominates the computations in 3DGS on mobile platforms, the core of Texture3dgs is a novel sorting algorithm where the processing, data movement, and placement are highly optimized for 2D memory. The properties of this algorithm are analyzed in view of a cost model for the texture cache. In addition, we accelerate other steps of the 3DGS algorithm through improved variable layout design and other optimizations. End-to-end evaluation shows that Texture3dgs delivers up to 4.1$\times$ and 1.7$\times$ speedup for the sorting and overall 3D scene reconstruction, respectively -- while also reducing memory usage by up to 1.6$\times$ -- demonstrating the effectiveness of our design for efficient mobile 3D scene reconstruction.
📅 2025-11-20 | 💬 18 pages
Recent advances in 3D Gaussian Splatting (3DGS) have enabled Simultaneous Localization and Mapping (SLAM) systems to build photorealistic maps. However, these maps lack the open-vocabulary semantic understanding required for advanced robotic interaction. Integrating language features into SLAM remains a significant challenge, as storing high-dimensional features demands excessive memory and rendering overhead, while existing methods with static models lack adaptability for novel environments. To address these limitations, we propose LEGO-SLAM (Language-Embedded Gaussian Optimization SLAM), the first framework to achieve real-time, open-vocabulary mapping within a 3DGS-based SLAM system. At the core of our method is a scene-adaptive encoder-decoder that distills high-dimensional language embeddings into a compact 16-dimensional feature space. This design reduces the memory per Gaussian and accelerates rendering, enabling real-time performance. Unlike static approaches, our encoder adapts online to unseen scenes. These compact features also enable a language-guided pruning strategy that identifies semantic redundancy, reducing the map's Gaussian count by over 60\% while maintaining rendering quality. Furthermore, we introduce a language-based loop detection approach that reuses these mapping features, eliminating the need for a separate detection model. Extensive experiments demonstrate that LEGO-SLAM achieves competitive mapping quality and tracking accuracy, all while providing open-vocabulary capabilities at 15 FPS.
📅 2025-11-20 | 💬 16 pages, 8 figures, SIGGRAPH Asia Conference Papers 2025
Existing 4D Gaussian Splatting (4DGS) methods struggle to accurately reconstruct dynamic scenes, often failing to resolve ambiguous pixel correspondences and inadequate densification in dynamic regions. We address these issues by introducing a novel method composed of two key components: (1) Elliptical Error Clustering and Error Correcting Splat Addition that pinpoints dynamic areas to improve and initialize fitting splats, and (2) Grouped 4D Gaussian Splatting that improves consistency of mapping between splats and represented dynamic objects. Specifically, we classify rendering errors into missing-color and occlusion types, then apply targeted corrections via backprojection or foreground splitting guided by cross-view color consistency. Evaluations on Neural 3D Video and Technicolor datasets demonstrate that our approach significantly improves temporal consistency and achieves state-of-the-art perceptual rendering quality, improving 0.39dB of PSNR on the Technicolor Light Field dataset. Our visualization shows improved alignment between splats and dynamic objects, and the error correction method's capability to identify errors and properly initialize new splats. Our implementation details and source code are available at https://github.com/tho-kn/cem-4dgs.
📅 2025-11-20
We present Rad-GS, a 4D radar-camera SLAM system designed for kilometer-scale outdoor environments, utilizing 3D Gaussian as a differentiable spatial representation. Rad-GS combines the advantages of raw radar point cloud with Doppler information and geometrically enhanced point cloud to guide dynamic object masking in synchronized images, thereby alleviating rendering artifacts and improving localization accuracy. Additionally, unsynchronized image frames are leveraged to globally refine the 3D Gaussian representation, enhancing texture consistency and novel view synthesis fidelity. Furthermore, the global octree structure coupled with a targeted Gaussian primitive management strategy further suppresses noise and significantly reduces memory consumption in large-scale environments. Extensive experiments and ablation studies demonstrate that Rad-GS achieves performance comparable to traditional 3D Gaussian methods based on camera or LiDAR inputs, highlighting the feasibility of robust outdoor mapping using 4D mmWave radar. Real-world reconstruction at kilometer scale validates the potential of Rad-GS for large-scale scene reconstruction.
📅 2025-11-20
3D Gaussian Splatting (3DGS) has recently emerged as an efficient, high-fidelity representation for real-time scene reconstruction and rendering. However, extending 3DGS to sparse-view settings remains challenging because of supervision scarcity and overfitting caused by limited viewpoint coverage. In this paper, we present CuriGS, a curriculum-guided framework for sparse-view 3D reconstruction using 3DGS. CuriGS addresses the core challenge of sparse-view synthesis by introducing student views: pseudo-views sampled around ground-truth poses (teacher). For each teacher, we generate multiple groups of student views with different perturbation levels. During training, we follow a curriculum schedule that gradually unlocks higher perturbation level, randomly sampling candidate students from the active level to assist training. Each sampled student is regularized via depth-correlation and co-regularization, and evaluated using a multi-signal metric that combines SSIM, LPIPS, and an image-quality measure. For every teacher and perturbation level, we periodically retain the best-performing students and promote those that satisfy a predefined quality threshold to the training set, resulting in a stable augmentation of sparse training views. Experimental results show that CuriGS outperforms state-of-the-art baselines in both rendering fidelity and geometric consistency across various synthetic and real sparse-view scenes. Project page: https://zijian1026.github.io/CuriGS/
📅 2025-11-20 | 💬 Project Page: https://speede3dgs.github.io/
Dynamic extensions of 3D Gaussian Splatting (3DGS) achieve high-quality reconstructions through neural motion fields, but per-Gaussian neural inference makes these models computationally expensive. Building on DeformableGS, we introduce Speedy Deformable 3D Gaussian Splatting (SpeeDe3DGS), which bridges this efficiency-fidelity gap through three complementary modules: Temporal Sensitivity Pruning (TSP) removes low-impact Gaussians via temporally aggregated sensitivity analysis, Temporal Sensitivity Sampling (TSS) perturbs timestamps to suppress floaters and improve temporal coherence, and GroupFlow distills the learned deformation field into shared SE(3) transformations for efficient groupwise motion. On the 50 dynamic scenes in MonoDyGauBench, integrating TSP and TSS into DeformableGS accelerates rendering by 6.78$\times$ on average while maintaining neural-field fidelity and using 10$\times$ fewer primitives. Adding GroupFlow culminates in 13.71$\times$ faster rendering and 2.53$\times$ shorter training, surpassing all baselines in speed while preserving superior image quality.
📅 2025-11-20
3D Gaussian Splatting (3DGS) has recently emerged as a foundational technique for real-time neural rendering, 3D scene generation, volumetric video (4D) capture. However, its rendering and training impose massive computation, making real-time rendering on edge devices and real-time 4D reconstruction on workstations currently infeasible. Given its fixed-function nature and similarity with traditional rasterization, 3DGS presents a strong case for dedicated hardware in the graphics pipeline of next-generation GPUs. This work, Vorion, presents the first GPGPU prototype with hardware-accelerated 3DGS rendering and training. Vorion features scalable architecture, minimal hardware change to traditional rasterizers, z-tiling to increase parallelism, and Gaussian/pixel-centric hybrid dataflow. We prototype the minimal system (8 SIMT cores, 2 Gaussian rasterizer) using TSMC 16nm FinFET technology, which achieves 19 FPS for rendering. The scaled design with 16 rasterizers achieves 38.6 iterations/s for training.
📅 2025-11-20
Accurate meshing from monocular images remains a key challenge in 3D vision. While state-of-the-art 3D Gaussian Splatting (3DGS) methods excel at synthesizing photorealistic novel views through rasterization-based rendering, their reliance on sparse, explicit primitives severely limits their ability to recover watertight and topologically consistent 3D surfaces.We introduce MonoGSDF, a novel method that couples Gaussian-based primitives with a neural Signed Distance Field (SDF) for high-quality reconstruction. During training, the SDF guides Gaussians' spatial distribution, while at inference, Gaussians serve as priors to reconstruct surfaces, eliminating the need for memory-intensive Marching Cubes. To handle arbitrary-scale scenes, we propose a scaling strategy for robust generalization. A multi-resolution training scheme further refines details and monocular geometric cues from off-the-shelf estimators enhance reconstruction quality. Experiments on real-world datasets show MonoGSDF outperforms prior methods while maintaining efficiency.
📅 2025-11-20 | 💬 8 pages, ISPRS
Recently, 3D Gaussian Splatting has been introduced as a compelling alternative to NeRF for Earth observation, offering com- petitive reconstruction quality with significantly reduced training times. In this work, we extend the Earth Observation Gaussian Splatting (EOGS) framework to propose EOGS++, a novel method tailored for satellite imagery that directly operates on raw high-resolution panchromatic data without requiring external preprocessing. Furthermore, leveraging optical flow techniques we embed bundle adjustment directly within the training process, avoiding reliance on external optimization tools while improving camera pose estimation. We also introduce several improvements to the original implementation, including early stopping and TSDF post-processing, all contributing to sharper reconstructions and better geometric accuracy. Experiments on the IARPA 2016 and DFC2019 datasets demonstrate that EOGS++ achieves state-of-the-art performance in terms of reconstruction quality and effi- ciency, outperforming the original EOGS method and other NeRF-based methods while maintaining the computational advantages of Gaussian Splatting. Our model demonstrates an improvement from 1.33 to 1.19 mean MAE errors on buildings compared to the original EOGS models
📅 2025-11-19 | 💬 Project Page: https://symgs.github.io/
3D Gaussian Splatting has emerged as a transformative technique in novel view synthesis, primarily due to its high rendering speed and photorealistic fidelity. However, its memory footprint scales rapidly with scene complexity, often reaching several gigabytes. Existing methods address this issue by introducing compression strategies that exploit primitive-level redundancy through similarity detection and quantization. We aim to surpass the compression limits of such methods by incorporating symmetry-aware techniques, specifically targeting mirror symmetries to eliminate redundant primitives. We propose a novel compression framework, SymGS, introducing learnable mirrors into the scene, thereby eliminating local and global reflective redundancies for compression. Our framework functions as a plug-and-play enhancement to state-of-the-art compression methods, (e.g. HAC) to achieve further compression. Compared to HAC, we achieve $1.66 \times$ compression across benchmark datasets (upto $3\times$ on large-scale scenes). On an average, SymGS enables $\bf{108\times}$ compression of a 3DGS scene, while preserving rendering quality. The project page and supplementary can be found at symgs.github.io
📅 2025-11-19
Tensor singular value decomposition (t-SVD) is a promising tool for multi-dimensional image representation, which decomposes a multi-dimensional image into a latent tensor and an accompanying transform matrix. However, two critical limitations of t-SVD methods persist: (1) the approximation of the latent tensor (e.g., tensor factorizations) is coarse and fails to accurately capture spatial local high-frequency information; (2) The transform matrix is composed of fixed basis atoms (e.g., complex exponential atoms in DFT and cosine atoms in DCT) and cannot precisely capture local high-frequency information along the mode-3 fibers. To address these two limitations, we propose a Gaussian Splatting-based Low-rank tensor Representation (GSLR) framework, which compactly and continuously represents multi-dimensional images. Specifically, we leverage tailored 2D Gaussian splatting and 1D Gaussian splatting to generate the latent tensor and transform matrix, respectively. The 2D and 1D Gaussian splatting are indispensable and complementary under this representation framework, which enjoys a powerful representation capability, especially for local high-frequency information. To evaluate the representation ability of the proposed GSLR, we develop an unsupervised GSLR-based multi-dimensional image recovery model. Extensive experiments on multi-dimensional image recovery demonstrate that GSLR consistently outperforms state-of-the-art methods, particularly in capturing local high-frequency information.
📅 2025-11-19
Mapping systems with novel view synthesis (NVS) capabilities, most notably 3D Gaussian Splatting (3DGS), are widely used in computer vision and across various applications, including augmented reality, robotics, and autonomous driving. However, many current approaches are limited to static scenes. While recent works have begun addressing short-term dynamics (motion within the camera's view), long-term dynamics (the scene evolving through changes out of view) remain less explored. To overcome this limitation, we introduce a dynamic scene-adaptation mechanism that continuously updates 3DGS to reflect the latest changes. Since maintaining consistency remains challenging due to stale observations that disrupt the reconstruction process, we propose a novel keyframe management mechanism that discards outdated observations while preserving as much information as possible. We thoroughly evaluate Gaussian Mapping for Evolving Scenes (\ours) on both synthetic and real-world datasets, achieving a 29.7\% improvement in PSNR and a 3 times improvement in L1 depth error over the most competitive baseline.
📅 2025-11-19
Household tidying is an important application area, yet current benchmarks neither model user preferences nor support mobility, and they generalize poorly, making it hard to comprehensively assess integrated language-to-action capabilities. To address this, we propose RoboTidy, a unified benchmark for language-guided household tidying that supports Vision-Language-Action (VLA) and Vision-Language-Navigation (VLN) training and evaluation. RoboTidy provides 500 photorealistic 3D Gaussian Splatting (3DGS) household scenes (covering 500 objects and containers) with collisions, formulates tidying as an "Action (Object, Container)" list, and supplies 6.4k high-quality manipulation demonstration trajectories and 1.5k naviagtion trajectories to support both few-shot and large-scale training. We also deploy RoboTidy in the real world for object tidying, establishing an end-to-end benchmark for household tidying. RoboTidy offers a scalable platform and bridges a key gap in embodied AI by enabling holistic and realistic evaluation of language-guided robots.
📅 2025-11-19 | 💬 AAAI 2026
The recent introduction of 3D Gaussian Splatting (3DGS) has significantly advanced novel view synthesis. Several studies have further improved the rendering quality of 3DGS, yet they still exhibit noticeable visual discrepancies when synthesizing views at sampling rates unseen during training. Specifically, they suffer from (i) erosion-induced blurring artifacts when zooming in and (ii) dilation-induced staircase artifacts when zooming out. We speculate that these artifacts arise from the fundamental limitation of the alpha blending adopted in 3DGS methods. Instead of the conventional alpha blending that computes alpha and transmittance as scalar quantities over a pixel, we propose to replace it with our novel Gaussian Blending that treats alpha and transmittance as spatially varying distributions. Thus, transmittances can be updated considering the spatial distribution of alpha values across the pixel area, allowing nearby background splats to contribute to the final rendering. Our Gaussian Blending maintains real-time rendering speed and requires no additional memory cost, while being easily integrated as a drop-in replacement into existing 3DGS-based or other NVS frameworks. Extensive experiments demonstrate that Gaussian Blending effectively captures fine details at various sampling rates unseen during training, consistently outperforming existing novel view synthesis models across both unseen and seen sampling rates.
📅 2025-11-19 | 💬 Accepted to AAAI 2026
Existing 3D Gaussian Splatting (3DGS) super-resolution methods typically perform high-resolution (HR) rendering of fixed scale factors, making them impractical for resource-limited scenarios. Directly rendering arbitrary-scale HR views with vanilla 3DGS introduces aliasing artifacts due to the lack of scale-aware rendering ability, while adding a post-processing upsampler for 3DGS complicates the framework and reduces rendering efficiency. To tackle these issues, we build an integrated framework that incorporates scale-aware rendering, generative prior-guided optimization, and progressive super-resolving to enable 3D Gaussian super-resolution of arbitrary scale factors with a single 3D model. Notably, our approach supports both integer and non-integer scale rendering to provide more flexibility. Extensive experiments demonstrate the effectiveness of our model in rendering high-quality arbitrary-scale HR views (6.59 dB PSNR gain over 3DGS) with a single model. It preserves structural consistency with LR views and across different scales, while maintaining real-time rendering speed (85 FPS at 1080p).
📅 2025-11-18 | 💬 Project Page: https://speede3dgs.github.io/
Dynamic extensions of 3D Gaussian Splatting (3DGS) achieve high-quality reconstructions through neural motion fields, but per-Gaussian neural inference makes these models computationally expensive. Building on DeformableGS, we introduce Speedy Deformable 3D Gaussian Splatting (SpeeDe3DGS), which bridges this efficiency-fidelity gap through three complementary modules: Temporal Sensitivity Pruning (TSP) removes low-impact Gaussians via temporally aggregated sensitivity analysis, Temporal Sensitivity Sampling (TSS) perturbs timestamps to suppress floaters and improve temporal coherence, and GroupFlow distills the learned deformation field into shared SE(3) transformations for efficient groupwise motion. On the 50 dynamic scenes in MonoDyGauBench, integrating TSP and TSS into DeformableGS accelerates rendering by 6.78$\times$ on average while maintaining neural-field fidelity and using 10$\times$ fewer primitives. Adding GroupFlow culminates in 13.71$\times$ faster rendering and 2.53$\times$ shorter training, surpassing all baselines in speed while preserving superior image quality.
📅 2025-11-18
Sparse-view synthesis remains a challenging problem due to the difficulty of recovering accurate geometry and appearance from limited observations. While recent advances in 3D Gaussian Splatting (3DGS) have enabled real-time rendering with competitive quality, existing pipelines often rely on Structure-from-Motion (SfM) for camera pose estimation, an approach that struggles in genuinely sparse-view settings. Moreover, several SfM-free methods replace SfM with multi-view stereo (MVS) models, but generate massive numbers of 3D Gaussians by back-projecting every pixel into 3D space, leading to high memory costs. We propose Segmentation-Driven Initialization for Gaussian Splatting (SDI-GS), a method that mitigates inefficiency by leveraging region-based segmentation to identify and retain only structurally significant regions. This enables selective downsampling of the dense point cloud, preserving scene fidelity while substantially reducing Gaussian count. Experiments across diverse benchmarks show that SDI-GS reduces Gaussian count by up to 50% and achieves comparable or superior rendering quality in PSNR and SSIM, with only marginal degradation in LPIPS. It further enables faster training and lower memory footprint, advancing the practicality of 3DGS for constrained-view scenarios.
📅 2025-11-18 | 💬 9 pages, 5 figures, accepted by AAAI, 2026
This paper introduces Gaussian Spatial Transport (GST), a novel framework that leverages Gaussian splatting to facilitate transport from the probability measure in the image coordinate space to the annotation map. We propose a Gaussian splatting-based method to estimate pixel-annotation correspondence, which is then used to compute a transport plan derived from Bayesian probability. To integrate the resulting transport plan into standard network optimization in typical computer vision tasks, we derive a loss function that measures discrepancy after transport. Extensive experiments on representative computer vision tasks, including crowd counting and landmark detection, validate the effectiveness of our approach. Compared to conventional optimal transport schemes, GST eliminates iterative transport plan computation during training, significantly improving efficiency. Code is available at https://github.com/infinite0522/GST.
📅 2025-11-18 | 💬 Accepted to NeurIPS 2025
3D Gaussian Splatting (3DGS) has recently emerged as a fast, high-quality method for novel view synthesis (NVS). However, its use of low-degree spherical harmonics limits its ability to capture spatially varying color and view-dependent effects such as specular highlights. Existing works augment Gaussians with either a global texture map, which struggles with complex scenes, or per-Gaussian texture maps, which introduces high storage overhead. We propose Image-Based Gaussian Splatting, an efficient alternative that leverages high-resolution source images for fine details and view-specific color modeling. Specifically, we model each pixel color as a combination of a base color from standard 3DGS rendering and a learned residual inferred from neighboring training images. This promotes accurate surface alignment and enables rendering images of high-frequency details and accurate view-dependent effects. Experiments on standard NVS benchmarks show that our method significantly outperforms prior Gaussian Splatting approaches in rendering quality, without increasing the storage footprint.
📅 2025-11-18
Reliable 3D-2D alignment between intraoral scan (IOS) models and lateral cephalometric radiographs is critical for orthodontic diagnosis, yet conventional intensity-driven registration methods struggle under real clinical conditions, where cephalograms exhibit projective magnification, geometric distortion, low-contrast dental crowns, and acquisition-dependent variation. These factors hinder the stability of appearance-based similarity metrics and often lead to convergence failures or anatomically implausible alignments. To address these limitations, we propose DentalSCR, a pose-stable, contour-guided framework for accurate and interpretable silhouette-to-contour registration. Our method first constructs a U-Midline Dental Axis (UMDA) to establish a unified cross-arch anatomical coordinate system, thereby stabilizing initialization and standardizing projection geometry across cases. Using this reference frame, we generate radiograph-like projections via a surface-based DRR formulation with coronal-axis perspective and Gaussian splatting, which preserves clinical source-object-detector magnification and emphasizes external silhouettes. Registration is then formulated as a 2D similarity transform optimized with a symmetric bidirectional Chamfer distance under a hierarchical coarse-to-fine schedule, enabling both large capture range and subpixel-level contour agreement. We evaluate DentalSCR on 34 expert-annotated clinical cases. Experimental results demonstrate substantial reductions in landmark error-particularly at posterior teeth-tighter dispersion on the lower jaw, and low Chamfer and controlled Hausdorff distances at the curve level. These findings indicate that DentalSCR robustly handles real-world cephalograms and delivers high-fidelity, clinically inspectable 3D--2D alignment, outperforming conventional baselines.
📅 2025-11-18
Intraoral 3D reconstruction is fundamental to digital orthodontics, yet conventional methods like intraoral scanning are inaccessible for remote tele-orthodontics, which typically relies on sparse smartphone imagery. While 3D Gaussian Splatting (3DGS) shows promise for novel view synthesis, its application to the standard clinical triad of unposed anterior and bilateral buccal photographs is challenging. The large view baselines, inconsistent illumination, and specular surfaces common in intraoral settings can destabilize simultaneous pose and geometry estimation. Furthermore, sparse-view photometric supervision often induces a frequency bias, leading to over-smoothed reconstructions that lose critical diagnostic details. To address these limitations, we propose \textbf{Dental3R}, a pose-free, graph-guided pipeline for robust, high-fidelity reconstruction from sparse intraoral photographs. Our method first constructs a Geometry-Aware Pairing Strategy (GAPS) to intelligently select a compact subgraph of high-value image pairs. The GAPS focuses on correspondence matching, thereby improving the stability of the geometry initialization and reducing memory usage. Building on the recovered poses and point cloud, we train the 3DGS model with a wavelet-regularized objective. By enforcing band-limited fidelity using a discrete wavelet transform, our approach preserves fine enamel boundaries and interproximal edges while suppressing high-frequency artifacts. We validate our approach on a large-scale dataset of 950 clinical cases and an additional video-based test set of 195 cases. Experimental results demonstrate that Dental3R effectively handles sparse, unposed inputs and achieves superior novel view synthesis quality for dental occlusion visualization, outperforming state-of-the-art methods.
📅 2025-11-18 | 💬 5 pages , 2 figures
Despite recent advancements in neural 3D reconstruction, the dependence on dense multi-view captures restricts their broader applicability. Additionally, 3D scene generation is vital for advancing embodied AI and world models, which depend on diverse, high-quality scenes for learning and evaluation. In this work, we propose Gen3d, a novel method for generation of high-quality, wide-scope, and generic 3D scenes from a single image. After the initial point cloud is created by lifting the RGBD image, Gen3d maintains and expands its world model. The 3D scene is finalized through optimizing a Gaussian splatting representation. Extensive experiments on diverse datasets demonstrate the strong generalization capability and superior performance of our method in generating a world model and Synthesizing high-fidelity and consistent novel views.
📅 2025-11-18
Tensor singular value decomposition (t-SVD) is a promising tool for multi-dimensional image representation, which decomposes a multi-dimensional image into a latent tensor and an accompanying transform matrix. However, two critical limitations of t-SVD methods persist: (1) the approximation of the latent tensor (e.g., tensor factorizations) is coarse and fails to accurately capture spatial local high-frequency information; (2) The transform matrix is composed of fixed basis atoms (e.g., complex exponential atoms in DFT and cosine atoms in DCT) and cannot precisely capture local high-frequency information along the mode-3 fibers. To address these two limitations, we propose a Gaussian Splatting-based Low-rank tensor Representation (GSLR) framework, which compactly and continuously represents multi-dimensional images. Specifically, we leverage tailored 2D Gaussian splatting and 1D Gaussian splatting to generate the latent tensor and transform matrix, respectively. The 2D and 1D Gaussian splatting are indispensable and complementary under this representation framework, which enjoys a powerful representation capability, especially for local high-frequency information. To evaluate the representation ability of the proposed GSLR, we develop an unsupervised GSLR-based multi-dimensional image recovery model. Extensive experiments on multi-dimensional image recovery demonstrate that GSLR consistently outperforms state-of-the-art methods, particularly in capturing local high-frequency information.
📅 2025-11-18
Household tidying is an important application area, yet current benchmarks neither model user preferences nor support mobility, and they generalize poorly, making it hard to comprehensively assess integrated language-to-action capabilities. To address this, we propose RoboTidy, a unified benchmark for language-guided household tidying that supports Vision-Language-Action (VLA) and Vision-Language-Navigation (VLN) training and evaluation. RoboTidy provides 500 photorealistic 3D Gaussian Splatting (3DGS) household scenes (covering 500 objects and containers) with collisions, formulates tidying as an "Action (Object, Container)" list, and supplies 6.4k high-quality manipulation demonstration trajectories and 1.5k naviagtion trajectories to support both few-shot and large-scale training. We also deploy RoboTidy in the real world for object tidying, establishing an end-to-end benchmark for household tidying. RoboTidy offers a scalable platform and bridges a key gap in embodied AI by enabling holistic and realistic evaluation of language-guided robots.
📅 2025-11-18 | 💬 IROS 2025
Recent trends in SLAM and visual navigation have embraced 3D Gaussians as the preferred scene representation, highlighting the importance of estimating camera poses from a single image using a pre-built Gaussian model. However, existing approaches typically rely on an iterative \textit{render-compare-refine} loop, where candidate views are first rendered using NeRF or Gaussian Splatting, then compared against the target image, and finally, discrepancies are used to update the pose. This multi-round process incurs significant computational overhead, hindering real-time performance in robotics. In this paper, we propose iGaussian, a two-stage feed-forward framework that achieves real-time camera pose estimation through direct 3D Gaussian inversion. Our method first regresses a coarse 6DoF pose using a Gaussian Scene Prior-based Pose Regression Network with spatial uniform sampling and guided attention mechanisms, then refines it through feature matching and multi-model fusion. The key contribution lies in our cross-correlation module that aligns image embeddings with 3D Gaussian attributes without differentiable rendering, coupled with a Weighted Multiview Predictor that fuses features from Multiple strategically sampled viewpoints. Experimental results on the NeRF Synthetic, Mip-NeRF 360, and T\&T+DB datasets demonstrate a significant performance improvement over previous methods, reducing median rotation errors to 0.2° while achieving 2.87 FPS tracking on mobile robots, which is an impressive 10 times speedup compared to optimization-based approaches. Code: https://github.com/pythongod-exe/iGaussian
📅 2025-11-18
We introduce a highly expressive class of function approximators called Splat Regression Models. Model outputs are mixtures of heterogeneous and anisotropic bump functions, termed splats, each weighted by an output vector. The power of splat modeling lies in its ability to locally adjust the scale and direction of each splat, achieving both high interpretability and accuracy. Fitting splat models reduces to optimization over the space of mixing measures, which can be implemented using Wasserstein-Fisher-Rao gradient flows. As a byproduct, we recover the popular Gaussian Splatting methodology as a special case, providing a unified theoretical framework for this state-of-the-art technique that clearly disambiguates the inverse problem, the model, and the optimization algorithm. Through numerical experiments, we demonstrate that the resulting models and algorithms constitute a flexible and promising approach for solving diverse approximation, estimation, and inverse problems involving low-dimensional data.
📅 2025-11-18 | 💬 SIGGRAPH Asia 2025
We present Gaussian See, Gaussian Do, a novel approach for semantic 3D motion transfer from multiview video. Our method enables rig-free, cross-category motion transfer between objects with semantically meaningful correspondence. Building on implicit motion transfer techniques, we extract motion embeddings from source videos via condition inversion, apply them to rendered frames of static target shapes, and use the resulting videos to supervise dynamic 3D Gaussian Splatting reconstruction. Our approach introduces an anchor-based view-aware motion embedding mechanism, ensuring cross-view consistency and accelerating convergence, along with a robust 4D reconstruction pipeline that consolidates noisy supervision videos. We establish the first benchmark for semantic 3D motion transfer and demonstrate superior motion fidelity and structural consistency compared to adapted baselines. Code and data for this paper available at https://gsgd-motiontransfer.github.io/
📅 2025-11-18 | 💬 Accepted at AAAI 2026. Project page: https://miya-oi.github.io/SparseSurf-project
Recent advances in optimizing Gaussian Splatting for scene geometry have enabled efficient reconstruction of detailed surfaces from images. However, when input views are sparse, such optimization is prone to overfitting, leading to suboptimal reconstruction quality. Existing approaches address this challenge by employing flattened Gaussian primitives to better fit surface geometry, combined with depth regularization to alleviate geometric ambiguities under limited viewpoints. Nevertheless, the increased anisotropy inherent in flattened Gaussians exacerbates overfitting in sparse-view scenarios, hindering accurate surface fitting and degrading novel view synthesis performance. In this paper, we propose \net{}, a method that reconstructs more accurate and detailed surfaces while preserving high-quality novel view rendering. Our key insight is to introduce Stereo Geometry-Texture Alignment, which bridges rendering quality and geometry estimation, thereby jointly enhancing both surface reconstruction and view synthesis. In addition, we present a Pseudo-Feature Enhanced Geometry Consistency that enforces multi-view geometric consistency by incorporating both training and unseen views, effectively mitigating overfitting caused by sparse supervision. Extensive experiments on the DTU, BlendedMVS, and Mip-NeRF360 datasets demonstrate that our method achieves the state-of-the-art performance.
📅 2025-11-18 | 💬 11 pages, 6 figures
This paper focuses on a challenging setting of simultaneously modeling geometry and appearance of hand-object interaction scenes without any object priors. We follow the trend of dynamic 3D Gaussian Splatting based methods, and address several significant challenges. To model complex hand-object interaction with mutual occlusion and edge blur, we present interaction-aware hand-object Gaussians with newly introduced optimizable parameters aiming to adopt piecewise linear hypothesis for clearer structural representation. Moreover, considering the complementarity and tightness of hand shape and object shape during interaction dynamics, we incorporate hand information into object deformation field, constructing interaction-aware dynamic fields to model flexible motions. To further address difficulties in the optimization process, we propose a progressive strategy that handles dynamic regions and static background step by step. Correspondingly, explicit regularizations are designed to stabilize the hand-object representations for smooth motion transition, physical interaction reality, and coherent lighting. Experiments show that our approach surpasses existing dynamic 3D-GS-based methods and achieves state-of-the-art performance in reconstructing dynamic hand-object interaction.
📅 2025-11-17 | 💬 Project Page: https://splat-search.github.io/
The Instance Image Goal Navigation (IIN) problem requires mobile robots deployed in unknown environments to search for specific objects or people of interest using only a single reference goal image of the target. This problem can be especially challenging when: 1) the reference image is captured from an arbitrary viewpoint, and 2) the robot must operate with sparse-view scene reconstructions. In this paper, we address the IIN problem, by introducing SplatSearch, a novel architecture that leverages sparse-view 3D Gaussian Splatting (3DGS) reconstructions. SplatSearch renders multiple viewpoints around candidate objects using a sparse online 3DGS map, and uses a multi-view diffusion model to complete missing regions of the rendered images, enabling robust feature matching against the goal image. A novel frontier exploration policy is introduced which uses visual context from the synthesized viewpoints with semantic context from the goal image to evaluate frontier locations, allowing the robot to prioritize frontiers that are semantically and visually relevant to the goal image. Extensive experiments in photorealistic home and real-world environments validate the higher performance of SplatSearch against current state-of-the-art methods in terms of Success Rate and Success Path Length. An ablation study confirms the design choices of SplatSearch.
📅 2025-11-17
In the realm of autonomous driving, accurately detecting surrounding obstacles is crucial for effective decision-making. Traditional methods primarily rely on 3D bounding boxes to represent these obstacles, which often fail to capture the complexity of irregularly shaped, real-world objects. To overcome these limitations, we present GUIDE, a novel framework that utilizes 3D Gaussians for instance detection and occupancy prediction. Unlike conventional occupancy prediction methods, GUIDE also offers robust tracking capabilities. Our framework employs a sparse representation strategy, using Gaussian-to-Voxel Splatting to provide fine-grained, instance-level occupancy data without the computational demands associated with dense voxel grids. Experimental validation on the nuScenes dataset demonstrates GUIDE's performance, with an instance occupancy mAP of 21.61, marking a 50\% improvement over existing methods, alongside competitive tracking capabilities. GUIDE establishes a new benchmark in autonomous perception systems, effectively combining precision with computational efficiency to better address the complexities of real-world driving environments.
📅 2025-11-17
3D Gaussian Splatting (3DGS) rendering in real-time on resource-constrained devices is essential for delivering immersive augmented and virtual reality (AR/VR) experiences. However, existing solutions struggle to achieve high frame rates, especially for high-resolution rendering. Our analysis identifies the sorting stage in the 3DGS rendering pipeline as the major bottleneck due to its high memory bandwidth demand. This paper presents Neo, which introduces a reuse-and-update sorting algorithm that exploits temporal redundancy in Gaussian ordering across consecutive frames, and devises a hardware accelerator optimized for this algorithm. By efficiently tracking and updating Gaussian depth ordering instead of re-sorting from scratch, Neo significantly reduces redundant computations and memory bandwidth pressure. Experimental results show that Neo achieves up to 10.0x and 5.6x higher throughput than state-of-the-art edge GPU and ASIC solution, respectively, while reducing DRAM traffic by 94.5% and 81.3%. These improvements make high-quality and low-latency on-device 3D rendering more practical.
📅 2025-11-17
High Dynamic Range (HDR) imaging is essential for professional digital media creation, e.g., filmmaking, virtual production, and photorealistic rendering. However, 3D scene reconstruction has primarily focused on Low Dynamic Range (LDR) data, limiting its applicability to professional workflows. Existing approaches that reconstruct HDR scenes from LDR observations rely on multi-exposure fusion or inverse tone-mapping, which increase capture complexity and depend on synthetic supervision. With the recent emergence of cameras that directly capture native HDR data in a single exposure, we present the first method for 3D scene reconstruction that directly models native HDR observations. We propose {\bf Native High dynamic range 3D Gaussian Splatting (NH-3DGS)}, which preserves the full dynamic range throughout the reconstruction pipeline. Our key technical contribution is a novel luminance-chromaticity decomposition of the color representation that enables direct optimization from native HDR camera data. We demonstrate on both synthetic and real multi-view HDR datasets that NH-3DGS significantly outperforms existing methods in reconstruction quality and dynamic range preservation, enabling professional-grade 3D reconstruction directly from native HDR captures. Code and datasets will be made available.
📅 2025-11-17 | 💬 Submitting for Neurocomputing
We introduce GS-Light, an efficient, textual position-aware pipeline for text-guided relighting of 3D scenes represented via Gaussian Splatting (3DGS). GS-Light implements a training-free extension of a single-input diffusion model to handle multi-view inputs. Given a user prompt that may specify lighting direction, color, intensity, or reference objects, we employ a large vision-language model (LVLM) to parse the prompt into lighting priors. Using off-the-shelf estimators for geometry and semantics (depth, surface normals, and semantic segmentation), we fuse these lighting priors with view-geometry constraints to compute illumination maps and generate initial latent codes for each view. These meticulously derived init latents guide the diffusion model to generate relighting outputs that more accurately reflect user expectations, especially in terms of lighting direction. By feeding multi-view rendered images, along with the init latents, into our multi-view relighting model, we produce high-fidelity, artistically relit images. Finally, we fine-tune the 3DGS scene with the relit appearance to obtain a fully relit 3D scene. We evaluate GS-Light on both indoor and outdoor scenes, comparing it to state-of-the-art baselines including per-view relighting, video relighting, and scene editing methods. Using quantitative metrics (multi-view consistency, imaging quality, aesthetic score, semantic similarity, etc.) and qualitative assessment (user studies), GS-Light demonstrates consistent improvements over baselines. Code and assets will be made available upon publication.
📅 2025-11-17 | 💬 Accepted at AAAI 2026 as a Conference Paper
3D Gaussian Splatting (3DGS) has emerged as a leading framework for novel view synthesis, yet its core optimization challenges remain underexplored. We identify two key issues in 3DGS optimization: entrapment in suboptimal local optima and insufficient convergence quality. To address these, we propose Opt3DGS, a robust framework that enhances 3DGS through a two-stage optimization process of adaptive exploration and curvature-guided exploitation. In the exploration phase, an Adaptive Weighted Stochastic Gradient Langevin Dynamics (SGLD) method enhances global search to escape local optima. In the exploitation phase, a Local Quasi-Newton Direction-guided Adam optimizer leverages curvature information for precise and efficient convergence. Extensive experiments on diverse benchmark datasets demonstrate that Opt3DGS achieves state-of-the-art rendering quality by refining the 3DGS optimization process without modifying its underlying representation.
📅 2025-11-17 | 💬 NeurIPS 2025, Project Page: https://lhmd.top/zpressor, Code: https://github.com/ziplab/ZPressor
Feed-forward 3D Gaussian Splatting (3DGS) models have recently emerged as a promising solution for novel view synthesis, enabling one-pass inference without the need for per-scene 3DGS optimization. However, their scalability is fundamentally constrained by the limited capacity of their models, leading to degraded performance or excessive memory consumption as the number of input views increases. In this work, we analyze feed-forward 3DGS frameworks through the lens of the Information Bottleneck principle and introduce ZPressor, a lightweight architecture-agnostic module that enables efficient compression of multi-view inputs into a compact latent state $Z$ that retains essential scene information while discarding redundancy. Concretely, ZPressor enables existing feed-forward 3DGS models to scale to over 100 input views at 480P resolution on an 80GB GPU, by partitioning the views into anchor and support sets and using cross attention to compress the information from the support views into anchor views, forming the compressed latent state $Z$. We show that integrating ZPressor into several state-of-the-art feed-forward 3DGS models consistently improves performance under moderate input views and enhances robustness under dense view settings on two large-scale benchmarks DL3DV-10K and RealEstate10K. The video results, code and trained models are available on our project page: https://lhmd.top/zpressor.
📅 2025-11-17
Lightweight building surface models are crucial for digital city, navigation, and fast geospatial analytics, yet conventional multi-view geometry pipelines remain cumbersome and quality-sensitive due to their reliance on dense reconstruction, meshing, and subsequent simplification. This work presents SF-Recon, a method that directly reconstructs lightweight building surfaces from multi-view images without post-hoc mesh simplification. We first train an initial 3D Gaussian Splatting (3DGS) field to obtain a view-consistent representation. Building structure is then distilled by a normal-gradient-guided Gaussian optimization that selects primitives aligned with roof and wall boundaries, followed by multi-view edge-consistency pruning to enhance structural sharpness and suppress non-structural artifacts without external supervision. Finally, a multi-view depth-constrained Delaunay triangulation converts the structured Gaussian field into a lightweight, structurally faithful building mesh. Based on a proposed SF dataset, the experimental results demonstrate that our SF-Recon can directly reconstruct lightweight building models from multi-view imagery, achieving substantially fewer faces and vertices while maintaining computational efficiency. Website:https://lzh282140127-cell.github.io/SF-Recon-project/
📅 2025-11-17 | 💬 Project Page: https://symgs.github.io/
3D Gaussian Splatting has emerged as a transformative technique in novel view synthesis, primarily due to its high rendering speed and photorealistic fidelity. However, its memory footprint scales rapidly with scene complexity, often reaching several gigabytes. Existing methods address this issue by introducing compression strategies that exploit primitive-level redundancy through similarity detection and quantization. We aim to surpass the compression limits of such methods by incorporating symmetry-aware techniques, specifically targeting mirror symmetries to eliminate redundant primitives. We propose a novel compression framework, \textbf{\textit{SymGS}}, introducing learnable mirrors into the scene, thereby eliminating local and global reflective redundancies for compression. Our framework functions as a plug-and-play enhancement to state-of-the-art compression methods, (e.g. HAC) to achieve further compression. Compared to HAC, we achieve $1.66 \times$ compression across benchmark datasets (upto $3\times$ on large-scale scenes). On an average, SymGS enables $\bf{108\times}$ compression of a 3DGS scene, while preserving rendering quality. The project page and supplementary can be found at \textbf{\color{cyan}{symgs.github.io}}
📅 2025-11-17
Under extremely low-light conditions, novel view synthesis (NVS) faces severe degradation in terms of geometry, color consistency, and radiometric stability. Standard 3D Gaussian Splatting (3DGS) pipelines fail when applied directly to underexposed inputs, as independent enhancement across views causes illumination inconsistencies and geometric distortion. To address this, we present DTGS, a unified framework that tightly couples Retinex-inspired illumination decomposition with thermal-guided 3D Gaussian Splatting for illumination-invariant reconstruction. Unlike prior approaches that treat enhancement as a pre-processing step, DTGS performs joint optimization across enhancement, geometry, and thermal supervision through a cyclic enhancement-reconstruction mechanism. A thermal supervisory branch stabilizes both color restoration and geometry learning by dynamically balancing enhancement, structural, and thermal losses. Moreover, a Retinex-based decomposition module embedded within the 3DGS loop provides physically interpretable reflectance-illumination separation, ensuring consistent color and texture across viewpoints. To evaluate our method, we construct RGBT-LOW, a new multi-view low-light thermal dataset capturing severe illumination degradation. Extensive experiments show that DTGS significantly outperforms existing low-light enhancement and 3D reconstruction baselines, achieving superior radiometric consistency, geometric fidelity, and color stability under extreme illumination.
📅 2025-11-17 | 💬 15 pages, 12 figures
We propose Transmission-Reflection Gaussians (TR-Gaussians), a novel 3D-Gaussian-based representation for high-fidelity rendering of planar transmission and reflection, which are ubiquitous in indoor scenes. Our method combines 3D Gaussians with learnable reflection planes that explicitly model the glass planes with view-dependent reflectance strengths. Real scenes and transmission components are modeled by 3D Gaussians and the reflection components are modeled by the mirrored Gaussians with respect to the reflection plane. The transmission and reflection components are blended according to a Fresnel-based, view-dependent weighting scheme, allowing for faithful synthesis of complex appearance effects under varying viewpoints. To effectively optimize TR-Gaussians, we develop a multi-stage optimization framework incorporating color and geometry constraints and an opacity perturbation mechanism. Experiments on different datasets demonstrate that TR-Gaussians achieve real-time, high-fidelity novel view synthesis in scenes with planar transmission and reflection, and outperform state-of-the-art approaches both quantitatively and qualitatively.
📅 2025-11-16 | 💬 9 pages,5 figures. Accepted by AAAI2026. visualizations are available at https://dehazegs.github.io/
Current novel view synthesis methods are typically designed for high-quality and clean input images. However, in foggy scenes, scattering and attenuation can significantly degrade the quality of rendering. Although NeRF-based dehazing approaches have been developed, their reliance on deep fully connected neural networks and per-ray sampling strategies leads to high computational costs. Furthermore, NeRF's implicit representation limits its ability to recover fine-grained details from hazy scenes. To overcome these limitations, we propose learning an explicit Gaussian representation to explain the formation mechanism of foggy images through a physically forward rendering process. Our method, DehazeGS, reconstructs and renders fog-free scenes using only multi-view foggy images as input. Specifically, based on the atmospheric scattering model, we simulate the formation of fog by establishing the transmission function directly onto Gaussian primitives via depth-to-transmission mapping. During training, we jointly learn the atmospheric light and scattering coefficients while optimizing the Gaussian representation of foggy scenes. At inference time, we remove the effects of scattering and attenuation in Gaussian distributions and directly render the scene to obtain dehazed views. Experiments on both real-world and synthetic foggy datasets demonstrate that DehazeGS achieves state-of-the-art performance. visualizations are available at https://dehazegs.github.io/
📅 2025-11-16
Recent developments in 3D reconstruction and neural rendering have significantly propelled the capabilities of photo-realistic 3D scene rendering across various academic and industrial fields. The 3D Gaussian Splatting technique, alongside its derivatives, integrates the advantages of primitive-based and volumetric representations to deliver top-tier rendering quality and efficiency. Despite these advancements, the method tends to generate excessive redundant noisy Gaussians overfitted to every training view, which degrades the rendering quality. Additionally, while 3D Gaussian Splatting excels in small-scale and object-centric scenes, its application to larger scenes is hindered by constraints such as limited video memory, excessive optimization duration, and variable appearance across views. To address these challenges, we introduce GaussianFocus, an innovative approach that incorporates a patch attention algorithm to refine rendering quality and implements a Gaussian constraints strategy to minimize redundancy. Moreover, we propose a subdivision reconstruction strategy for large-scale scenes, dividing them into smaller, manageable blocks for individual training. Our results indicate that GaussianFocus significantly reduces unnecessary Gaussians and enhances rendering quality, surpassing existing State-of-The-Art (SoTA) methods. Furthermore, we demonstrate the capability of our approach to effectively manage and render large scenes, such as urban environments, whilst maintaining high fidelity in the visual output.
📅 2025-11-16 | 💬 Accepted by NeurIPS 2025. Website: https://sites.google.com/view/enerverse
We introduce EnerVerse, a generative robotics foundation model that constructs and interprets embodied spaces. EnerVerse employs a chunk-wise autoregressive video diffusion framework to predict future embodied spaces from instructions, enhanced by a sparse context memory for long-term reasoning. To model the 3D robotics world, we adopt a multi-view video representation, providing rich perspectives to address challenges like motion ambiguity and 3D grounding. Additionally, EnerVerse-D, a data engine pipeline combining generative modeling with 4D Gaussian Splatting, forms a self-reinforcing data loop to reduce the sim-to-real gap. Leveraging these innovations, EnerVerse translates 4D world representations into physical actions via a policy head (EnerVerse-A), achieving state-of-the-art performance in both simulation and real-world tasks. For efficiency, EnerVerse-A reuses features from the first denoising step and predicts action chunks, achieving about 280 ms per 8-step action chunk on a single RTX 4090. Further video demos, dataset samples could be found in our project page.
📅 2025-11-15
Online Scene Change Detection (SCD) is an extremely challenging problem that requires an agent to detect relevant changes on the fly while observing the scene from unconstrained viewpoints. Existing online SCD methods are significantly less accurate than offline approaches. We present the first online SCD approach that is pose-agnostic, label-free, and ensures multi-view consistency, while operating at over 10 FPS and achieving new state-of-the-art performance, surpassing even the best offline approaches. Our method introduces a new self-supervised fusion loss to infer scene changes from multiple cues and observations, PnP-based fast pose estimation against the reference scene, and a fast change-guided update strategy for the 3D Gaussian Splatting scene representation. Extensive experiments on complex real-world datasets demonstrate that our approach outperforms both online and offline baselines.
📅 2025-11-15 | 💬 Accepted by AAAI-26
Recent GS-based rendering has made significant progress for LiDAR, surpassing Neural Radiance Fields (NeRF) in both quality and speed. However, these methods exhibit artifacts in extrapolated novel view synthesis due to the incomplete reconstruction from single traversal scans. To address this limitation, we present LiDAR-GS++, a LiDAR Gaussian Splatting reconstruction method enhanced by diffusion priors for real-time and high-fidelity re-simulation on public urban roads. Specifically, we introduce a controllable LiDAR generation model conditioned on coarsely extrapolated rendering to produce extra geometry-consistent scans and employ an effective distillation mechanism for expansive reconstruction. By extending reconstruction to under-fitted regions, our approach ensures global geometric consistency for extrapolative novel views while preserving detailed scene surfaces captured by sensors. Experiments on multiple public datasets demonstrate that LiDAR-GS++ achieves state-of-the-art performance for both interpolated and extrapolated viewpoints, surpassing existing GS and NeRF-based methods.
📅 2025-11-15 | 💬 10 pages, 4 figures, 5 tables
We present the Electronic Tensor Reconstruction Algorithm (ELECTRA) - an equivariant model for predicting electronic charge densities using floating orbitals. Floating orbitals are a long-standing concept in the quantum chemistry community that promises more compact and accurate representations by placing orbitals freely in space, as opposed to centering all orbitals at the position of atoms. Finding the ideal placement of these orbitals requires extensive domain knowledge, though, which thus far has prevented widespread adoption. We solve this in a data-driven manner by training a Cartesian tensor network to predict the orbital positions along with orbital coefficients. This is made possible through a symmetry-breaking mechanism that is used to learn position displacements with lower symmetry than the input molecule while preserving the rotation equivariance of the charge density itself. Inspired by recent successes of Gaussian Splatting in representing densities in space, we are using Gaussian orbitals and predicting their weights and covariance matrices. Our method achieves a state-of-the-art balance between computational efficiency and predictive accuracy on established benchmarks. Furthermore, ELECTRA is able to lower the compute time required to arrive at converged DFT solutions - initializing calculations using our predicted densities yields an average 50.72 % reduction in self-consistent field (SCF) iterations on unseen molecules.
📅 2025-11-15 | 💬 AAAI2026-Oral. Project Page: https://xinyuanhu66.github.io/SRSplat/
Feed-forward 3D reconstruction from sparse, low-resolution (LR) images is a crucial capability for real-world applications, such as autonomous driving and embodied AI. However, existing methods often fail to recover fine texture details. This limitation stems from the inherent lack of high-frequency information in LR inputs. To address this, we propose \textbf{SRSplat}, a feed-forward framework that reconstructs high-resolution 3D scenes from only a few LR views. Our main insight is to compensate for the deficiency of texture information by jointly leveraging external high-quality reference images and internal texture cues. We first construct a scene-specific reference gallery, generated for each scene using Multimodal Large Language Models (MLLMs) and diffusion models. To integrate this external information, we introduce the \textit{Reference-Guided Feature Enhancement (RGFE)} module, which aligns and fuses features from the LR input images and their reference twin image. Subsequently, we train a decoder to predict the Gaussian primitives using the multi-view fused feature obtained from \textit{RGFE}. To further refine predicted Gaussian primitives, we introduce \textit{Texture-Aware Density Control (TADC)}, which adaptively adjusts Gaussian density based on the internal texture richness of the LR inputs. Extensive experiments demonstrate that our SRSplat outperforms existing methods on various datasets, including RealEstate10K, ACID, and DTU, and exhibits strong cross-dataset and cross-resolution generalization capabilities.
📅 2025-11-15
Bridging the gap between complex human instructions and precise 3D object grounding remains a significant challenge in vision and robotics. Existing 3D segmentation methods often struggle to interpret ambiguous, reasoning-based instructions, while 2D vision-language models that excel at such reasoning lack intrinsic 3D spatial understanding. In this paper, we introduce REALM, an innovative MLLM-agent framework that enables open-world reasoning-based segmentation without requiring extensive 3D-specific post-training. We perform segmentation directly on 3D Gaussian Splatting representations, capitalizing on their ability to render photorealistic novel views that are highly suitable for MLLM comprehension. As directly feeding one or more rendered views to the MLLM can lead to high sensitivity to viewpoint selection, we propose a novel Global-to-Local Spatial Grounding strategy. Specifically, multiple global views are first fed into the MLLM agent in parallel for coarse-level localization, aggregating responses to robustly identify the target object. Then, several close-up novel views of the object are synthesized to perform fine-grained local segmentation, yielding accurate and consistent 3D masks. Extensive experiments show that REALM achieves remarkable performance in interpreting both explicit and implicit instructions across LERF, 3D-OVS, and our newly introduced REALM3D benchmarks. Furthermore, our agent framework seamlessly supports a range of 3D interaction tasks, including object removal, replacement, and style transfer, demonstrating its practical utility and versatility. Project page: https://ChangyueShi.github.io/REALM.
📅 2025-11-14
High-fidelity gaze redirection is critical for generating augmented data to improve the generalization of gaze estimators. 3D Gaussian Splatting (3DGS) models like GazeGaussian represent the state-of-the-art but can struggle with rendering subtle, continuous gaze shifts. In this paper, we propose DiT-Gaze, a framework that enhances 3D gaze redirection models using a novel combination of Diffusion Transformer (DiT), weak supervision across gaze angles, and an orthogonality constraint loss. DiT allows higher-fidelity image synthesis, while our weak supervision strategy using synthetically generated intermediate gaze angles provides a smooth manifold of gaze directions during training. The orthogonality constraint loss mathematically enforces the disentanglement of internal representations for gaze, head pose, and expression. Comprehensive experiments show that DiT-Gaze sets a new state-of-the-art in both perceptual quality and redirection accuracy, reducing the state-of-the-art gaze error by 4.1% to 6.353 degrees, providing a superior method for creating synthetic training data. Our code and models will be made available for the research community to benchmark against.
📅 2025-11-14
3D Gaussian Splatting (3DGS) has recently gained great attention in the 3D scene representation for its high-quality real-time rendering capabilities. However, when the input comprises sparse training views, 3DGS is prone to overfitting, primarily due to the lack of intermediate-view supervision. Inspired by the recent success of Video Diffusion Models (VDM), we propose a framework called Guidance Score Distillation (GSD) to extract the rich multi-view consistency priors from pretrained VDMs. Building on the insights from Score Distillation Sampling (SDS), GSD supervises rendered images from multiple neighboring views, guiding the Gaussian splatting representation towards the generative direction of VDM. However, the generative direction often involves object motion and random camera trajectories, making it challenging for direct supervision in the optimization process. To address this problem, we introduce an unified guidance form to correct the noise prediction result of VDM. Specifically, we incorporate both a depth warp guidance based on real depth maps and a guidance based on semantic image features, ensuring that the score update direction from VDM aligns with the correct camera pose and accurate geometry. Experimental results show that our method outperforms existing approaches across multiple datasets.
📅 2025-11-14 | 💬 AAAI 2026
Multi-view video reconstruction plays a vital role in computer vision, enabling applications in film production, virtual reality, and motion analysis. While recent advances such as 4D Gaussian Splatting (4DGS) have demonstrated impressive capabilities in dynamic scene reconstruction, they typically rely on the assumption that input video streams are temporally synchronized. However, in real-world scenarios, this assumption often fails due to factors like camera trigger delays or independent recording setups, leading to temporal misalignment across views and reduced reconstruction quality. To address this challenge, a novel temporal alignment strategy is proposed for high-quality 4DGS reconstruction from unsynchronized multi-view videos. Our method features a coarse-to-fine alignment module that estimates and compensates for each camera's time shift. The method first determines a coarse, frame-level offset and then refines it to achieve sub-frame accuracy. This strategy can be integrated as a readily integrable module into existing 4DGS frameworks, enhancing their robustness when handling asynchronous data. Experiments show that our approach effectively processes temporally misaligned videos and significantly enhances baseline methods.
📅 2025-11-14 | 💬 submitted to TCSVT
Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated remarkable rendering fidelity and efficiency. However, these methods still rely on computationally expensive sequential alpha-blending operations, resulting in significant overhead, particularly on resource-constrained platforms. In this paper, we propose Duplex-GS, a dual-hierarchy framework that integrates proxy Gaussian representations with order-independent rendering techniques to achieve photorealistic results while sustaining real-time performance. To mitigate the overhead caused by view-adaptive radix sort, we introduce cell proxies for local Gaussians management and propose cell search rasterization for further acceleration. By seamlessly combining our framework with Order-Independent Transparency (OIT), we develop a physically inspired weighted sum rendering technique that simultaneously eliminates "popping" and "transparency" artifacts, yielding substantial improvements in both accuracy and efficiency. Extensive experiments on a variety of real-world datasets demonstrate the robustness of our method across diverse scenarios, including multi-scale training views and large-scale environments. Our results validate the advantages of the OIT rendering paradigm in Gaussian Splatting, achieving high-quality rendering with an impressive 1.5 to 4 speedup over existing OIT based Gaussian Splatting approaches and 52.2% to 86.9% reduction of the radix sort overhead without quality degradation.
📅 2025-11-14 | 💬 Accepted at AAAI 2026. Supplementary material included after references. 27 pages, 21 figures, 11 tables
4D flow magnetic resonance imaging (MRI) is a reliable, non-invasive approach for estimating blood flow velocities, vital for cardiovascular diagnostics. Unlike conventional MRI focused on anatomical structures, 4D flow MRI requires high spatiotemporal resolution for early detection of critical conditions such as stenosis or aneurysms. However, achieving such resolution typically results in prolonged scan times, creating a trade-off between acquisition speed and prediction accuracy. Recent studies have leveraged physics-informed neural networks (PINNs) for super-resolution of MRI data, but their practical applicability is limited as the prohibitively slow training process must be performed for each patient. To overcome this limitation, we propose PINGS-X, a novel framework modeling high-resolution flow velocities using axes-aligned spatiotemporal Gaussian representations. Inspired by the effectiveness of 3D Gaussian splatting (3DGS) in novel view synthesis, PINGS-X extends this concept through several non-trivial novel innovations: (i) normalized Gaussian splatting with a formal convergence guarantee, (ii) axes-aligned Gaussians that simplify training for high-dimensional data while preserving accuracy and the convergence guarantee, and (iii) a Gaussian merging procedure to prevent degenerate solutions and boost computational efficiency. Experimental results on computational fluid dynamics (CFD) and real 4D flow MRI datasets demonstrate that PINGS-X substantially reduces training time while achieving superior super-resolution accuracy. Our code and datasets are available at https://github.com/SpatialAILab/PINGS-X.
📅 2025-11-14 | 💬 Accepted by NeurIPS 2025
3D Gaussian Splatting (3DGS) has emerged as a high-fidelity and efficient paradigm for online free-viewpoint video (FVV) reconstruction, offering viewers rapid responsiveness and immersive experiences. However, existing online methods face challenge in prohibitive storage requirements primarily due to point-wise modeling that fails to exploit the motion properties. To address this limitation, we propose a novel Compact Gaussian Streaming (ComGS) framework, leveraging the locality and consistency of motion in dynamic scene, that models object-consistent Gaussian point motion through keypoint-driven motion representation. By transmitting only the keypoint attributes, this framework provides a more storage-efficient solution. Specifically, we first identify a sparse set of motion-sensitive keypoints localized within motion regions using a viewspace gradient difference strategy. Equipped with these keypoints, we propose an adaptive motion-driven mechanism that predicts a spatial influence field for propagating keypoint motion to neighboring Gaussian points with similar motion. Moreover, ComGS adopts an error-aware correction strategy for key frame reconstruction that selectively refines erroneous regions and mitigates error accumulation without unnecessary overhead. Overall, ComGS achieves a remarkable storage reduction of over 159 X compared to 3DGStream and 14 X compared to the SOTA method QUEEN, while maintaining competitive visual fidelity and rendering speed.
📅 2025-11-13
Effective robotic autonomy in unknown environments demands proactive exploration and precise understanding of both geometry and semantics. In this paper, we propose ActiveSGM, an active semantic mapping framework designed to predict the informativeness of potential observations before execution. Built upon a 3D Gaussian Splatting (3DGS) mapping backbone, our approach employs semantic and geometric uncertainty quantification, coupled with a sparse semantic representation, to guide exploration. By enabling robots to strategically select the most beneficial viewpoints, ActiveSGM efficiently enhances mapping completeness, accuracy, and robustness to noisy semantic data, ultimately supporting more adaptive scene exploration. Our experiments on the Replica and Matterport3D datasets highlight the effectiveness of ActiveSGM in active semantic mapping tasks.
📅 2025-11-13
We present a novel framework for animating humans in 3D scenes using 3D Gaussian Splatting (3DGS), a neural scene representation that has recently achieved state-of-the-art photorealistic results for novel-view synthesis but remains under-explored for human-scene animation and interaction. Unlike existing animation pipelines that use meshes or point clouds as the underlying 3D representation, our approach introduces the use of 3DGS as the 3D representation to the problem of animating humans in scenes. By representing humans and scenes as Gaussians, our approach allows for geometry-consistent free-viewpoint rendering of humans interacting with 3D scenes. Our key insight is that the rendering can be decoupled from the motion synthesis and each sub-problem can be addressed independently, without the need for paired human-scene data. Central to our method is a Gaussian-aligned motion module that synthesizes motion without explicit scene geometry, using opacity-based cues and projected Gaussian structures to guide human placement and pose alignment. To ensure natural interactions, we further propose a human-scene Gaussian refinement optimization that enforces realistic contact and navigation. We evaluate our approach on scenes from Scannet++ and the SuperSplat library, and on avatars reconstructed from sparse and dense multi-view human capture. Finally, we demonstrate that our framework allows for novel applications such as geometry-consistent free-viewpoint rendering of edited monocular RGB videos with new animated humans, showcasing the unique advantage of 3DGS for monocular video-based human animation.
📅 2025-11-13
Three-dimensional reconstruction in scenes with extreme depth variations remains challenging due to inconsistent supervisory signals between near-field and far-field regions. Existing methods fail to simultaneously address inaccurate depth estimation in distant areas and structural degradation in close-range regions. This paper proposes a novel computational framework that integrates depth-of-field supervision and multi-view consistency supervision to advance 3D Gaussian Splatting. Our approach comprises two core components: (1) Depth-of-field Supervision employs a scale-recovered monocular depth estimator (e.g., Metric3D) to generate depth priors, leverages defocus convolution to synthesize physically accurate defocused images, and enforces geometric consistency through a novel depth-of-field loss, thereby enhancing depth fidelity in both far-field and near-field regions; (2) Multi-View Consistency Supervision employing LoFTR-based semi-dense feature matching to minimize cross-view geometric errors and enforce depth consistency via least squares optimization of reliable matched points. By unifying defocus physics with multi-view geometric constraints, our method achieves superior depth fidelity, demonstrating a 0.8 dB PSNR improvement over the state-of-the-art method on the Waymo Open Dataset. This framework bridges physical imaging principles and learning-based depth regularization, offering a scalable solution for complex depth stratification in urban environments.
📅 2025-11-13
In this paper, we propose UniGS, a unified map representation and differentiable framework for high-fidelity multimodal 3D reconstruction based on 3D Gaussian Splatting. Our framework integrates a CUDA-accelerated rasterization pipeline capable of rendering photo-realistic RGB images, geometrically accurate depth maps, consistent surface normals, and semantic logits simultaneously. We redesign the rasterization to render depth via differentiable ray-ellipsoid intersection rather than using Gaussian centers, enabling effective optimization of rotation and scale attribute through analytic depth gradients. Furthermore, we derive the analytic gradient formulation for surface normal rendering, ensuring geometric consistency among reconstructed 3D scenes. To improve computational and storage efficiency, we introduce a learnable attribute that enables differentiable pruning of Gaussians with minimal contribution during training. Quantitative and qualitative experiments demonstrate state-of-the-art reconstruction accuracy across all modalities, validating the efficacy of our geometry-aware paradigm. Source code and multimodal viewer will be available on GitHub.
📅 2025-11-13 | 💬 AAAI26 Poster
3D Gaussian Splatting offers a strong speed-quality trade-off but struggles to reconstruct semi-transparent surfaces because most methods assume a single depth per pixel, which fails when multiple surfaces are visible. We propose TSPE-GS (Transparent Surface Probabilistic Extraction for Gaussian Splatting), which uniformly samples transmittance to model a pixel-wise multi-modal distribution of opacity and depth, replacing the prior single-peak assumption and resolving cross-surface depth ambiguity. By progressively fusing truncated signed distance functions, TSPE-GS reconstructs external and internal surfaces separately within a unified framework. The method generalizes to other Gaussian-based reconstruction pipelines without extra training overhead. Extensive experiments on public and self-collected semi-transparent and opaque datasets show TSPE-GS significantly improves semi-transparent geometry reconstruction while maintaining performance on opaque scenes.
📅 2025-11-12 | 💬 Under Review
Ultrasound imaging is a cornerstone of non-invasive clinical diagnostics, yet its limited field of view complicates novel view synthesis. We propose \textbf{UltraGS}, a Gaussian Splatting framework optimized for ultrasound imaging. First, we introduce a depth-aware Gaussian splatting strategy, where each Gaussian is assigned a learnable field of view, enabling accurate depth prediction and precise structural representation. Second, we design SH-DARS, a lightweight rendering function combining low-order spherical harmonics with ultrasound-specific wave physics, including depth attenuation, reflection, and scattering, to model tissue intensity accurately. Third, we contribute the Clinical Ultrasound Examination Dataset, a benchmark capturing diverse anatomical scans under real-world clinical protocols. Extensive experiments on three datasets demonstrate UltraGS's superiority, achieving state-of-the-art results in PSNR (up to 29.55), SSIM (up to 0.89), and MSE (as low as 0.002) while enabling real-time synthesis at 64.69 fps. The code and dataset are open-sourced at: https://github.com/Bean-Young/UltraGS.
📅 2025-11-12 | 💬 17 pages, 5 figures; Accepted to ML4H 2025
Minimally invasive surgery (MIS) requires high-fidelity, real-time visual feedback of dynamic and low-texture surgical scenes. To address these requirements, we introduce FeatureEndo-4DGS (FE-4DGS), the first real time pipeline leveraging feature-distilled 4D Gaussian Splatting for simultaneous reconstruction and semantic segmentation of deformable surgical environments. Unlike prior feature-distilled methods restricted to static scenes, and existing 4D approaches that lack semantic integration, FE-4DGS seamlessly leverages pre-trained 2D semantic embeddings to produce a unified 4D representation-where semantics also deform with tissue motion. This unified approach enables the generation of real-time RGB and semantic outputs through a single, parallelized rasterization process. Despite the additional complexity from feature distillation, FE-4DGS sustains real-time rendering (61 FPS) with a compact footprint, achieves state-of-the-art rendering fidelity on EndoNeRF (39.1 PSNR) and SCARED (27.3 PSNR), and delivers competitive EndoVis18 segmentation, matching or exceeding strong 2D baselines for binary segmentation tasks (0.93 DSC) and remaining competitive for multi-label segmentation (0.77 DSC).
📅 2025-11-12 | 💬 4pages, 8 figures, ICRA construction workshop
We present the ongoing development of a robotic system for overhead work such as ceiling drilling. The hardware platform comprises a mobile base with a two-stage lift, on which a bimanual torso is mounted with a custom-designed drilling end effector and RGB-D cameras. To support teleoperation in dynamic environments with limited visibility, we use Gaussian splatting for online 3D reconstruction and introduce motion parameters to model moving objects. For safe operation around dynamic obstacles, we developed a neural configuration-space barrier approach for planning and control. Initial feasibility studies demonstrate the capability of the hardware in drilling, bolting, and anchoring, and the software in safe teleoperation in a dynamic environment.
📅 2025-11-12 | 💬 10 pages, 4 figures, 5 tables
We present the Electronic Tensor Reconstruction Algorithm (ELECTRA) - an equivariant model for predicting electronic charge densities using floating orbitals. Floating orbitals are a long-standing concept in the quantum chemistry community that promises more compact and accurate representations by placing orbitals freely in space, as opposed to centering all orbitals at the position of atoms. Finding the ideal placement of these orbitals requires extensive domain knowledge, though, which thus far has prevented widespread adoption. We solve this in a data-driven manner by training a Cartesian tensor network to predict the orbital positions along with orbital coefficients. This is made possible through a symmetry-breaking mechanism that is used to learn position displacements with lower symmetry than the input molecule while preserving the rotation equivariance of the charge density itself. Inspired by recent successes of Gaussian Splatting in representing densities in space, we are using Gaussian orbitals and predicting their weights and covariance matrices. Our method achieves a state-of-the-art balance between computational efficiency and predictive accuracy on established benchmarks. Furthermore, ELECTRA is able to lower the compute time required to arrive at converged DFT solutions - initializing calculations using our predicted densities yields an average 50.72 \% reduction in self-consistent field (SCF) iterations on unseen molecules.
📅 2025-11-12 | 💬 11 pages (10 main + 1 appendix), 7 figures, 3 tables. Preprint, under review for Eurographics 2026
Recent advances in 3D Gaussian Splatting (3DGS) have achieved state-of-the-art results for novel view synthesis. However, efficiently capturing high-fidelity reconstructions of specific objects within complex scenes remains a significant challenge. A key limitation of existing active reconstruction methods is their reliance on scene-level uncertainty metrics, which are often biased by irrelevant background clutter and lead to inefficient view selection for object-centric tasks. We present OUGS, a novel framework that addresses this challenge with a more principled, physically-grounded uncertainty formulation for 3DGS. Our core innovation is to derive uncertainty directly from the explicit physical parameters of the 3D Gaussian primitives (e.g., position, scale, rotation). By propagating the covariance of these parameters through the rendering Jacobian, we establish a highly interpretable uncertainty model. This foundation allows us to then seamlessly integrate semantic segmentation masks to produce a targeted, object-aware uncertainty score that effectively disentangles the object from its environment. This allows for a more effective active view selection strategy that prioritizes views critical to improving object fidelity. Experimental evaluations on public datasets demonstrate that our approach significantly improves the efficiency of the 3DGS reconstruction process and achieves higher quality for targeted objects compared to existing state-of-the-art methods, while also serving as a robust uncertainty estimator for the global scene.
📅 2025-11-12 | 💬 Project Page: https://humandreamer-x.github.io/
Single-image human reconstruction is vital for digital human modeling applications but remains an extremely challenging task. Current approaches rely on generative models to synthesize multi-view images for subsequent 3D reconstruction and animation. However, directly generating multiple views from a single human image suffers from geometric inconsistencies, resulting in issues like fragmented or blurred limbs in the reconstructed models. To tackle these limitations, we introduce \textbf{HumanDreamer-X}, a novel framework that integrates multi-view human generation and reconstruction into a unified pipeline, which significantly enhances the geometric consistency and visual fidelity of the reconstructed 3D models. In this framework, 3D Gaussian Splatting serves as an explicit 3D representation to provide initial geometry and appearance priority. Building upon this foundation, \textbf{HumanFixer} is trained to restore 3DGS renderings, which guarantee photorealistic results. Furthermore, we delve into the inherent challenges associated with attention mechanisms in multi-view human generation, and propose an attention modulation strategy that effectively enhances geometric details identity consistency across multi-view. Experimental results demonstrate that our approach markedly improves generation and reconstruction PSNR quality metrics by 16.45% and 12.65%, respectively, achieving a PSNR of up to 25.62 dB, while also showing generalization capabilities on in-the-wild data and applicability to various human reconstruction backbone models.
📅 2025-11-12 | 💬 9 pages, 8 figures, submitted to The International Journal of Robotics Research (IJRR)
Models and methods originally developed for Novel View Synthesis and Scene Rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as sequential operations and, in many settings, multi-modality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. Additionally, the data are often collected using sensors which are handheld or mounted on drones or mobile robots, which complicates the accurate reproduction of sensor motions. To bridge these gaps, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM, Novel View Rendering and Gaussian Splatting. Recorded with a robot manipulator, it uniquely includes 40 sequences with time-synchronized RGB-D images, IMU readings, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of recent integrations of SLAM paradigms within robotic applications. The dataset features five setups with consumer and industrial objects under four controlled lighting conditions, each with separate training and test trajectories. All sequences are static with different levels of object rearrangements and occlusions. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
📅 2025-11-12 | 💬 Our code and results can be publicly accessed at: https://github.com/robotics-upo/gaussian-rio-cpp
4D millimeter-wave (mmWave) radars are sensors that provide robustness against adverse weather conditions (rain, snow, fog, etc.), and as such they are increasingly used for odometry and SLAM (Simultaneous Location and Mapping). However, the noisy and sparse nature of the returned scan data proves to be a challenging obstacle for existing registration algorithms, especially those originally intended for more accurate sensors such as LiDAR. Following the success of 3D Gaussian Splatting for vision, in this paper we propose a summarized representation for radar scenes based on global simultaneous optimization of 3D Gaussians as opposed to voxel-based approaches, and leveraging its inherent Probability Density Function (PDF) for registration. Moreover, we propose tackling the problem of radar noise entirely within the scan matching process by optimizing multiple registration hypotheses for better protection against local optima of the PDF. Finally, following existing practice we implement an Extended Kalman Filter-based Radar-Inertial Odometry pipeline in order to evaluate the effectiveness of our system. Experiments using publicly available 4D radar datasets show that our Gaussian approach is comparable to existing registration algorithms, outperforming them in several sequences.
📅 2025-11-11 | 💬 Under Review
Ultrasound imaging is a cornerstone of non-invasive clinical diagnostics, yet its limited field of view complicates novel view synthesis. We propose \textbf{UltraGS}, a Gaussian Splatting framework optimized for ultrasound imaging. First, we introduce a depth-aware Gaussian splatting strategy, where each Gaussian is assigned a learnable field of view, enabling accurate depth prediction and precise structural representation. Second, we design SH-DARS, a lightweight rendering function combining low-order spherical harmonics with ultrasound-specific wave physics, including depth attenuation, reflection, and scattering, to model tissue intensity accurately. Third, we contribute the Clinical Ultrasound Examination Dataset, a benchmark capturing diverse anatomical scans under real-world clinical protocols. Extensive experiments on three datasets demonstrate UltraGS's superiority, achieving state-of-the-art results in PSNR (up to 29.55), SSIM (up to 0.89), and MSE (as low as 0.002) while enabling real-time synthesis at 64.69 fps. The code and dataset are open-sourced at: https://github.com/Bean-Young/UltraGS.
📅 2025-11-11 | 💬 WACV 2026
Accurate 3D human pose estimation is fundamental for applications such as augmented reality and human-robot interaction. State-of-the-art multi-view methods learn to fuse predictions across views by training on large annotated datasets, leading to poor generalization when the test scenario differs. To overcome these limitations, we propose SkelSplat, a novel framework for multi-view 3D human pose estimation based on differentiable Gaussian rendering. Human pose is modeled as a skeleton of 3D Gaussians, one per joint, optimized via differentiable rendering to enable seamless fusion of arbitrary camera views without 3D ground-truth supervision. Since Gaussian Splatting was originally designed for dense scene reconstruction, we propose a novel one-hot encoding scheme that enables independent optimization of human joints. SkelSplat outperforms approaches that do not rely on 3D ground truth in Human3.6M and CMU, while reducing the cross-dataset error up to 47.8% compared to learning-based methods. Experiments on Human3.6M-Occ and Occlusion-Person demonstrate robustness to occlusions, without scenario-specific fine-tuning. Our project page is available here: https://skelsplat.github.io.
📅 2025-11-11
Modeling complex rigid motion across large spatiotemporal spans remains an unresolved challenge in dynamic reconstruction. Existing paradigms are mainly confined to short-term, small-scale deformation and offer limited consideration for physical consistency. This study proposes PMGS, focusing on reconstructing Projectile Motion via 3D Gaussian Splatting. The workflow comprises two stages: 1) Target Modeling: achieving object-centralized reconstruction through dynamic scene decomposition and an improved point density control; 2) Motion Recovery: restoring full motion sequences by learning per-frame SE(3) poses. We introduce an acceleration consistency constraint to bridge Newtonian mechanics and pose estimation, and design a dynamic simulated annealing strategy that adaptively schedules learning rates based on motion states. Futhermore, we devise a Kalman fusion scheme to optimize error accumulation from multi-source observations to mitigate disturbances. Experiments show PMGS's superior performance in reconstructing high-speed nonlinear rigid motion compared to mainstream dynamic methods.
📅 2025-11-11
With the rapid advancement of 3D visualization, 3D Gaussian Splatting (3DGS) has emerged as a leading technique for real-time, high-fidelity rendering. While prior research has emphasized algorithmic performance and visual fidelity, the perceptual quality of 3DGS-rendered content, especially under varying reconstruction conditions, remains largely underexplored. In practice, factors such as viewpoint sparsity, limited training iterations, point downsampling, noise, and color distortions can significantly degrade visual quality, yet their perceptual impact has not been systematically studied. To bridge this gap, we present 3DGS-QA, the first subjective quality assessment dataset for 3DGS. It comprises 225 degraded reconstructions across 15 object types, enabling a controlled investigation of common distortion factors. Based on this dataset, we introduce a no-reference quality prediction model that directly operates on native 3D Gaussian primitives, without requiring rendered images or ground-truth references. Our model extracts spatial and photometric cues from the Gaussian representation to estimate perceived quality in a structure-aware manner. We further benchmark existing quality assessment methods, spanning both traditional and learning-based approaches. Experimental results show that our method consistently achieves superior performance, highlighting its robustness and effectiveness for 3DGS content evaluation. The dataset and code are made publicly available at https://github.com/diaoyn/3DGSQA to facilitate future research in 3DGS quality assessment.
📅 2025-11-11 | 💬 Accepted by AAAI-26
Recently, 3D Gaussian Splatting (3DGS), an explicit scene representation technique, has shown significant promise for dynamic novel-view synthesis from monocular video input. However, purely data-driven 3DGS often struggles to capture the diverse physics-driven motion patterns in dynamic scenes. To fill this gap, we propose Physics-Informed Deformable Gaussian Splatting (PIDG), which treats each Gaussian particle as a Lagrangian material point with time-varying constitutive parameters and is supervised by 2D optical flow via motion projection. Specifically, we adopt static-dynamic decoupled 4D decomposed hash encoding to reconstruct geometry and motion efficiently. Subsequently, we impose the Cauchy momentum residual as a physics constraint, enabling independent prediction of each particle's velocity and constitutive stress via a time-evolving material field. Finally, we further supervise data fitting by matching Lagrangian particle flow to camera-compensated optical flow, which accelerates convergence and improves generalization. Experiments on a custom physics-driven dataset as well as on standard synthetic and real-world datasets demonstrate significant gains in physical consistency and monocular dynamic reconstruction quality.
📅 2025-11-10 | 💬 Accepted to 3DV 2026
Hyperspectral imaging (HSI) has been widely used in agricultural applications for non-destructive estimation of plant nutrient composition and precise determination of nutritional elements of samples. Recently, 3D reconstruction methods have been used to create implicit neural representations of HSI scenes, which can help localize the target object's nutrient composition spatially and spectrally. Neural Radiance Field (NeRF) is a cutting-edge implicit representation that can be used to render hyperspectral channel compositions of each spatial location from any viewing direction. However, it faces limitations in training time and rendering speed. In this paper, we propose Diffusion-Denoised Hyperspectral Gaussian Splatting (DD-HGS), which enhances the state-of-the-art 3D Gaussian Splatting (3DGS) method with wavelength-aware spherical harmonics, a Kullback-Leibler divergence-based spectral loss, and a diffusion-based denoiser to enable 3D explicit reconstruction of hyperspectral scenes across the full spectral range. We present extensive evaluations on diverse real-world hyperspectral scenes from the Hyper-NeRF dataset to show the effectiveness of DD-HGS. The results demonstrate that DD-HGS achieves new state-of-the-art performance among previously published methods. Project page: https://dragonpg2000.github.io/DDHGS-website/
📅 2025-11-10 | 💬 The first two authors contributed equally. Website: https://real2sim-eval.github.io/
Robotic manipulation policies are advancing rapidly, but their direct evaluation in the real world remains costly, time-consuming, and difficult to reproduce, particularly for tasks involving deformable objects. Simulation provides a scalable and systematic alternative, yet existing simulators often fail to capture the coupled visual and physical complexity of soft-body interactions. We present a real-to-sim policy evaluation framework that constructs soft-body digital twins from real-world videos and renders robots, objects, and environments with photorealistic fidelity using 3D Gaussian Splatting. We validate our approach on representative deformable manipulation tasks, including plush toy packing, rope routing, and T-block pushing, demonstrating that simulated rollouts correlate strongly with real-world execution performance and reveal key behavioral patterns of learned policies. Our results suggest that combining physics-informed reconstruction with high-quality rendering enables reproducible, scalable, and accurate evaluation of robotic manipulation policies. Website: https://real2sim-eval.github.io/
📅 2025-11-10
Fast and flexible 3D scene reconstruction from unstructured image collections remains a significant challenge. We present YoNoSplat, a feedforward model that reconstructs high-quality 3D Gaussian Splatting representations from an arbitrary number of images. Our model is highly versatile, operating effectively with both posed and unposed, calibrated and uncalibrated inputs. YoNoSplat predicts local Gaussians and camera poses for each view, which are aggregated into a global representation using either predicted or provided poses. To overcome the inherent difficulty of jointly learning 3D Gaussians and camera parameters, we introduce a novel mixing training strategy. This approach mitigates the entanglement between the two tasks by initially using ground-truth poses to aggregate local Gaussians and gradually transitioning to a mix of predicted and ground-truth poses, which prevents both training instability and exposure bias. We further resolve the scale ambiguity problem by a novel pairwise camera-distance normalization scheme and by embedding camera intrinsics into the network. Moreover, YoNoSplat also predicts intrinsic parameters, making it feasible for uncalibrated inputs. YoNoSplat demonstrates exceptional efficiency, reconstructing a scene from 100 views (at 280x518 resolution) in just 2.69 seconds on an NVIDIA GH200 GPU. It achieves state-of-the-art performance on standard benchmarks in both pose-free and pose-dependent settings. Our project page is at https://botaoye.github.io/yonosplat/.
📅 2025-11-10
Scene reconstruction has emerged as a central challenge in computer vision, with approaches such as Neural Radiance Fields (NeRF) and Gaussian Splatting achieving remarkable progress. While Gaussian Splatting demonstrates strong performance on large-scale datasets, it often struggles to capture fine details or maintain realism in regions with sparse coverage, largely due to the inherent limitations of sparse 3D training data. In this work, we propose GauSSmart, a hybrid method that effectively bridges 2D foundational models and 3D Gaussian Splatting reconstruction. Our approach integrates established 2D computer vision techniques, including convex filtering and semantic feature supervision from foundational models such as DINO, to enhance Gaussian-based scene reconstruction. By leveraging 2D segmentation priors and high-dimensional feature embeddings, our method guides the densification and refinement of Gaussian splats, improving coverage in underrepresented areas and preserving intricate structural details. We validate our approach across three datasets, where GauSSmart consistently outperforms existing Gaussian Splatting in the majority of evaluated scenes. Our results demonstrate the significant potential of hybrid 2D-3D approaches, highlighting how the thoughtful combination of 2D foundational models with 3D reconstruction pipelines can overcome the limitations inherent in either approach alone.
📅 2025-11-10 | 💬 Accepted by AAAI 2026.The first two authors contributed equally
Remarkable advances in recent 2D image and 3D shape generation have induced a significant focus on dynamic 4D content generation. However, previous 4D generation methods commonly struggle to maintain spatial-temporal consistency and adapt poorly to rapid temporal variations, due to the lack of effective spatial-temporal modeling. To address these problems, we propose a novel 4D generation network called 4DSTR, which modulates generative 4D Gaussian Splatting with spatial-temporal rectification. Specifically, temporal correlation across generated 4D sequences is designed to rectify deformable scales and rotations and guarantee temporal consistency. Furthermore, an adaptive spatial densification and pruning strategy is proposed to address significant temporal variations by dynamically adding or deleting Gaussian points with the awareness of their pre-frame movements. Extensive experiments demonstrate that our 4DSTR achieves state-of-the-art performance in video-to-4D generation, excelling in reconstruction quality, spatial-temporal consistency, and adaptation to rapid temporal movements.
📅 2025-11-10 | 💬 AAAI 2026
Dynamic Gaussian Splatting approaches have achieved remarkable performance for 4D scene reconstruction. However, these approaches rely on dense-frame video sequences for photorealistic reconstruction. In real-world scenarios, due to equipment constraints, sometimes only sparse frames are accessible. In this paper, we propose Sparse4DGS, the first method for sparse-frame dynamic scene reconstruction. We observe that dynamic reconstruction methods fail in both canonical and deformed spaces under sparse-frame settings, especially in areas with high texture richness. Sparse4DGS tackles this challenge by focusing on texture-rich areas. For the deformation network, we propose Texture-Aware Deformation Regularization, which introduces a texture-based depth alignment loss to regulate Gaussian deformation. For the canonical Gaussian field, we introduce Texture-Aware Canonical Optimization, which incorporates texture-based noise into the gradient descent process of canonical Gaussians. Extensive experiments show that when taking sparse frames as inputs, our method outperforms existing dynamic or few-shot techniques on NeRF-Synthetic, HyperNeRF, NeRF-DS, and our iPhone-4D datasets.
📅 2025-11-10
3D Gaussian Splatting (3DGS) enhances 3D scene reconstruction through explicit representation and fast rendering, demonstrating potential benefits for various low-level vision tasks, including video compression. However, existing 3DGS-based video codecs generally exhibit more noticeable visual artifacts and relatively low compression ratios. In this paper, we specifically target the perceptual enhancement of 3DGS-based video compression, based on the assumption that artifacts from 3DGS rendering and quantization resemble noisy latents sampled during diffusion training. Building on this premise, we propose a content-adaptive framework, GFix, comprising a streamlined, single-step diffusion model that serves as an off-the-shelf neural enhancer. Moreover, to increase compression efficiency, We propose a modulated LoRA scheme that freezes the low-rank decompositions and modulates the intermediate hidden states, thereby achieving efficient adaptation of the diffusion backbone with highly compressible updates. Experimental results show that GFix delivers strong perceptual quality enhancement, outperforming GSVC with up to 72.1% BD-rate savings in LPIPS and 21.4% in FID.
📅 2025-11-10
Gaussian Splatting (GS) has recently emerged as a promising technique for 3D object reconstruction, delivering high-quality rendering results with significantly improved reconstruction speed. As variants continue to appear, assessing the perceptual quality of 3D objects reconstructed with different GS-based methods remains an open challenge. To address this issue, we first propose a unified multi-distance subjective quality assessment method that closely mimics human viewing behavior for objects reconstructed with GS-based methods in actual applications, thereby better collecting perceptual experiences. Based on it, we also construct a novel GS quality assessment dataset named MUGSQA, which is constructed considering multiple uncertainties of the input data. These uncertainties include the quantity and resolution of input views, the view distance, and the accuracy of the initial point cloud. Moreover, we construct two benchmarks: one to evaluate the robustness of various GS-based reconstruction methods under multiple uncertainties, and the other to evaluate the performance of existing quality assessment metrics. Our dataset and benchmark code will be released soon.
📅 2025-11-10
3D Gaussian Splatting (3DGS) achieves state-of-the-art image quality and real-time performance in novel view synthesis but often suffers from a suboptimal spatial distribution of primitives. This issue stems from cloning-based densification, which propagates Gaussians along existing geometry, limiting exploration and requiring many primitives to adequately cover the scene. We present ConeGS, an image-space-informed densification framework that is independent of existing scene geometry state. ConeGS first creates a fast Instant Neural Graphics Primitives (iNGP) reconstruction as a geometric proxy to estimate per-pixel depth. During the subsequent 3DGS optimization, it identifies high-error pixels and inserts new Gaussians along the corresponding viewing cones at the predicted depth values, initializing their size according to the cone diameter. A pre-activation opacity penalty rapidly removes redundant Gaussians, while a primitive budgeting strategy controls the total number of primitives, either by a fixed budget or by adapting to scene complexity, ensuring high reconstruction quality. Experiments show that ConeGS consistently enhances reconstruction quality and rendering performance across Gaussian budgets, with especially strong gains under tight primitive constraints where efficient placement is crucial.
📅 2025-11-10 | 💬 7 pages, 3 figures. Accepted by IROS 2025
3D Gaussian Splatting (3DGS) has emerged as a key rendering pipeline for digital asset creation due to its balance between efficiency and visual quality. To address the issues of unstable pose estimation and scene representation distortion caused by geometric texture inconsistency in large outdoor scenes with weak or repetitive textures, we approach the problem from two aspects: pose estimation and scene representation. For pose estimation, we leverage LiDAR-IMU Odometry to provide prior poses for cameras in large-scale environments. These prior pose constraints are incorporated into COLMAP's triangulation process, with pose optimization performed via bundle adjustment. Ensuring consistency between pixel data association and prior poses helps maintain both robustness and accuracy. For scene representation, we introduce normal vector constraints and effective rank regularization to enforce consistency in the direction and shape of Gaussian primitives. These constraints are jointly optimized with the existing photometric loss to enhance the map quality. We evaluate our approach using both public and self-collected datasets. In terms of pose optimization, our method requires only one-third of the time while maintaining accuracy and robustness across both datasets. In terms of scene representation, the results show that our method significantly outperforms conventional 3DGS pipelines. Notably, on self-collected datasets characterized by weak or repetitive textures, our approach demonstrates enhanced visualization capabilities and achieves superior overall performance. Codes and data will be publicly available at https://github.com/justinyeah/normal_shape.git.
📅 2025-11-10 | 💬 Accepted by AAAI 2026 (Oral)
Rain degrades the visual quality of multi-view images, which are essential for 3D scene reconstruction, resulting in inaccurate and incomplete reconstruction results. Existing datasets often overlook two critical characteristics of real rainy 3D scenes: the viewpoint-dependent variation in the appearance of rain streaks caused by their projection onto 2D images, and the reduction in ambient brightness resulting from cloud coverage during rainfall. To improve data realism, we construct a new dataset named OmniRain3D that incorporates perspective heterogeneity and brightness dynamicity, enabling more faithful simulation of rain degradation in 3D scenes. Based on this dataset, we propose an end-to-end reconstruction framework named REVR-GSNet (Rain Elimination and Visibility Recovery for 3D Gaussian Splatting). Specifically, REVR-GSNet integrates recursive brightness enhancement, Gaussian primitive optimization, and GS-guided rain elimination into a unified architecture through joint alternating optimization, achieving high-fidelity reconstruction of clean 3D scenes from rain-degraded inputs. Extensive experiments show the effectiveness of our dataset and method. Our dataset and method provide a foundation for future research on multi-view image deraining and rainy 3D scene reconstruction.
📅 2025-11-10
Urban scene reconstruction is critical for autonomous driving, enabling structured 3D representations for data synthesis and closed-loop testing. Supervised approaches rely on costly human annotations and lack scalability, while current self-supervised methods often confuse static and dynamic elements and fail to distinguish individual dynamic objects, limiting fine-grained editing. We propose DIAL-GS, a novel dynamic instance-aware reconstruction method for label-free street scenes with 4D Gaussian Splatting. We first accurately identify dynamic instances by exploiting appearance-position inconsistency between warped rendering and actual observation. Guided by instance-level dynamic perception, we employ instance-aware 4D Gaussians as the unified volumetric representation, realizing dynamic-adaptive and instance-aware reconstruction. Furthermore, we introduce a reciprocal mechanism through which identity and dynamics reinforce each other, enhancing both integrity and consistency. Experiments on urban driving scenarios show that DIAL-GS surpasses existing self-supervised baselines in reconstruction quality and instance-level editing, offering a concise yet powerful solution for urban scene modeling.
📅 2025-11-09 | 💬 WACV 2026, project page: https://dfki-av.github.io/inpaint360gs/
Despite recent advances in single-object front-facing inpainting using NeRF and 3D Gaussian Splatting (3DGS), inpainting in complex 360° scenes remains largely underexplored. This is primarily due to three key challenges: (i) identifying target objects in the 3D field of 360° environments, (ii) dealing with severe occlusions in multi-object scenes, which makes it hard to define regions to inpaint, and (iii) maintaining consistent and high-quality appearance across views effectively. To tackle these challenges, we propose Inpaint360GS, a flexible 360° editing framework based on 3DGS that supports multi-object removal and high-fidelity inpainting in 3D space. By distilling 2D segmentation into 3D and leveraging virtual camera views for contextual guidance, our method enables accurate object-level editing and consistent scene completion. We further introduce a new dataset tailored for 360° inpainting, addressing the lack of ground truth object-free scenes. Experiments demonstrate that Inpaint360GS outperforms existing baselines and achieves state-of-the-art performance. Project page: https://dfki-av.github.io/inpaint360gs/
📅 2025-11-09
This paper presents an effective Gaussian management framework for high-fidelity scene reconstruction of appearance and geometry. Departing from recent Gaussian Splatting (GS) methods that rely on indiscriminate attribute assignment, our approach introduces a novel densification strategy called \emph{GauSep} that selectively activates Gaussian color or normal attributes. Together with a tailored rendering pipeline, termed \emph{Separate Rendering}, this strategy alleviates gradient conflicts arising from dual supervision and yields improved reconstruction quality. In addition, we develop \emph{GauRep}, an adaptive and integrated Gaussian representation that reduces redundancy both at the individual and global levels, effectively balancing model capacity and number of parameters. To provide reliable geometric supervision essential for effective management, we also introduce \emph{CoRe}, a novel surface reconstruction module that distills normal fields from the SDF branch to the Gaussian branch through a confidence mechanism. Notably, our management framework is model-agnostic and can be seamlessly incorporated into other architectures, simultaneously improving performance and reducing model size. Extensive experiments demonstrate that our approach achieves superior performance in reconstructing both appearance and geometry compared with state-of-the-art methods, while using significantly fewer parameters.
📅 2025-11-08 | 💬 This is the pre-print version of a work that has been published in ICRA 2025 with doi: 10.1109/ICRA55743.2025.11127380. This version may no longer be accessible without notice. Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses. Please cite the official version
Real-time SLAM with dense 3D mapping is computationally challenging, especially on resource-limited devices. The recent development of 3D Gaussian Splatting (3DGS) offers a promising approach for real-time dense 3D reconstruction. However, existing 3DGS-based SLAM systems struggle to balance hardware simplicity, speed, and map quality. Most systems excel in one or two of the aforementioned aspects but rarely achieve all. A key issue is the difficulty of initializing 3D Gaussians while concurrently conducting SLAM. To address these challenges, we present Monocular GSO (MGSO), a novel real-time SLAM system that integrates photometric SLAM with 3DGS. Photometric SLAM provides dense structured point clouds for 3DGS initialization, accelerating optimization and producing more efficient maps with fewer Gaussians. As a result, experiments show that our system generates reconstructions with a balance of quality, memory efficiency, and speed that outperforms the state-of-the-art. Furthermore, our system achieves all results using RGB inputs. We evaluate the Replica, TUM-RGBD, and EuRoC datasets against current live dense reconstruction systems. Not only do we surpass contemporary systems, but experiments also show that we maintain our performance on laptop hardware, making it a practical solution for robotics, A/R, and other real-time applications.
📅 2025-11-08
4D millimeter-wave radar is a promising sensing modality for autonomous driving, yet effective 3D object detection from 4D radar and monocular images remains challenging. Existing fusion approaches either rely on instance proposals lacking global context or dense BEV grids constrained by rigid structures, lacking a flexible and adaptive representation for diverse scenes. To address this, we propose RaGS, the first framework that leverages 3D Gaussian Splatting (GS) to fuse 4D radar and monocular cues for 3D object detection. 3D GS models the scene as a continuous field of Gaussians, enabling dynamic resource allocation to foreground objects while maintaining flexibility and efficiency. Moreover, the velocity dimension of 4D radar provides motion cues that help anchor and refine the spatial distribution of Gaussians. Specifically, RaGS adopts a cascaded pipeline to construct and progressively refine the Gaussian field. It begins with Frustum-based Localization Initiation (FLI), which unprojects foreground pixels to initialize coarse Gaussian centers. Then, Iterative Multimodal Aggregation (IMA) explicitly exploits image semantics and implicitly integrates 4D radar velocity geometry to refine the Gaussians within regions of interest. Finally, Multi-level Gaussian Fusion (MGF) renders the Gaussian field into hierarchical BEV features for 3D object detection. By dynamically focusing on sparse and informative regions, RaGS achieves object-centric precision and comprehensive scene perception. Extensive experiments on View-of-Delft, TJ4DRadSet, and OmniHD-Scenes demonstrate its robustness and SOTA performance. Code will be released.
📅 2025-11-08 | 💬 Accepted by AAAI 2026. Code will be released at https://www.github.com/kkkzh/StreamSTGS
Streaming free-viewpoint video~(FVV) in real-time still faces significant challenges, particularly in training, rendering, and transmission efficiency. Harnessing superior performance of 3D Gaussian Splatting~(3DGS), recent 3DGS-based FVV methods have achieved notable breakthroughs in both training and rendering. However, the storage requirements of these methods can reach up to $10$MB per frame, making stream FVV in real-time impossible. To address this problem, we propose a novel FVV representation, dubbed StreamSTGS, designed for real-time streaming. StreamSTGS represents a dynamic scene using canonical 3D Gaussians, temporal features, and a deformation field. For high compression efficiency, we encode canonical Gaussian attributes as 2D images and temporal features as a video. This design not only enables real-time streaming, but also inherently supports adaptive bitrate control based on network condition without any extra training. Moreover, we propose a sliding window scheme to aggregate adjacent temporal features to learn local motions, and then introduce a transformer-guided auxiliary training module to learn global motions. On diverse FVV benchmarks, StreamSTGS demonstrates competitive performance on all metrics compared to state-of-the-art methods. Notably, StreamSTGS increases the PSNR by an average of $1$dB while reducing the average frame size to just $170$KB. The code is publicly available on https://github.com/kkkzh/StreamSTGS.
📅 2025-11-07
Geospatial sensor data is essential for modern defense and security, offering indispensable 3D information for situational awareness. This data, gathered from sources like lidar sensors and optical cameras, allows for the creation of detailed models of operational environments. In this paper, we provide a comparative analysis of traditional representation methods, such as point clouds, voxel grids, and triangle meshes, alongside modern neural and implicit techniques like Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS). Our evaluation reveals a fundamental trade-off: traditional models offer robust geometric accuracy ideal for functional tasks like line-of-sight analysis and physics simulations, while modern methods excel at producing high-fidelity, photorealistic visuals but often lack geometric reliability. Based on these findings, we conclude that a hybrid approach is the most promising path forward. We propose a system architecture that combines a traditional mesh scaffold for geometric integrity with a neural representation like 3DGS for visual detail, managed within a hierarchical scene structure to ensure scalability and performance.
📅 2025-11-07 | 💬 Accepted at NeurIPS 2025 (Spotlight). Project page: https://fictionarry.github.io/GeoSVR-project/
Reconstructing accurate surfaces with radiance fields has achieved remarkable progress in recent years. However, prevailing approaches, primarily based on Gaussian Splatting, are increasingly constrained by representational bottlenecks. In this paper, we introduce GeoSVR, an explicit voxel-based framework that explores and extends the under-investigated potential of sparse voxels for achieving accurate, detailed, and complete surface reconstruction. As strengths, sparse voxels support preserving the coverage completeness and geometric clarity, while corresponding challenges also arise from absent scene constraints and locality in surface refinement. To ensure correct scene convergence, we first propose a Voxel-Uncertainty Depth Constraint that maximizes the effect of monocular depth cues while presenting a voxel-oriented uncertainty to avoid quality degradation, enabling effective and robust scene constraints yet preserving highly accurate geometries. Subsequently, Sparse Voxel Surface Regularization is designed to enhance geometric consistency for tiny voxels and facilitate the voxel-based formation of sharp and accurate surfaces. Extensive experiments demonstrate our superior performance compared to existing methods across diverse challenging scenarios, excelling in geometric accuracy, detail preservation, and reconstruction completeness while maintaining high efficiency. Code is available at https://github.com/Fictionarry/GeoSVR.
📅 2025-11-07
3D Gaussian Splatting (3DGS) is a highly deployable real-time method for novel view synthesis. In practice, it requires a universal, consistent control mechanism that adjusts the trade-off between rendering quality and model compression without scene-specific tuning, enabling automated deployment across different device performances and communication bandwidths. In this work, we present ControlGS, a control-oriented optimization framework that maps the trade-off between Gaussian count and rendering quality to a continuous, scene-agnostic, and highly responsive control axis. Extensive experiments across a wide range of scene scales and types (from small objects to large outdoor scenes) demonstrate that, by adjusting a globally unified control hyperparameter, ControlGS can flexibly generate models biased toward either structural compactness or high fidelity, regardless of the specific scene scale or complexity, while achieving markedly higher rendering quality with the same or fewer Gaussians compared to potential competing methods. Project page: https://zhang-fengdi.github.io/ControlGS/
📅 2025-11-07 | 💬 ICLR 2025 Oral; Homepage: https://daohanlu.github.io/scaling-up-3dgs/
3D Gaussian Splatting (3DGS) is increasingly popular for 3D reconstruction due to its superior visual quality and rendering speed. However, 3DGS training currently occurs on a single GPU, limiting its ability to handle high-resolution and large-scale 3D reconstruction tasks due to memory constraints. We introduce Grendel, a distributed system designed to partition 3DGS parameters and parallelize computation across multiple GPUs. As each Gaussian affects a small, dynamic subset of rendered pixels, Grendel employs sparse all-to-all communication to transfer the necessary Gaussians to pixel partitions and performs dynamic load balancing. Unlike existing 3DGS systems that train using one camera view image at a time, Grendel supports batched training with multiple views. We explore various optimization hyperparameter scaling strategies and find that a simple sqrt(batch size) scaling rule is highly effective. Evaluations using large-scale, high-resolution scenes show that Grendel enhances rendering quality by scaling up 3DGS parameters across multiple GPUs. On the Rubble dataset, we achieve a test PSNR of 27.28 by distributing 40.4 million Gaussians across 16 GPUs, compared to a PSNR of 26.28 using 11.2 million Gaussians on a single GPU. Grendel is an open-source project available at: https://github.com/nyu-systems/Grendel-GS
📅 2025-11-07 | 💬 Accepted to appear in the 2026 ACM International Conference on Architectural Support for Programming Languages and Operating Systems
3D Gaussian Splatting (3DGS) is an increasingly popular novel view synthesis approach due to its fast rendering time, and high-quality output. However, scaling 3DGS to large (or intricate) scenes is challenging due to its large memory requirement, which exceed most GPU's memory capacity. In this paper, we describe CLM, a system that allows 3DGS to render large scenes using a single consumer-grade GPU, e.g., RTX4090. It does so by offloading Gaussians to CPU memory, and loading them into GPU memory only when necessary. To reduce performance and communication overheads, CLM uses a novel offloading strategy that exploits observations about 3DGS's memory access pattern for pipelining, and thus overlap GPU-to-CPU communication, GPU computation and CPU computation. Furthermore, we also exploit observation about the access pattern to reduce communication volume. Our evaluation shows that the resulting implementation can render a large scene that requires 100 million Gaussians on a single RTX4090 and achieve state-of-the-art reconstruction quality.
📅 2025-11-07 | 💬 17 pages, 5 figures
Novel view synthesis from monocular videos of dynamic scenes with unknown camera poses remains a fundamental challenge in computer vision and graphics. While recent advances in 3D representations such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have shown promising results for static scenes, they struggle with dynamic content and typically rely on pre-computed camera poses. We present 4D3R, a pose-free dynamic neural rendering framework that decouples static and dynamic components through a two-stage approach. Our method first leverages 3D foundational models for initial pose and geometry estimation, followed by motion-aware refinement. 4D3R introduces two key technical innovations: (1) a motion-aware bundle adjustment (MA-BA) module that combines transformer-based learned priors with SAM2 for robust dynamic object segmentation, enabling more accurate camera pose refinement; and (2) an efficient Motion-Aware Gaussian Splatting (MA-GS) representation that uses control points with a deformation field MLP and linear blend skinning to model dynamic motion, significantly reducing computational cost while maintaining high-quality reconstruction. Extensive experiments on real-world dynamic datasets demonstrate that our approach achieves up to 1.8dB PSNR improvement over state-of-the-art methods, particularly in challenging scenarios with large dynamic objects, while reducing computational requirements by 5x compared to previous dynamic scene representations.
📅 2025-11-07
Deformable Gaussian Splatting (GS) accomplishes photorealistic dynamic 3-D reconstruction from dense multi-view video (MVV) by learning to deform a canonical GS representation. However, in filmmaking, tight budgets can result in sparse camera configurations, which limits state-of-the-art (SotA) methods when capturing complex dynamic features. To address this issue, we introduce an approach that splits the canonical Gaussians and deformation field into foreground and background components using a sparse set of masks for frames at t=0. Each representation is separately trained on different loss functions during canonical pre-training. Then, during dynamic training, different parameters are modeled for each deformation field following common filmmaking practices. The foreground stage contains diverse dynamic features so changes in color, position and rotation are learned. While, the background containing film-crew and equipment, is typically dimmer and less dynamic so only changes in point position are learned. Experiments on 3-D and 2.5-D entertainment datasets show that our method produces SotA qualitative and quantitative results; up to 3 PSNR higher with half the model size on 3-D scenes. Unlike the SotA and without the need for dense mask supervision, our method also produces segmented dynamic reconstructions including transparent and dynamic textures. Code and video comparisons are available online: https://interims-git.github.io/
📅 2025-11-07
Geospatial sensor data is essential for modern defense and security, offering indispensable 3D information for situational awareness. This data, gathered from sources like lidar sensors and optical cameras, allows for the creation of detailed models of operational environments. In this paper, we provide a comparative analysis of traditional representation methods, such as point clouds, voxel grids, and triangle meshes, alongside modern neural and implicit techniques like Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS). Our evaluation reveals a fundamental trade-off: traditional models offer robust geometric accuracy ideal for functional tasks like line-of-sight analysis and physics simulations, while modern methods excel at producing high-fidelity, photorealistic visuals but often lack geometric reliability. Based on these findings, we conclude that a hybrid approach is the most promising path forward. We propose a system architecture that combines a traditional mesh scaffold for geometric integrity with a neural representation like 3DGS for visual detail, managed within a hierarchical scene structure to ensure scalability and performance.
📅 2025-11-07 | 💬 Accepted at NeurIPS 2025 (Spotlight). Project page: https://fictionarry.github.io/GeoSVR-project/
Reconstructing accurate surfaces with radiance fields has achieved remarkable progress in recent years. However, prevailing approaches, primarily based on Gaussian Splatting, are increasingly constrained by representational bottlenecks. In this paper, we introduce GeoSVR, an explicit voxel-based framework that explores and extends the under-investigated potential of sparse voxels for achieving accurate, detailed, and complete surface reconstruction. As strengths, sparse voxels support preserving the coverage completeness and geometric clarity, while corresponding challenges also arise from absent scene constraints and locality in surface refinement. To ensure correct scene convergence, we first propose a Voxel-Uncertainty Depth Constraint that maximizes the effect of monocular depth cues while presenting a voxel-oriented uncertainty to avoid quality degradation, enabling effective and robust scene constraints yet preserving highly accurate geometries. Subsequently, Sparse Voxel Surface Regularization is designed to enhance geometric consistency for tiny voxels and facilitate the voxel-based formation of sharp and accurate surfaces. Extensive experiments demonstrate our superior performance compared to existing methods across diverse challenging scenarios, excelling in geometric accuracy, detail preservation, and reconstruction completeness while maintaining high efficiency. Code is available at https://github.com/Fictionarry/GeoSVR.
📅 2025-11-07
3D Gaussian Splatting (3DGS) is a highly deployable real-time method for novel view synthesis. In practice, it requires a universal, consistent control mechanism that adjusts the trade-off between rendering quality and model compression without scene-specific tuning, enabling automated deployment across different device performances and communication bandwidths. In this work, we present ControlGS, a control-oriented optimization framework that maps the trade-off between Gaussian count and rendering quality to a continuous, scene-agnostic, and highly responsive control axis. Extensive experiments across a wide range of scene scales and types (from small objects to large outdoor scenes) demonstrate that, by adjusting a globally unified control hyperparameter, ControlGS can flexibly generate models biased toward either structural compactness or high fidelity, regardless of the specific scene scale or complexity, while achieving markedly higher rendering quality with the same or fewer Gaussians compared to potential competing methods. Project page: https://zhang-fengdi.github.io/ControlGS/