Skip to the content.

llm - 2024_01

Home / Papers / llm

Papers

📅 2024-01-02
Large Language Models (LLMs) have revolutionized Natural Language Processing but exhibit limitations, particularly in autonomously addressing novel challenges such as reasoning and problem-solving. Traditional techniques like chain-of-thought prompting necessitate explicit human guidance. This paper introduces a novel multi-agent communication framework, inspired by the CAMEL model, to enhance LLMs' autonomous problem-solving capabilities. The framework employs multiple LLM agents, each with a distinct persona, engaged in role-playing communication, offering a nuanced and adaptable approach to diverse problem scenarios. Extensive experimentation demonstrates the framework's superior performance and adaptability, providing valuable insights into the collaborative potential of multiple agents in overcoming the limitations of individual models.
📅 2024-01-02 | 💬 SIGIR Forum, Vol. 57 No. 2 - December 2023
Modern search engines are built on a stack of different components, including query understanding, retrieval, multi-stage ranking, and question answering, among others. These components are often optimized and deployed independently. In this paper, we introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM). All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts. This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack. To substantiate the feasibility of this framework, we present a series of proof-of-concept experiments and discuss the potential challenges associated with implementing this approach within real-world search systems.
📅 2024-01-02 | 💬 Accepted to be published in the Proceedings of the 10th IEEE CSDE 2023, the Asia-Pacific Conference on Computer Science and Data Engineering 2023
The emergence of LLM (Large Language Model) integrated virtual assistants has brought about a rapid transformation in communication dynamics. During virtual assistant development, some developers prefer to leverage the system message, also known as an initial prompt or custom prompt, for preconditioning purposes. However, it is important to recognize that an excessive reliance on this functionality raises the risk of manipulation by malicious actors who can exploit it with carefully crafted prompts. Such malicious manipulation poses a significant threat, potentially compromising the accuracy and reliability of the virtual assistant's responses. Consequently, safeguarding the virtual assistants with detection and defense mechanisms becomes of paramount importance to ensure their safety and integrity. In this study, we explored three detection and defense mechanisms aimed at countering attacks that target the system message. These mechanisms include inserting a reference key, utilizing an LLM evaluator, and implementing a Self-Reminder. To showcase the efficacy of these mechanisms, they were tested against prominent attack techniques. Our findings demonstrate that the investigated mechanisms are capable of accurately identifying and counteracting the attacks. The effectiveness of these mechanisms underscores their potential in safeguarding the integrity and reliability of virtual assistants, reinforcing the importance of their implementation in real-world scenarios. By prioritizing the security of virtual assistants, organizations can maintain user trust, preserve the integrity of the application, and uphold the high standards expected in this era of transformative technologies.