Skip to the content.

llm - 2024_08

Home / Papers / llm

Papers

📅 2024-08-31
Significant progress has been made in text-to-video generation through the use of powerful generative models and large-scale internet data. However, substantial challenges remain in precisely controlling individual concepts within the generated video, such as the motion and appearance of specific characters and the movement of viewpoints. In this work, we propose a novel paradigm that generates each concept in 3D representation separately and then composes them with priors from Large Language Models (LLM) and 2D diffusion models. Specifically, given an input textual prompt, our scheme consists of three stages: 1) We leverage LLM as the director to first decompose the complex query into several sub-prompts that indicate individual concepts within the video~(\textit{e.g.}, scene, objects, motions), then we let LLM to invoke pre-trained expert models to obtain corresponding 3D representations of concepts. 2) To compose these representations, we prompt multi-modal LLM to produce coarse guidance on the scales and coordinates of trajectories for the objects. 3) To make the generated frames adhere to natural image distribution, we further leverage 2D diffusion priors and use Score Distillation Sampling to refine the composition. Extensive experiments demonstrate that our method can generate high-fidelity videos from text with diverse motion and flexible control over each concept. Project page: \url{https://aka.ms/c3v}.
📅 2024-08-31
Large Language Models (LLMs) have shown remarkable progress, but their real-world application necessitates reliable calibration. This study conducts a comprehensive analysis of calibration degradation of LLMs across four dimensions: models, calibration metrics, tasks, and confidence extraction methods. Initial analysis showed that the relationship between alignment and calibration is not always a trade-off, but under stricter analysis conditions, we found the alignment process consistently harms calibration. This highlights the need for (1) a careful approach when measuring model confidences and calibration errors and (2) future research into algorithms that can help LLMs to achieve both instruction-following and calibration without sacrificing either.
📅 2024-08-31
Obtaining data in the medical field is challenging, making the adoption of AI technology within the space slow and high-risk. We evaluate whether we can overcome this obstacle with synthetic data generated by large language models (LLMs). In particular, we use GPT-4 and Claude 3 Opus to create agents that simulate adults with varying profiles, childhood memories, and attachment styles. These agents participate in simulated Adult Attachment Interviews (AAI), and we use their responses to train models for predicting their underlying attachment styles. We evaluate our models using a transcript dataset from 9 humans who underwent the same interview protocol, analyzed and labeled by mental health professionals. Our findings indicate that training the models using only synthetic data achieves performance comparable to training the models on human data. Additionally, while the raw embeddings from synthetic answers occupy a distinct space compared to those from real human responses, the introduction of unlabeled human data and a simple standardization allows for a closer alignment of these representations. This adjustment is supported by qualitative analyses and is reflected in the enhanced predictive accuracy of the standardized embeddings.
📅 2024-08-31 | 💬 28 pages, 2 figures
This paper explores use of multiple large language model (LLM) agents to simulate complex, dynamic characters in dramatic scenarios. We introduce a drama machine framework that coordinates interactions between LLM agents playing different 'Ego' and 'Superego' psychological roles. In roleplay simulations, this design allows intersubjective dialogue and intra-subjective internal monologue to develop in parallel. We apply this framework to two dramatic scenarios - an interview and a detective story - and compare character development with and without the Superego's influence. Though exploratory, results suggest this multi-agent approach can produce more nuanced, adaptive narratives that evolve over a sequence of dialogical turns. We discuss different modalities of LLM-based roleplay and character development, along with what this might mean for conceptualization of AI subjectivity. The paper concludes by considering how this approach opens possibilities for thinking of the roles of internal conflict and social performativity in AI-based simulation.
📅 2024-08-30
Multimodal Large Language Models (MM-LLMs) have seen significant advancements in the last year, demonstrating impressive performance across tasks. However, to truly democratize AI, models must exhibit strong capabilities and be able to run efficiently on small compute footprints accessible by most. Part of this quest, we introduce LLaVaOLMoBitnet1B - the first Ternary Multimodal LLM capable of accepting Image(s)+Text inputs to produce coherent textual responses. The model is fully open-sourced along with training scripts to encourage further research in this space. This accompanying technical report highlights the training process, evaluation details, challenges associated with ternary models and future opportunities. Link to the model: https://huggingface.co/IntelLabs/LlavaOLMoBitnet1B
📅 2024-08-30
Event Argument Extraction (EAE) is pivotal for extracting structured information from unstructured text, yet it remains challenging due to the complexity of real-world document-level EAE. We propose a novel Definition-augmented Heuristic-driven Prompting (DHP) method to enhance the performance of Large Language Models (LLMs) in document-level EAE. Our method integrates argument extraction-related definitions and heuristic rules to guide the extraction process, reducing error propagation and improving task accuracy. We also employ the Chain-of-Thought (CoT) method to simulate human reasoning, breaking down complex problems into manageable sub-problems. Experiments have shown that our method achieves a certain improvement in performance over existing prompting methods and few-shot supervised learning on document-level EAE datasets. The DHP method enhances the generalization capability of LLMs and reduces reliance on large annotated datasets, offering a novel research perspective for document-level EAE.
📅 2024-08-30 | 💬 To Appear In Proceedings of 39th IEEE/ACM International Conference on Automated Software Engineering (ASE 2024)
Over the past decade, app store (AppStore)-inspired requirements elicitation has proven to be highly beneficial. Developers often explore competitors' apps to gather inspiration for new features. With the advance of Generative AI, recent studies have demonstrated the potential of large language model (LLM)-inspired requirements elicitation. LLMs can assist in this process by providing inspiration for new feature ideas. While both approaches are gaining popularity in practice, there is a lack of insight into their differences. We report on a comparative study between AppStore- and LLM-based approaches for refining features into sub-features. By manually analyzing 1,200 sub-features recommended from both approaches, we identified their benefits, challenges, and key differences. While both approaches recommend highly relevant sub-features with clear descriptions, LLMs seem more powerful particularly concerning novel unseen app scopes. Moreover, some recommended features are imaginary with unclear feasibility, which suggests the importance of a human-analyst in the elicitation loop.
📅 2024-08-30 | 💬 Authors are listed in alphabetical order by last name. Demonstrations and human-annotated test sets are available at https://byteresearchcla.github.io/clasi
In this paper, we present Cross Language Agent -- Simultaneous Interpretation, CLASI, a high-quality and human-like Simultaneous Speech Translation (SiST) System. Inspired by professional human interpreters, we utilize a novel data-driven read-write strategy to balance the translation quality and latency. To address the challenge of translating in-domain terminologies, CLASI employs a multi-modal retrieving module to obtain relevant information to augment the translation. Supported by LLMs, our approach can generate error-tolerated translation by considering the input audio, historical context, and retrieved information. Experimental results show that our system outperforms other systems by significant margins. Aligned with professional human interpreters, we evaluate CLASI with a better human evaluation metric, valid information proportion (VIP), which measures the amount of information that can be successfully conveyed to the listeners. In the real-world scenarios, where the speeches are often disfluent, informal, and unclear, CLASI achieves VIP of 81.3% and 78.0% for Chinese-to-English and English-to-Chinese translation directions, respectively. In contrast, state-of-the-art commercial or open-source systems only achieve 35.4% and 41.6%. On the extremely hard dataset, where other systems achieve under 13% VIP, CLASI can still achieve 70% VIP.
📅 2024-08-30 | 💬 to be published in Interspeech 2024
Training emotion recognition models has relied heavily on human annotated data, which present diversity, quality, and cost challenges. In this paper, we explore the potential of Large Language Models (LLMs), specifically GPT4, in automating or assisting emotion annotation. We compare GPT4 with supervised models and or humans in three aspects: agreement with human annotations, alignment with human perception, and impact on model training. We find that common metrics that use aggregated human annotations as ground truth can underestimate the performance, of GPT-4 and our human evaluation experiment reveals a consistent preference for GPT-4 annotations over humans across multiple datasets and evaluators. Further, we investigate the impact of using GPT-4 as an annotation filtering process to improve model training. Together, our findings highlight the great potential of LLMs in emotion annotation tasks and underscore the need for refined evaluation methodologies.
📅 2024-08-30
The acceleration of Large Language Models (LLMs) with speculative decoding provides a significant runtime improvement without any loss of accuracy. Currently, EAGLE-2 is the state-of-the-art speculative decoding method, improving on EAGLE with a dynamic draft tree. We introduce Dynamic Depth Decoding (DDD), which optimises EAGLE-2's tree drafting method using a dynamic depth. This extends the average speedup that EAGLE-2 achieves over EAGLE by $44\%$, giving DDD an average speedup of $3.16$x.
📅 2024-08-30
Serving large language models (LLMs) in production can incur substantial costs, which has prompted recent advances in inference system optimizations. Today, these systems are evaluated against conventional latency and throughput metrics (eg. TTFT, TBT, Normalised Latency and TPOT). However, these metrics fail to fully capture the nuances of LLM inference, leading to an incomplete assessment of user-facing performance crucial for real-time applications such as chat and translation. In this paper, we first identify the pitfalls of current performance metrics in evaluating LLM inference systems. We then propose Etalon, a comprehensive performance evaluation framework that includes fluidity-index -- a novel metric designed to reflect the intricacies of the LLM inference process and its impact on real-time user experience. Finally, we evaluate various existing open-source platforms and model-as-a-service offerings using Etalon, discussing their strengths and weaknesses. Etalon is available at https://github.com/project-etalon/etalon.
📅 2024-08-29 | 💬 Under review -- v1 was an old draft with an unrevised abstract (oops)
We perform a critical examination of the scientific methodology behind contemporary large language model (LLM) research. For this we assess over 2,000 research works based on criteria typical of what is considered good research (e.g. presence of statistical tests and reproducibility) and cross-validate it with arguments that are at the centre of controversy (e.g., claims of emergent behaviour, the use of LLMs as evaluators). We find multiple trends, such as declines in claims of emergent behaviour and ethics disclaimers; the rise of LLMs as evaluators in spite of a lack of consensus from the community about their useability; and an increase of claims of LLM reasoning abilities, typically without leveraging human evaluation. This paper underscores the need for more scrutiny and rigour by and from this field to live up to the fundamentals of a responsible scientific method that is ethical, reproducible, systematic, and open to criticism.
📅 2024-08-29
Large language models (LLMs) are perceived by some as having the potential to revolutionize social science research, considering their training data includes information on human attitudes and behavior. If these attitudes are reflected in LLM output, LLM-generated "synthetic samples" could be used as a viable and efficient alternative to surveys of real humans. However, LLM-synthetic samples might exhibit coverage bias due to training data and fine-tuning processes being unrepresentative of diverse linguistic, social, political, and digital contexts. In this study, we examine to what extent LLM-based predictions of public opinion exhibit context-dependent biases by predicting voting behavior in the 2024 European Parliament elections using a state-of-the-art LLM. We prompt GPT-4-Turbo with anonymized individual-level background information, varying prompt content and language, ask the LLM to predict each person's voting behavior, and compare the weighted aggregates to the real election results. Our findings emphasize the limited applicability of LLM-synthetic samples to public opinion prediction. We show that (1) the LLM-based prediction of future voting behavior largely fails, (2) prediction accuracy is unequally distributed across national and linguistic contexts, and (3) improving LLM predictions requires detailed attitudinal information about individuals for prompting. In investigating the contextual differences of LLM-based predictions of public opinion, our research contributes to the understanding and mitigation of biases and inequalities in the development of LLMs and their applications in computational social science.
📅 2024-08-29 | 💬 Under Review on EMNLP 2024
The emergence of specialized large language models (LLMs) has shown promise in addressing complex tasks for materials science. Many LLMs, however, often struggle with distinct complexities of material science tasks, such as materials science computational tasks, and often rely heavily on outdated implicit knowledge, leading to inaccuracies and hallucinations. To address these challenges, we introduce HoneyComb, the first LLM-based agent system specifically designed for materials science. HoneyComb leverages a novel, high-quality materials science knowledge base (MatSciKB) and a sophisticated tool hub (ToolHub) to enhance its reasoning and computational capabilities tailored to materials science. MatSciKB is a curated, structured knowledge collection based on reliable literature, while ToolHub employs an Inductive Tool Construction method to generate, decompose, and refine API tools for materials science. Additionally, HoneyComb leverages a retriever module that adaptively selects the appropriate knowledge source or tools for specific tasks, thereby ensuring accuracy and relevance. Our results demonstrate that HoneyComb significantly outperforms baseline models across various tasks in materials science, effectively bridging the gap between current LLM capabilities and the specialized needs of this domain. Furthermore, our adaptable framework can be easily extended to other scientific domains, highlighting its potential for broad applicability in advancing scientific research and applications.
📅 2024-08-29
Generating social networks is essential for many applications, such as epidemic modeling and social simulations. Prior approaches either involve deep learning models, which require many observed networks for training, or stylized models, which are limited in their realism and flexibility. In contrast, LLMs offer the potential for zero-shot and flexible network generation. However, two key questions are: (1) are LLM's generated networks realistic, and (2) what are risks of bias, given the importance of demographics in forming social ties? To answer these questions, we develop three prompting methods for network generation and compare the generated networks to real social networks. We find that more realistic networks are generated with "local" methods, where the LLM constructs relations for one persona at a time, compared to "global" methods that construct the entire network at once. We also find that the generated networks match real networks on many characteristics, including density, clustering, community structure, and degree. However, we find that LLMs emphasize political homophily over all other types of homophily and overestimate political homophily relative to real-world measures.
📅 2024-08-29 | 💬 International Conference on Pattern Recognition (ICPR), 2024
Pretrained Large Language Models (LLMs) have demonstrated various reasoning capabilities through language-based prompts alone, particularly in unstructured task settings (tasks purely based on language semantics). However, LLMs often struggle with structured tasks, because of the inherent incompatibility of input representation. Reducing structured tasks to uni-dimensional language semantics often renders the problem trivial. Keeping the trade-off between LLM compatibility and structure complexity in mind, we design various graph reasoning tasks as a proxy to semi-structured tasks in this paper, in order to test the ability to navigate through representations beyond plain text in various LLMs. Particularly, we design 10 distinct problems of graph traversal, each representing increasing levels of complexity, and benchmark 5 different instruct-finetuned LLMs (GPT-4, GPT-3.5, Claude-2, Llama-2 and Palm-2) on the aforementioned tasks. Further, we analyse the performance of models across various settings such as varying sizes of graphs as well as different forms of k-shot prompting. We highlight various limitations, biases and properties of LLMs through this benchmarking process, such as an inverse relation to the average degrees of freedom of traversal per node in graphs, the overall negative impact of k-shot prompting on graph reasoning tasks, and a positive response bias which prevents LLMs from identifying the absence of a valid solution. Finally, we introduce a new prompting technique specially designed for graph traversal tasks (PathCompare), which demonstrates a notable increase in the performance of LLMs in comparison to standard prompting techniques such as Chain-of-Thought (CoT).
📅 2024-08-29 | 💬 Accepted to INTERSPEECH 2024
Harnessing pre-trained LLMs to improve ASR systems, particularly for low-resource languages, is now an emerging area of research. Existing methods range from using LLMs for ASR error correction to tightly coupled systems that replace the ASR decoder with the LLM. These approaches either increase decoding time or require expensive training of the cross-attention layers. We propose SALSA, which couples the decoder layers of the ASR to the LLM decoder, while synchronously advancing both decoders. Such coupling is performed with a simple projection of the last decoder state, and is thus significantly more training efficient than earlier approaches. A challenge of our proposed coupling is handling the mismatch between the tokenizers of the LLM and ASR systems. We handle this mismatch using cascading tokenization with respect to the LLM and ASR vocabularies. We evaluate SALSA on 8 low-resource languages in the FLEURS benchmark, yielding substantial WER reductions of up to 38%.
📅 2024-08-29 | 💬 20 pages
The generative large language models (LLMs) are increasingly being used for data augmentation tasks, where text samples are LLM-paraphrased and then used for classifier fine-tuning. However, a research that would confirm a clear cost-benefit advantage of LLMs over more established augmentation methods is largely missing. To study if (and when) is the LLM-based augmentation advantageous, we compared the effects of recent LLM augmentation methods with established ones on 6 datasets, 3 classifiers and 2 fine-tuning methods. We also varied the number of seeds and collected samples to better explore the downstream model accuracy space. Finally, we performed a cost-benefit analysis and show that LLM-based methods are worthy of deployment only when very small number of seeds is used. Moreover, in many cases, established methods lead to similar or better model accuracies.
📅 2024-08-29 | 💬 typo: 120K -> 12K vocabulary size
This paper introduces two multilingual systems, IKUN and IKUN-C, developed for the general machine translation task in WMT24. IKUN and IKUN-C represent an open system and a constrained system, respectively, built on Llama-3-8b and Mistral-7B-v0.3. Both systems are designed to handle all 11 language directions using a single model. According to automatic evaluation metrics, IKUN-C achieved 6 first-place and 3 second-place finishes among all constrained systems, while IKUN secured 1 first-place and 2 second-place finishes across both open and constrained systems. These encouraging results suggest that large language models (LLMs) are nearing the level of proficiency required for effective multilingual machine translation. The systems are based on a two-stage approach: first, continuous pre-training on monolingual data in 10 languages, followed by fine-tuning on high-quality parallel data for 11 language directions. The primary difference between IKUN and IKUN-C lies in their monolingual pre-training strategy. IKUN-C is pre-trained using constrained monolingual data, whereas IKUN leverages monolingual data from the OSCAR dataset. In the second phase, both systems are fine-tuned on parallel data sourced from NTREX, Flores, and WMT16-23 for all 11 language pairs.
📅 2024-08-29
Improving the alignment of Large Language Models (LLMs) with respect to the cultural values that they encode has become an increasingly important topic. In this work, we study whether we can exploit existing knowledge about cultural values at inference time to adjust model responses to cultural value probes. We present a simple and inexpensive method that uses a combination of in-context learning (ICL) and human survey data, and show that we can improve the alignment to cultural values across 5 models that include both English-centric and multilingual LLMs. Importantly, we show that our method could prove useful in test languages other than English and can improve alignment to the cultural values that correspond to a range of culturally diverse countries.
📅 2024-08-29 | 💬 accepted to SLT 2024
Speech large language models (speech-LLMs) integrate speech and text-based foundation models to provide a unified framework for handling a wide range of downstream tasks. In this paper, we introduce WHISMA, a speech-LLM tailored for spoken language understanding (SLU) that demonstrates robust performance in various zero-shot settings. WHISMA combines the speech encoder from Whisper with the Llama-3 LLM, and is fine-tuned in a parameter-efficient manner on a comprehensive collection of SLU-related datasets. Our experiments show that WHISMA significantly improves the zero-shot slot filling performance on the SLURP benchmark, achieving a relative gain of 26.6% compared to the current state-of-the-art model. Furthermore, to evaluate WHISMA's generalisation capabilities to unseen domains, we develop a new task-agnostic benchmark named SLU-GLUE. The evaluation results indicate that WHISMA outperforms an existing speech-LLM (Qwen-Audio) with a relative gain of 33.0%.
📅 2024-08-29 | 💬 Accepted to ESORICS 2024
The significant increase in software production driven by automation and faster development lifecycles has resulted in a corresponding surge in software vulnerabilities. In parallel, the evolving landscape of software vulnerability detection, highlighting the shift from traditional methods to machine learning and large language models (LLMs), provides massive opportunities at the cost of resource-demanding computations. This paper thoroughly analyses LLMs' capabilities in detecting vulnerabilities within source code by testing models beyond their usual applications to study their potential in cybersecurity tasks. We evaluate the performance of six open-source models that are specifically trained for vulnerability detection against six general-purpose LLMs, three of which were further fine-tuned on a dataset that we compiled. Our dataset, alongside five state-of-the-art benchmark datasets, were used to create a pipeline to leverage a binary classification task, namely classifying code into vulnerable and non-vulnerable. The findings highlight significant variations in classification accuracy across benchmarks, revealing the critical influence of fine-tuning in enhancing the detection capabilities of small LLMs over their larger counterparts, yet only in the specific scenarios in which they were trained. Further experiments and analysis also underscore the issues with current benchmark datasets, particularly around mislabeling and their impact on model training and performance, which raises concerns about the current state of practice. We also discuss the road ahead in the field suggesting strategies for improved model training and dataset curation.
📅 2024-08-29 | 💬 ACL 2024
Psychological measurement is essential for mental health, self-understanding, and personal development. Traditional methods, such as self-report scales and psychologist interviews, often face challenges with engagement and accessibility. While game-based and LLM-based tools have been explored to improve user interest and automate assessment, they struggle to balance engagement with generalizability. In this work, we propose PsychoGAT (Psychological Game AgenTs) to achieve a generic gamification of psychological assessment. The main insight is that powerful LLMs can function both as adept psychologists and innovative game designers. By incorporating LLM agents into designated roles and carefully managing their interactions, PsychoGAT can transform any standardized scales into personalized and engaging interactive fiction games. To validate the proposed method, we conduct psychometric evaluations to assess its effectiveness and employ human evaluators to examine the generated content across various psychological constructs, including depression, cognitive distortions, and personality traits. Results demonstrate that PsychoGAT serves as an effective assessment tool, achieving statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity. Moreover, human evaluations confirm PsychoGAT's enhancements in content coherence, interactivity, interest, immersion, and satisfaction.
📅 2024-08-29 | 💬 28 pages, 18 figures, 6 tables
The widespread adoption of cloud-based proprietary large language models (LLMs) has introduced significant challenges, including operational dependencies, privacy concerns, and the necessity of continuous internet connectivity. In this work, we introduce an LLMOps pipeline, "LlamaDuo", for the seamless migration of knowledge and abilities from service-oriented LLMs to smaller, locally manageable models. This pipeline is crucial for ensuring service continuity in the presence of operational failures, strict privacy policies, or offline requirements. Our LlamaDuo involves fine-tuning a small language model against the service LLM using a synthetic dataset generated by the latter. If the performance of the fine-tuned model falls short of expectations, it is enhanced by further fine-tuning with additional similar data created by the service LLM. This iterative process guarantees that the smaller model can eventually match or even surpass the service LLM's capabilities in specific downstream tasks, offering a practical and scalable solution for managing AI deployments in constrained environments. Extensive experiments with leading edge LLMs are conducted to demonstrate the effectiveness, adaptability, and affordability of LlamaDuo across various downstream tasks. Our pipeline implementation is available at https://github.com/deep-diver/llamaduo.
📅 2024-08-29 | 💬 in review for CSCW 24
Meetings play a critical infrastructural role in the coordination of work. In recent years, due to shift to hybrid and remote work, more meetings are moving to online Computer Mediated Spaces. This has led to new problems (e.g. more time spent in less engaging meetings) and new opportunities (e.g. automated transcription/captioning and recap support). Recent advances in large language models (LLMs) for dialog summarization have the potential to improve the experience of meetings by reducing individuals' meeting load and increasing the clarity and alignment of meeting outputs. Despite this potential, they face technological limitation due to long transcripts and inability to capture diverse recap needs based on user's context. To address these gaps, we design, implement and evaluate in-context a meeting recap system. We first conceptualize two salient recap representations -- important highlights, and a structured, hierarchical minutes view. We develop a system to operationalize the representations with dialogue summarization as its building blocks. Finally, we evaluate the effectiveness of the system with seven users in the context of their work meetings. Our findings show promise in using LLM-based dialogue summarization for meeting recap and the need for both representations in different contexts. However, we find that LLM-based recap still lacks an understanding of whats personally relevant to participants, can miss important details, and mis-attributions can be detrimental to group dynamics. We identify collaboration opportunities such as a shared recap document that a high quality recap enables. We report on implications for designing AI systems to partner with users to learn and improve from natural interactions to overcome the limitations related to personal relevance and summarization quality.
📅 2024-08-28 | 💬 VLDB'24-DATAI
Detecting semantic types of columns in data lake tables is an important application. A key bottleneck in semantic type detection is the availability of human annotation due to the inherent complexity of data lakes. In this paper, we propose using programmatic weak supervision to assist in annotating the training data for semantic type detection by leveraging labeling functions. One challenge in this process is the difficulty of manually writing labeling functions due to the large volume and low quality of the data lake table datasets. To address this issue, we explore employing Large Language Models (LLMs) for labeling function generation and introduce several prompt engineering strategies for this purpose. We conduct experiments on real-world web table datasets. Based on the initial results, we perform extensive analysis and provide empirical insights and future directions for researchers in this field.
📅 2024-08-28 | 💬 Fixed Typo in title, Fixed typo in author name, fixed typo in amdhal's law para
The advent of 1-bit large language models (LLMs) has attracted considerable attention and opened up new research opportunities. However, 1-bit LLMs only improve a fraction of models by applying extreme quantization to the projection layers while leaving attention heads unchanged. Therefore, to avoid fundamentally wrong choices of goals in future research, it is crucial to understand the actual improvements in computation and memory usage that 1-bit LLMs can deliver. In this work, we present an adaptation of Amdahl's Law tailored for the 1-bit LLM context, which illustrates how partial improvements in 1-bit LLMs impact overall model performance. Through extensive experiments, we uncover key nuances across different model architectures and hardware configurations, offering a roadmap for future research in the era of 1-bit LLMs.
📅 2024-08-28
Recent advances in large language models (LLMs) like GPT-3.5 and GPT-4 promise automation with better results and less programming, opening up new opportunities for text analysis in political science. In this study, we evaluate LLMs on three original coding tasks involving typical complexities encountered in political science settings: a non-English language, legal and political jargon, and complex labels based on abstract constructs. Along the paper, we propose a practical workflow to optimize the choice of the model and the prompt. We find that the best prompting strategy consists of providing the LLMs with a detailed codebook, as the one provided to human coders. In this setting, an LLM can be as good as or possibly better than a human annotator while being much faster, considerably cheaper, and much easier to scale to large amounts of text. We also provide a comparison of GPT and popular open-source LLMs, discussing the trade-offs in the model's choice. Our software allows LLMs to be easily used as annotators and is publicly available: https://github.com/lorelupo/pappa.
📅 2024-08-28
Human coders are biased. We test similar biases in Large Language Models (LLMs) as annotators. By replicating an experiment run by Ennser-Jedenastik and Meyer (2018), we find evidence that LLMs use political information, and specifically party cues, to judge political statements. Not only do LLMs use relevant information to contextualize whether a statement is positive, negative, or neutral based on the party cue, they also reflect the biases of the human-generated data upon which they have been trained. We also find that unlike humans, who are only biased when faced with statements from extreme parties, LLMs exhibit significant bias even when prompted with statements from center-left and center-right parties. The implications of our findings are discussed in the conclusion.
📅 2024-08-28
The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available.
📅 2024-08-28
In Large Language Model (LLM) inference, the output length of an LLM request is typically regarded as not known a priori. Consequently, most LLM serving systems employ a simple First-come-first-serve (FCFS) scheduling strategy, leading to Head-Of-Line (HOL) blocking and reduced throughput and service quality. In this paper, we reexamine this assumption -- we show that, although predicting the exact generation length of each request is infeasible, it is possible to predict the relative ranks of output lengths in a batch of requests, using learning to rank. The ranking information offers valuable guidance for scheduling requests. Building on this insight, we develop a novel scheduler for LLM inference and serving that can approximate the shortest-job-first (SJF) schedule better than existing approaches. We integrate this scheduler with the state-of-the-art LLM serving system and show significant performance improvement in several important applications: 2.8x lower latency in chatbot serving and 6.5x higher throughput in synthetic data generation. Our code is available at https://github.com/hao-ai-lab/vllm-ltr.git
📅 2024-08-28
Virtual counselors powered by large language models (LLMs) aim to create interactive support systems that effectively assist clients struggling with mental health challenges. To replicate counselor-client conversations, researchers have built an online mental health platform that allows professional counselors to provide clients with text-based counseling services for about an hour per session. Notwithstanding its effectiveness, challenges exist as human annotation is time-consuming, cost-intensive, privacy-protected, and not scalable. To address this issue and investigate the applicability of LLMs in psychological counseling conversation simulation, we propose a framework that employs two LLMs via role-playing for simulating counselor-client interactions. Our framework involves two LLMs, one acting as a client equipped with a specific and real-life user profile and the other playing the role of an experienced counselor, generating professional responses using integrative therapy techniques. We implement both the counselor and the client by zero-shot prompting the GPT-4 model. In order to assess the effectiveness of LLMs in simulating counselor-client interactions and understand the disparities between LLM- and human-generated conversations, we evaluate the synthetic data from various perspectives. We begin by assessing the client's performance through automatic evaluations. Next, we analyze and compare the disparities between dialogues generated by the LLM and those generated by professional counselors. Furthermore, we conduct extensive experiments to thoroughly examine the performance of our LLM-based counselor trained with synthetic interactive dialogues by benchmarking against state-of-the-art models for mental health.
📅 2024-08-28
Recent advancements in large language models (LLMs) have enabled understanding webpage contexts, product details, and human instructions. Utilizing LLMs as the foundational architecture for either reward models or policies in reinforcement learning has gained popularity -- a notable achievement is the success of InstructGPT. RL algorithms have been instrumental in maximizing long-term customer satisfaction and avoiding short-term, myopic goals in industrial recommender systems, which often rely on deep learning models to predict immediate clicks or purchases. In this project, several RL methods are implemented and evaluated using the WebShop benchmark environment, data, simulator, and pre-trained model checkpoints. The goal is to train an RL agent to maximize the purchase reward given a detailed human instruction describing a desired product. The RL agents are developed by fine-tuning a pre-trained BERT model with various objectives, learning from preferences without a reward model, and employing contemporary training techniques such as Proximal Policy Optimization (PPO) as used in InstructGPT, and Direct Preference Optimization (DPO). This report also evaluates the RL agents trained using generative trajectories. Evaluations were conducted using Thompson sampling in the WebShop simulator environment. The simulated online experiments demonstrate that agents trained on generated trajectories exhibited comparable task performance to those trained using human trajectories. This has demonstrated an example of an extremely low-cost data-efficient way of training reinforcement learning agents. Also, with limited training time (<2hours), without utilizing any images, a DPO agent achieved a 19% success rate after approximately 3000 steps or 30 minutes of training on T4 GPUs, compared to a PPO agent, which reached a 15% success rate.
📅 2024-08-28 | 💬 16 pages, Codes:https://github.com/CircleRadon/TokenPacker
The visual projector serves as an essential bridge between the visual encoder and the Large Language Model (LLM) in a Multimodal LLM (MLLM). Typically, MLLMs adopt a simple MLP to preserve all visual contexts via one-to-one transformation. However, the visual tokens are redundant and can be considerably increased when dealing with high-resolution images, impairing the efficiency of MLLMs significantly. Some recent works have introduced resampler or abstractor to reduce the number of resulting visual tokens. Unfortunately, they fail to capture finer details and undermine the visual reasoning capabilities of MLLMs. In this work, we propose a novel visual projector, which adopts a coarse-to-fine scheme to inject the enriched characteristics to generate the condensed visual tokens. In specific, we first interpolate the visual features as a low-resolution point query, providing the overall visual representation as the foundation. Then, we introduce a region-to-point injection module that utilizes high-resolution, multi-level region-based cues as fine-grained reference keys and values, allowing them to be fully absorbed within the corresponding local context region. This step effectively updates the coarse point query, transforming it into an enriched one for the subsequent LLM reasoning. Extensive experiments demonstrate that our approach compresses the visual tokens by 75%~89%, while achieves comparable or even better performance across diverse benchmarks with significantly higher efficiency. The source codes can be found at https://github.com/CircleRadon/TokenPacker.
📅 2024-08-28
Over the past two years, the use of large language models (LLMs) has advanced rapidly. While these LLMs offer considerable convenience, they also raise security concerns, as LLMs are vulnerable to adversarial attacks by some well-designed textual perturbations. In this paper, we introduce a novel defense technique named Large LAnguage MOdel Sentinel (LLAMOS), which is designed to enhance the adversarial robustness of LLMs by purifying the adversarial textual examples before feeding them into the target LLM. Our method comprises two main components: a) Agent instruction, which can simulate a new agent for adversarial defense, altering minimal characters to maintain the original meaning of the sentence while defending against attacks; b) Defense guidance, which provides strategies for modifying clean or adversarial examples to ensure effective defense and accurate outputs from the target LLMs. Remarkably, the defense agent demonstrates robust defensive capabilities even without learning from adversarial examples. Additionally, we conduct an intriguing adversarial experiment where we develop two agents, one for defense and one for attack, and engage them in mutual confrontation. During the adversarial interactions, neither agent completely beat the other. Extensive experiments on both open-source and closed-source LLMs demonstrate that our method effectively defends against adversarial attacks, thereby enhancing adversarial robustness.
📅 2024-08-28
The advent of large language models (LLMs) has greatly facilitated code generation, but ensuring the functional correctness of generated code remains a challenge. Traditional validation methods are often time-consuming, error-prone, and impractical for large volumes of code. We introduce CodeSift, a novel framework that leverages LLMs as the first-line filter of code validation without the need for execution, reference code, or human feedback, thereby reducing the validation effort. We assess the effectiveness of our method across three diverse datasets encompassing two programming languages. Our results indicate that CodeSift outperforms state-of-the-art code evaluation methods. Internal testing conducted with subject matter experts reveals that the output generated by CodeSift is in line with human preference, reinforcing its effectiveness as a dependable automated code validation tool.
📅 2024-08-28
Large language models (LLMs) have demonstrated the world with the sparks of artificial general intelligence (AGI). One opinion, especially from some startups working on LLMs, argues that an LLM with nearly unlimited context length can realize AGI. However, they might be too optimistic about the long-context capability of (existing) LLMs -- (1) Recent literature has shown that their effective context length is significantly smaller than their claimed context length; and (2) Our reasoning-in-a-haystack experiments further demonstrate that simultaneously finding the relevant information from a long context and conducting (simple) reasoning is nearly impossible. In this paper, we envision a pathway from LLMs to AGI through the integration of \emph{memory}. We believe that AGI should be a system where LLMs serve as core processors. In addition to raw data, the memory in this system would store a large number of important conclusions derived from reasoning processes. Compared with retrieval-augmented generation (RAG) that merely processing raw data, this approach not only connects semantically related information closer, but also simplifies complex inferences at the time of querying. As an intermediate stage, the memory will likely be in the form of natural language descriptions, which can be directly consumed by users too. Ultimately, every agent/person should have its own large personal model, a deep neural network model (thus \emph{AI-native}) that parameterizes and compresses all types of memory, even the ones cannot be described by natural languages. Finally, we discuss the significant potential of AI-native memory as the transformative infrastructure for (proactive) engagement, personalization, distribution, and social in the AGI era, as well as the incurred privacy and security challenges with preliminary solutions.
📅 2024-08-28 | 💬 24 pages
As large language models (LLMs) continue to advance, aligning these models with human preferences has emerged as a critical challenge. Traditional alignment methods, relying on human or LLM annotated datasets, are limited by their resource-intensive nature, inherent subjectivity, and the risk of feedback loops that amplify model biases. To overcome these limitations, we introduce WildFeedback, a novel framework that leverages real-time, in-situ user interactions to create preference datasets that more accurately reflect authentic human values. WildFeedback operates through a three-step process: feedback signal identification, preference data construction, and user-guided evaluation. We applied this framework to a large corpus of user-LLM conversations, resulting in a rich preference dataset that reflects genuine user preferences. This dataset captures the nuances of user preferences by identifying and classifying feedback signals within natural conversations, thereby enabling the construction of more representative and context-sensitive alignment data. Our extensive experiments demonstrate that LLMs fine-tuned on WildFeedback exhibit significantly improved alignment with user preferences, as evidenced by both traditional benchmarks and our proposed user-guided evaluation. By incorporating real-time feedback from actual users, WildFeedback addresses the scalability, subjectivity, and bias challenges that plague existing approaches, marking a significant step toward developing LLMs that are more responsive to the diverse and evolving needs of their users. In summary, WildFeedback offers a robust, scalable solution for aligning LLMs with true human values, setting a new standard for the development and evaluation of user-centric language models.
📅 2024-08-27 | 💬 Accepted for presentation in the research track at the IEEE International Conference on Source Code Analysis & Manipulation (SCAM 2025)
Inline comments in the source code facilitate easy comprehension, reusability, and enhanced readability. However, code snippets in answers on Q&A sites like Stack Overflow (SO) often lack comments because answerers volunteer their time and often skip comments or explanations due to time constraints. Existing studies show that these online code examples are difficult to read and understand, making it difficult for developers (especially novices) to use them correctly and leading to misuse. Given these challenges, we introduced AUTOGENICS, a tool designed to integrate with SO to generate effective inline comments for code snippets in SO answers exploiting large language models (LLMs). Our contributions are threefold. First, we randomly select 400 answer code snippets from SO and generate inline comments for them using LLMs. We then manually evaluate these comments' effectiveness using four key metrics: accuracy, adequacy, conciseness, and usefulness. Overall, LLMs demonstrate promising effectiveness in generating inline comments for SO answer code snippets. Second, we surveyed 14 active SO users to perceive the effectiveness of these inline comments. The survey results are consistent with our previous manual evaluation. However, according to our evaluation, LLMs-generated comments are less effective for shorter code snippets and sometimes produce noisy comments. Third, to address the gaps, we introduced AUTOGENICS, which extracts additional context from question texts and generates context-aware inline comments. It also optimizes comments by removing noise (e.g., comments in import statements and variable declarations). We evaluate the effectiveness of AUTOGENICS-generated comments using the same four metrics that outperform those of standard LLMs. AUTOGENICS might (a) enhance code comprehension, (b) save time, and improve developers' ability to learn and reuse code more accurately.
📅 2024-08-27 | 💬 First Authors: Ritik Sachin Parkar and Jaehyung Kim | Second Author: Jong Inn Park | PI: Dongyeop Kang
Instruction tuning benefits from large and diverse datasets; however, creating such datasets involves a high cost of human labeling. While synthetic datasets generated by large language models (LLMs) have partly solved this issue, they often contain low-quality data. One effective solution is selectively annotating unlabelled instructions, especially given the relative ease of acquiring unlabeled instructions or texts from various sources. However, how to select unlabelled instructions is not well-explored, especially in the context of LLMs. Therefore, we introduce SelectLLM, an alternative framework that leverages the capabilities of LLMs to select unlabeled instructions more effectively. Specifically, SelectLLM consists of two key steps: Coreset-based clustering of unlabelled instructions for enlarging diversity and prompting of LLM to identify the most beneficial instructions within each cluster. We evaluate SelectLLM on AlpacaEval2 and MT-Bench, demonstrating its ability to outperform state-of-the-art methods like Alpagasus. In addition, we compare the performance and compatibility of SelectLLM with various LLMs, such as ChatGPT, LLaMA-3.1-70B, and Gemma-2-27b. SelectLLM's adaptability and robustness are further evidenced by its ability to maintain high performance across both human and synthetic datasets. All code and data are publicly available (https://github.com/minnesotanlp/select-llm).
📅 2024-08-27
Large language models (LLMs) have shown high agreement with human raters across a variety of tasks, demonstrating potential to ease the challenges of human data collection. In computational social science (CSS), researchers are increasingly leveraging LLM annotations to complement slow and expensive human annotations. Still, guidelines for collecting and using LLM annotations, without compromising the validity of downstream conclusions, remain limited. We introduce Confidence-Driven Inference: a method that combines LLM annotations and LLM confidence indicators to strategically select which human annotations should be collected, with the goal of producing accurate statistical estimates and provably valid confidence intervals while reducing the number of human annotations needed. Our approach comes with safeguards against LLM annotations of poor quality, guaranteeing that the conclusions will be both valid and no less accurate than if we only relied on human annotations. We demonstrate the effectiveness of Confidence-Driven Inference over baselines in statistical estimation tasks across three CSS settings--text politeness, stance, and bias--reducing the needed number of human annotations by over 25% in each. Although we use CSS settings for demonstration, Confidence-Driven Inference can be used to estimate most standard quantities across a broad range of NLP problems.
📅 2024-08-27 | 💬 Presented as a poster in the 2nd Workshop on Causal Inference and Machine Learning in Practice at KDD 2024
Causality is vital for understanding true cause-and-effect relationships between variables within predictive models, rather than relying on mere correlations, making it highly relevant in the field of Explainable AI. In an automated decision-making scenario, causal inference methods can analyze the underlying data-generation process, enabling explanations of a model's decision by manipulating features and creating counterfactual examples. These counterfactuals explore hypothetical scenarios where a minimal number of factors are altered, providing end-users with valuable information on how to change their situation. However, interpreting a set of multiple counterfactuals can be challenging for end-users who are not used to analyzing raw data records. In our work, we propose a novel multi-step pipeline that uses counterfactuals to generate natural language explanations of actions that will lead to a change in outcome in classifiers of tabular data using LLMs. This pipeline is designed to guide the LLM through smaller tasks that mimic human reasoning when explaining a decision based on counterfactual cases. We conducted various experiments using a public dataset and proposed a method of closed-loop evaluation to assess the coherence of the final explanation with the counterfactuals, as well as the quality of the content. Results are promising, although further experiments with other datasets and human evaluations should be carried out.
📅 2024-08-27
Parameter Efficient Fine-Tuning (PEFT) methods have gained popularity and democratized the usage of Large Language Models (LLMs). Recent studies have shown that a small subset of weights significantly impacts performance. Based on this observation, we introduce a novel PEFT method, called Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW). Our method updates only salient columns, while injecting Gaussian noise into non-salient ones. To identify these columns, we developeda generalized sensitivity metric that extends and unifies metrics from previous studies. Experiments with LLaMA models demonstrate that GIFT-SW outperforms full fine-tuning and modern PEFT methods under the same computational budget. Moreover, GIFT-SW offers practical advantages to recover performance of models subjected to mixed-precision quantization with keeping salient weights in full precision.
📅 2024-08-27 | 💬 Code, scripts and data necessary to reproduce this work are available at https://github.com/PyRepair/maniple
Recent research has shown that incorporating bug-related facts, such as stack traces and GitHub issues, into prompts enhances the bug-fixing capabilities of large language models (LLMs). Considering the ever-increasing context window of these models, a critical question arises: what and how many facts should be included in prompts to maximise the chance of correctly fixing bugs? To answer this question, we conducted a large-scale study, employing over 19K prompts featuring various combinations of seven diverse facts to rectify 314 bugs from open-source Python projects within the BugsInPy benchmark. Our findings revealed that each fact, ranging from simple syntactic details like code context to semantic information previously unexplored in the context of LLMs such as angelic values, is beneficial. Specifically, each fact aids in fixing some bugs that would remain unresolved or only be fixed with a low success rate without it. Importantly, we discovered that the effectiveness of program repair prompts is non-monotonic over the number of used facts; using too many facts leads to subpar outcomes. These insights led us to define the fact selection problem: determining the optimal set of facts for inclusion in a prompt to maximise LLM's performance on a given task instance. We found that there is no one-size-fits-all set of facts for bug repair. Therefore, we developed a basic statistical model, named Maniple, which selects facts specific to a given bug to include in the prompt. This model significantly surpasses the performance of the best generic fact set. To underscore the significance of the fact selection problem, we benchmarked Maniple against the state-of-the-art zero-shot, non-conversational LLM-based bug repair methods. On our testing dataset of 157 bugs, Maniple repairs 88 bugs, 17% above the best configuration.
📅 2024-08-27 | 💬 11 pages, 13 figures
Diffusion models have exhibited substantial success in text-to-image generation. However, they often encounter challenges when dealing with complex and dense prompts involving multiple objects, attribute binding, and long descriptions. In this paper, we propose a novel framework called \textbf{LLM4GEN}, which enhances the semantic understanding of text-to-image diffusion models by leveraging the representation of Large Language Models (LLMs). It can be seamlessly incorporated into various diffusion models as a plug-and-play component. A specially designed Cross-Adapter Module (CAM) integrates the original text features of text-to-image models with LLM features, thereby enhancing text-to-image generation. Additionally, to facilitate and correct entity-attribute relationships in text prompts, we develop an entity-guided regularization loss to further improve generation performance. We also introduce DensePrompts, which contains $7,000$ dense prompts to provide a comprehensive evaluation for the text-to-image generation task. Experiments indicate that LLM4GEN significantly improves the semantic alignment of SD1.5 and SDXL, demonstrating increases of 9.69\% and 12.90\% in color on T2I-CompBench, respectively. Moreover, it surpasses existing models in terms of sample quality, image-text alignment, and human evaluation.
📅 2024-08-27
With the emergence of large language models (LLMs) and their ability to perform a variety of tasks, their application in recommender systems (RecSys) has shown promise. However, we are facing significant challenges when deploying LLMs into RecSys, such as limited prompt length, unstructured item information, and un-constrained generation of recommendations, leading to sub-optimal performance. To address these issues, we propose a novel method using a taxonomy dictionary. This method provides a systematic framework for categorizing and organizing items, improving the clarity and structure of item information. By incorporating the taxonomy dictionary into LLM prompts, we achieve efficient token utilization and controlled feature generation, leading to more accurate and contextually relevant recommendations. Our Taxonomy-guided Recommendation (TaxRec) approach features a two-step process: one-time taxonomy categorization and LLM-based recommendation, enabling zero-shot recommendations without the need for domain-specific fine-tuning. Experimental results demonstrate TaxRec significantly enhances recommendation quality compared to traditional zero-shot approaches, showcasing its efficacy as personal recommender with LLMs. Code is available at https://github.com/yueqingliang1/TaxRec.
📅 2024-08-27 | 💬 Submitted to ICASSP
Spatial reasoning in Large Language Models (LLMs) is the foundation for embodied intelligence. However, even in simple maze environments, LLMs still encounter challenges in long-term path-planning, primarily influenced by their spatial hallucination and context inconsistency hallucination by long-term reasoning. To address this challenge, this study proposes an innovative model, Spatial-to-Relational Transformation and Curriculum Q-Learning (S2RCQL). To address the spatial hallucination of LLMs, we propose the Spatial-to-Relational approach, which transforms spatial prompts into entity relations and paths representing entity relation chains. This approach fully taps the potential of LLMs in terms of sequential thinking. As a result, we design a path-planning algorithm based on Q-learning to mitigate the context inconsistency hallucination, which enhances the reasoning ability of LLMs. Using the Q-value of state-action as auxiliary information for prompts, we correct the hallucinations of LLMs, thereby guiding LLMs to learn the optimal path. Finally, we propose a reverse curriculum learning technique based on LLMs to further mitigate the context inconsistency hallucination. LLMs can rapidly accumulate successful experiences by reducing task difficulty and leveraging them to tackle more complex tasks. We performed comprehensive experiments based on Baidu's self-developed LLM: ERNIE-Bot 4.0. The results showed that our S2RCQL achieved a 23%--40% improvement in both success and optimality rates compared with advanced prompt engineering.
📅 2024-08-27 | 💬 Accepted in AAAI Spring Symposium 2024
Large Language Models (LLMs) are prone to inheriting and amplifying societal biases embedded within their training data, potentially reinforcing harmful stereotypes related to gender, occupation, and other sensitive categories. This issue becomes particularly problematic as biased LLMs can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities across various domains, such as recruitment, online content moderation, or even the criminal justice system. Although prior research has focused on detecting bias in LLMs using specialized datasets designed to highlight intrinsic biases, there has been a notable lack of investigation into how these findings correlate with authoritative datasets, such as those from the U.S. National Bureau of Labor Statistics (NBLS). To address this gap, we conduct empirical research that evaluates LLMs in a ``bias-out-of-the-box" setting, analyzing how the generated outputs compare with the distributions found in NBLS data. Furthermore, we propose a straightforward yet effective debiasing mechanism that directly incorporates NBLS instances to mitigate bias within LLMs. Our study spans seven different LLMs, including instructable, base, and mixture-of-expert models, and reveals significant levels of bias that are often overlooked by existing bias detection techniques. Importantly, our debiasing method, which does not rely on external datasets, demonstrates a substantial reduction in bias scores, highlighting the efficacy of our approach in creating fairer and more reliable LLMs.
📅 2024-08-26
In search settings, calibrating the scores during the ranking process to quantities such as click-through rates or relevance levels enhances a system's usefulness and trustworthiness for downstream users. While previous research has improved this notion of calibration for low complexity learning-to-rank models, the larger data demands and parameter count specific to modern neural text rankers produce unique obstacles that hamper the efficacy of methods intended for the learning-to-rank setting. This paper proposes exploiting large language models (LLMs) to provide relevance and uncertainty signals for these neural text rankers to produce scale-calibrated scores through Monte Carlo sampling of natural language explanations (NLEs). Our approach transforms the neural ranking task from ranking textual query-document pairs to ranking corresponding synthesized NLEs. Comprehensive experiments on two popular document ranking datasets show that the NLE-based calibration approach consistently outperforms past calibration methods and LLM-based methods for ranking, calibration, and query performance prediction tasks.
📅 2024-08-26 | 💬 12 pages, 10 figures, IEEE transaction on consumer electronics
A Digital Twin (DT) replicates objects, processes, or systems for real-time monitoring, simulation, and predictive maintenance. Recent advancements like Large Language Models (LLMs) have revolutionized traditional AI systems and offer immense potential when combined with DT in industrial applications such as railway defect inspection. Traditionally, this inspection requires extensive defect samples to identify patterns, but limited samples can lead to overfitting and poor performance on unseen defects. Integrating pre-trained LLMs into DT addresses this challenge by reducing the need for vast sample data. We introduce DefectTwin, which employs a multimodal and multi-model (M^2) LLM-based AI pipeline to analyze both seen and unseen visual defects in railways. This application enables a railway agent to perform expert-level defect analysis using consumer electronics (e.g., tablets). A multimodal processor ensures responses are in a consumable format, while an instant user feedback mechanism (instaUF) enhances Quality-of-Experience (QoE). The proposed M^2 LLM outperforms existing models, achieving high precision (0.76-0.93) across multimodal inputs including text, images, and videos of pre-trained defects, and demonstrates superior zero-shot generalizability for unseen defects. We also evaluate the latency, token count, and usefulness of responses generated by DefectTwin on consumer devices. To our knowledge, DefectTwin is the first LLM-integrated DT designed for railway defect inspection.
📅 2024-08-26 | 💬 ICML 2024
As the demand for long-context large language models (LLMs) increases, models with context windows of up to 128K or 1M tokens are becoming increasingly prevalent. However, long-context LLM inference is challenging since the inference speed decreases significantly as the sequence length grows. This slowdown is primarily caused by loading a large KV cache during self-attention. Previous works have shown that a small portion of critical tokens will dominate the attention outcomes. However, we observe the criticality of a token highly depends on the query. To this end, we propose Quest, a query-aware KV cache selection algorithm. Quest keeps track of the minimal and maximal Key values in KV cache pages and estimates the criticality of a given page using Query vectors. By only loading the Top-K critical KV cache pages for attention, Quest significantly speeds up self-attention without sacrificing accuracy. We show that Quest can achieve up to 2.23x self-attention speedup, which reduces inference latency by 7.03x while performing well on tasks with long dependencies with negligible accuracy loss. Code is available at http://github.com/mit-han-lab/Quest .
📅 2024-08-26
[Context] Large Language Models (LLMs) have shown good performance in several software development-related tasks such as program repair, documentation, code refactoring, debugging, and testing. Adapters are specialized, small modules designed for parameter efficient fine-tuning of LLMs for specific tasks, domains, or applications without requiring extensive retraining of the entire model. These adapters offer a more efficient way to customize LLMs for particular needs, leveraging the pre-existing capabilities of the large model. Merging LLMs and adapters has shown promising results for various natural language domains and tasks, enabling the use of the learned models and adapters without additional training for a new task. [Objective] This research proposes continual merging and empirically studies the capabilities of merged adapters in Code LLMs, specially for the Automated Program Repair (APR) task. The goal is to gain insights into whether and how merging task-specific adapters can affect the performance of APR. [Method] In our framework, MergeRepair, we plan to merge multiple task-specific adapters using three different merging methods and evaluate the performance of the merged adapter for the APR task. Particularly, we will employ two main merging scenarios for all three techniques, (i) merging using equal-weight averaging applied on parameters of different adapters, where all adapters are of equal importance; and (ii) our proposed approach, continual merging, in which we sequentially merge the task-specific adapters and the order and weight of merged adapters matter. By exploratory study of merging techniques, we will investigate the improvement and generalizability of merged adapters for APR. Through continual merging, we will explore the capability of merged adapters and the effect of task order, as it occurs in real-world software projects.
📅 2024-08-26 | 💬 Code available at https://github.com/MNoorFawi/curlora
This paper introduces CURLoRA, a novel approach to fine-tuning large language models (LLMs) that leverages CUR matrix decomposition in the context of Low-Rank Adaptation (LoRA). Our method addresses two critical challenges in LLM fine-tuning: mitigating catastrophic forgetting during continual learning and reducing the number of trainable parameters. We propose a unique modification to the CUR decomposition process, utilizing inverted probabilities for column and row selection which acts as an implicit regularization, and initializing the $U$ matrix as a zero matrix, and only fine-tuning it. We demonstrate through experiments on multiple datasets that CURLoRA outperforms standard LoRA in mitigating catastrophic forgetting. It maintains model stability and performance across tasks while significantly reducing the number of trainable parameters. Our results show that CURLoRA achieves very good and stable task accuracy while maintaining base model's perplexity scores fixed compared to LoRA upon continual fine-tuning, particularly in scenarios with limited data.
📅 2024-08-26 | 💬 Paper published at the Deployable AI (DAI) workshop at AAAI-2024
Spatio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management. However, existing methods are limited by their ability to handle large, complex datasets. To overcome this limitation, we introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods. We augment traditional methods with dynamic prompting and a grouped-query, multi-head attention mechanism to more effectively capture both intra-series and inter-series dependencies in evolving nonlinear time series data. In addition, we facilitate on-premises customization by fine-tuning smaller open-source LMs for time series trend analysis utilizing descriptions generated by open-source large LMs on consumer-grade hardware using Low-Rank Adaptation with Activation Memory Reduction (LoRA-AMR) technique to reduce computational overhead and activation storage memory demands while preserving inference latency. We combine language model processing for time series trend analysis with traditional time series representation learning method for cross-modal integration, achieving robust and accurate forecasts. The framework effectiveness is demonstrated through extensive experiments on various real-world datasets, outperforming existing methods by significant margins in terms of forecast accuracy.
📅 2024-08-26
Industry 4.0 has revolutionized manufacturing by driving digitalization and shifting the paradigm toward additive manufacturing (AM). Fused Deposition Modeling (FDM), a key AM technology, enables the creation of highly customized, cost-effective products with minimal material waste through layer-by-layer extrusion, posing a significant challenge to traditional subtractive methods. However, the susceptibility of material extrusion techniques to errors often requires expert intervention to detect and mitigate defects that can severely compromise product quality. While automated error detection and machine learning models exist, their generalizability across diverse 3D printer setups, firmware, and sensors is limited, and deep learning methods require extensive labeled datasets, hindering scalability and adaptability. To address these challenges, we present a process monitoring and control framework that leverages pre-trained Large Language Models (LLMs) alongside 3D printers to detect and address printing defects. The LLM evaluates print quality by analyzing images captured after each layer or print segment, identifying failure modes and querying the printer for relevant parameters. It then generates and executes a corrective action plan. We validated the effectiveness of the proposed framework in identifying defects by comparing it against a control group of engineers with diverse AM expertise. Our evaluation demonstrated that LLM-based agents not only accurately identify common 3D printing errors, such as inconsistent extrusion, stringing, warping, and layer adhesion, but also effectively determine the parameters causing these failures and autonomously correct them without any need for human intervention.
📅 2024-08-26 | 💬 EAI International Conference on Digital Forensics & Cyber Crime 2024
Spam and phishing remain critical threats in cybersecurity, responsible for nearly 90% of security incidents. As these attacks grow in sophistication, the need for robust defensive mechanisms intensifies. Bayesian spam filters, like the widely adopted open-source SpamAssassin, are essential tools in this fight. However, the emergence of large language models (LLMs) such as ChatGPT presents new challenges. These models are not only powerful and accessible, but also inexpensive to use, raising concerns about their misuse in crafting sophisticated spam emails that evade traditional spam filters. This work aims to evaluate the robustness and effectiveness of SpamAssassin against LLM-modified email content. We developed a pipeline to test this vulnerability. Our pipeline modifies spam emails using GPT-3.5 Turbo and assesses SpamAssassin's ability to classify these modified emails correctly. The results show that SpamAssassin misclassified up to 73.7% of LLM-modified spam emails as legitimate. In contrast, a simpler dictionary-replacement attack showed a maximum success rate of only 0.4%. These findings highlight the significant threat posed by LLM-modified spam, especially given the cost-efficiency of such attacks (0.17 cents per email). This paper provides crucial insights into the vulnerabilities of current spam filters and the need for continuous improvement in cybersecurity measures.
📅 2024-08-26 | 💬 18 pages. arXiv admin note: substantial text overlap with arXiv:2402.06216
Large language models (LLMs) have been garnering increasing attention in the recommendation community. Some studies have observed that LLMs, when fine-tuned by the cross-entropy (CE) loss with a full softmax, could achieve `state-of-the-art' performance in sequential recommendation. However, most of the baselines used for comparison are trained using a pointwise/pairwise loss function. This inconsistent experimental setting leads to the underestimation of traditional methods and further fosters over-confidence in the ranking capability of LLMs. In this study, we provide theoretical justification for the superiority of the cross-entropy loss by demonstrating its two desirable properties: tightness and coverage. Furthermore, this study sheds light on additional novel insights: 1) Taking into account only the recommendation performance, CE is not yet optimal as it is not a quite tight bound in terms of some ranking metrics. 2) In scenarios that full softmax cannot be performed, an effective alternative is to scale up the sampled normalizing term. These findings then help unleash the potential of traditional recommendation models, allowing them to surpass LLM-based counterparts. Given the substantial computational burden, existing LLM-based methods are not as effective as claimed for sequential recommendation. We hope that these theoretical understandings in conjunction with the empirical results will facilitate an objective evaluation of LLM-based recommendation in the future.
📅 2024-08-26 | 💬 Accepted in Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics: Student Research Workshop (ACL-SRW 2024) 11 pages, 8 figures
Although LLMs have the potential to transform many fields, they still underperform humans in reasoning tasks. Existing methods induce the model to produce step-by-step calculations, but this research explores the question: Does making the LLM analyze the question improve its performance? We propose a novel prompting strategy called Question Analysis Prompting (QAP), in which the model is prompted to explain the question in $n$ words before solving. The value of $n$ influences the length of response generated by the model. QAP is evaluated on GPT 3.5 Turbo and GPT 4 Turbo on arithmetic datasets GSM8K, AQuA, and SAT and commonsense dataset StrategyQA. QAP is compared with other state-of-the-art prompts including Chain-of-Thought (CoT), Plan and Solve Prompting (PS+) and Take A Deep Breath (TADB). QAP outperforms all state-of-the-art prompts on AQuA and SAT datasets on both GPT3.5 and GPT4. QAP consistently ranks among the top-2 prompts on 75\% of the tests. A key factor of QAP performance can be attributed to response length, where detailed responses are beneficial when answering harder questions, but can negatively affect easy questions.
📅 2024-08-25 | 💬 19 pages, 18 figures
Large Language Models (LLMs) excel at generating human-like dialogues and comprehending text. However, understanding the subtleties of complex exchanges in language remains a challenge. We propose a bootstrapping framework that leverages self-generated feedback to enhance LLM reasoning capabilities for lie detection. The framework consists of three stages: suggestion, feedback collection, and modification. In the suggestion stage, a cost-effective language model generates initial predictions based on game state and dialogue. The feedback-collection stage involves a language model providing feedback on these predictions. In the modification stage, a more advanced language model refines the initial predictions using the auto-generated feedback. We investigate the application of the proposed framework for detecting betrayal and deception in Diplomacy games, and compare it with feedback from professional human players. The LLM-generated feedback exhibits superior quality and significantly enhances the performance of the model. Our approach achieves a 39% improvement over the zero-shot baseline in lying-F1 without the need for any training data, rivaling state-of-the-art supervised learning results.
📅 2024-08-25 | 💬 Accepted at PAINE'24
Analog and mixed-signal (A/MS) integrated circuits (ICs) are crucial in modern electronics, playing key roles in signal processing, amplification, sensing, and power management. Many IC companies outsource manufacturing to third-party foundries, creating security risks such as stealthy analog Trojans. Traditional detection methods, including embedding circuit watermarks or conducting hardware-based monitoring, often impose significant area and power overheads, and may not effectively identify all types of Trojans. To address these shortcomings, we propose SPICED, a Large Language Model (LLM)-based framework that operates within the software domain, eliminating the need for hardware modifications for Trojan detection and localization. This is the first work using LLM-aided techniques for detecting and localizing syntactical bugs and analog Trojans in circuit netlists, requiring no explicit training and incurring zero area overhead. Our framework employs chain-of-thought reasoning and few-shot examples to teach anomaly detection rules to LLMs. With the proposed method, we achieve an average Trojan coverage of 93.32% and an average true positive rate of 93.4% in identifying Trojan-impacted nodes for the evaluated analog benchmark circuits. These experimental results validate the effectiveness of LLMs in detecting and locating both syntactical bugs and Trojans within analog netlists.
📅 2024-08-25 | 💬 In Progress
With the increasing popularity of large language models (LLMs), reasoning on basic graph algorithm problems is an essential intermediate step in assessing their abilities to process and infer complex graph reasoning tasks. Existing methods usually convert graph-structured data to textual descriptions and then use LLMs for reasoning and computation. However, LLMs often produce computation errors on arithmetic parts in basic graph algorithm problems, such as counting number of edges. In addition, they struggle to control or understand the output of the reasoning process, raising concerns about whether LLMs are simply guessing. In this paper, we introduce CodeGraph, a method that encodes graph problem solutions as code. The methods solve new graph problems by learning from exemplars, generating programs, and executing them via a program interpreter. Using the few-shot setting, we evaluate CodeGraph with the base LLM being GPT-3.5 Turbo, Llama3-70B Instruct, Mixtral-8x22B Instruct, and Mixtral-8x7B Instruct. Experimental results on six tasks with six graph encoding methods in the GraphQA dataset demonstrate that CodeGraph can boost performance on graph reasoning tasks inside LLMs by 1.3% to 58.6%, depending on the task. Compared to the existing methods, CodeGraph demonstrates strong performance on arithmetic problems in graph tasks and offers a more controllable and interpretable approach to the reasoning process.
📅 2024-08-25 | 💬 12 pages; working in progress
Long video understanding is a significant and ongoing challenge in the intersection of multimedia and artificial intelligence. Employing large language models (LLMs) for comprehending video becomes an emerging and promising method. However, this approach incurs high computational costs due to the extensive array of video tokens, experiences reduced visual clarity as a consequence of token aggregation, and confronts challenges arising from irrelevant visual tokens while answering video-related questions. To alleviate these issues, we present an Interactive Visual Adapter (IVA) within LLMs, designed to enhance interaction with fine-grained visual elements. Specifically, we first transform long videos into temporal video tokens via leveraging a visual encoder alongside a pretrained causal transformer, then feed them into LLMs with the video instructions. Subsequently, we integrated IVA, which contains a lightweight temporal frame selector and a spatial feature interactor, within the internal blocks of LLMs to capture instruction-aware and fine-grained visual signals. Consequently, the proposed video-LLM facilitates a comprehensive understanding of long video content through appropriate long video modeling and precise visual interactions. We conducted extensive experiments on nine video understanding benchmarks and experimental results show that our interactive visual adapter significantly improves the performance of video LLMs on long video QA tasks. Ablation studies further verify the effectiveness of IVA in understanding long and short video.
📅 2024-08-25 | 💬 Project page: https://auction-arena.github.io
Recent advancements in Large Language Models (LLMs) showcase advanced reasoning, yet NLP evaluations often depend on static benchmarks. Evaluating this necessitates environments that test strategic reasoning in dynamic, competitive scenarios requiring long-term planning. We introduce AucArena, a novel evaluation suite that simulates auctions, a setting chosen for being highly unpredictable and involving many skills related to resource and risk management, while also being easy to evaluate. We conduct controlled experiments using state-of-the-art LLMs to power bidding agents to benchmark their planning and execution skills. Our research demonstrates that LLMs, such as GPT-4, possess key skills for auction participation, such as budget management and goal adherence, which improve with adaptive strategies. This highlights LLMs' potential in modeling complex social interactions in competitive contexts. However, variability in LLM performance and occasional outperformance by simpler methods indicate opportunities for further advancements in LLM design and the value of our simulation environment for ongoing testing and refinement.
📅 2024-08-25
Large Language Models (LLMs) are increasingly serving as evaluators in Natural Language Generation (NLG) tasks. However, the capabilities of LLMs in scoring NLG quality remain inadequately explored. Current studies depend on human assessments and simple metrics that fail to capture the discernment of LLMs across diverse NLG tasks. To address this gap, we propose the Discernment of Hierarchical Perturbation (DHP) benchmarking framework, which provides quantitative discernment scores for LLMs utilizing hierarchically perturbed text data and statistical tests to measure the NLG evaluation capabilities of LLMs systematically. We have re-established six evaluation datasets for this benchmark, covering four NLG tasks: Summarization, Story Completion, Question Answering, and Translation. Our comprehensive benchmarking of five major LLM series provides critical insight into their strengths and limitations as NLG evaluators.
📅 2024-08-25
To enhance the reasoning capabilities of large language models (LLMs), self-consistency has gained significant popularity by combining multiple sampling with majority voting. However, the state-of-the-art self-consistency approaches consume substantial computational resources and lead to significant additional time costs due to the multiple sampling. This prevents its full potential from being realized in scenarios where computational resources are critical. To improve the inference efficiency, this paper introduces \textit{path-consistency}, a method that leverages the confidence of answers generated in earlier branches to identify the prefix of the most promising path. By dynamically guiding the generation of subsequent branches based on this prefix, the \textit{path-consistency} mitigates both the errors and redundancies from random or less useful sampling in self-consistency. As a result, it can significantly accelerate the inference process by reducing the number of tokens generated. Our extensive empirical evaluation shows that the \textit{path-consistency} achieves significant acceleration in inference latency ranging from $7.8\%$ to $40.5\%$, while maintaining or even improving task accuracy across different datasets, including mathematical reasoning, common sense reasoning, symbolic reasoning, and code generation.
📅 2024-08-24
Smartphones have become essential to people's digital lives, providing a continuous stream of information and connectivity. However, this constant flow can lead to moments where users are simply passing time rather than engaging meaningfully. This underscores the importance of developing methods to identify these "time-killing" moments, enabling the delivery of important notifications in a way that minimizes interruptions and enhances user engagement. Recent work has utilized screenshots taken every 5 seconds to detect time-killing activities on smartphones. However, this method often misses to capture phone usage between intervals. We demonstrate that up to 50% of time-killing instances go undetected using screenshots, leading to substantial gaps in understanding user behavior. To address this limitation, we propose a method called ScreenTK that detects time-killing moments by leveraging continuous screen text monitoring and on-device large language models (LLMs). Screen text contains more comprehensive information than screenshots and allows LLMs to summarize detailed phone usage. To verify our framework, we conducted experiments with six participants, capturing 1,034 records of different time-killing moments. Initial results show that our framework outperforms state-of-the-art solutions by 38% in our case study.
📅 2024-08-23
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks. We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup. The study focuses on developing a flexible automation framework for applying the Finite Element Method (FEM) to solve linear elastic problems. Our findings emphasize the importance of optimizing agent roles and clearly defining their responsibilities, rather than merely increasing the number of agents. Effective collaboration among agents is shown to be crucial for addressing general FEM challenges. This research demonstrates the potential of LLM multi-agent systems to enhance computational automation in simulation methodologies, paving the way for future advancements in engineering and artificial intelligence.
📅 2024-08-23
This paper presents CodeRefine, a novel framework for automatically transforming research paper methodologies into functional code using Large Language Models (LLMs). Our multi-step approach first extracts and summarizes key text chunks from papers, analyzes their code relevance, and creates a knowledge graph using a predefined ontology. Code is then generated from this structured representation and enhanced through a proposed retrospective retrieval-augmented generation approach. CodeRefine addresses the challenge of bridging theoretical research and practical implementation, offering a more accurate alternative to LLM zero-shot prompting. Evaluations on diverse scientific papers demonstrate CodeRefine's ability to improve code implementation from the paper, potentially accelerating the adoption of cutting-edge algorithms in real-world applications.
📅 2024-08-23 | 💬 RecSys 2024 (Long Paper)
Traditional recommender systems such as matrix factorization methods have primarily focused on learning a shared dense embedding space to represent both items and user preferences. Subsequently, sequence models such as RNN, GRUs, and, recently, Transformers have emerged and excelled in the task of sequential recommendation. This task requires understanding the sequential structure present in users' historical interactions to predict the next item they may like. Building upon the success of Large Language Models (LLMs) in a variety of tasks, researchers have recently explored using LLMs that are pretrained on vast corpora of text for sequential recommendation. To use LLMs for sequential recommendation, both the history of user interactions and the model's prediction of the next item are expressed in text form. We propose CALRec, a two-stage LLM finetuning framework that finetunes a pretrained LLM in a two-tower fashion using a mixture of two contrastive losses and a language modeling loss: the LLM is first finetuned on a data mixture from multiple domains followed by another round of target domain finetuning. Our model significantly outperforms many state-of-the-art baselines (+37% in Recall@1 and +24% in NDCG@10) and our systematic ablation studies reveal that (i) both stages of finetuning are crucial, and, when combined, we achieve improved performance, and (ii) contrastive alignment is effective among the target domains explored in our experiments.
📅 2024-08-23
LLM app ecosystems are quickly maturing and supporting a wide range of use cases, which requires them to collect excessive user data. Given that the LLM apps are developed by third-parties and that anecdotal evidence suggests LLM platforms currently do not strictly enforce their policies, user data shared with arbitrary third-parties poses a significant privacy risk. In this paper we aim to bring transparency in data practices of LLM apps. As a case study, we study OpenAI's GPT app ecosystem. We develop an LLM-based framework to conduct the static analysis of natural language-based source code of GPTs and their Actions (external services) to characterize their data collection practices. Our findings indicate that Actions collect expansive data about users, including sensitive information prohibited by OpenAI, such as passwords. We find that some Actions, including related to advertising and analytics, are embedded in multiple GPTs, which allow them to track user activities across GPTs. Additionally, co-occurrence of Actions exposes as much as 9.5x more data to them, than it is exposed to individual Actions. Lastly, we develop an LLM-based privacy policy analysis framework to automatically check the consistency of data collection by Actions with disclosures in their privacy policies. Our measurements indicate that the disclosures for most of the collected data types are omitted in privacy policies, with only 5.8% of Actions clearly disclosing their data collection practices.
📅 2024-08-23 | 💬 Outstanding Paper at the Machine Learning for Ancient Languages Workshop, 2024.ml4al-1.23, Association for Computational Linguistics (ACL) 2024
LLMs have revolutionized the landscape of information retrieval and knowledge dissemination. However, their application in specialized areas is often hindered by factual inaccuracies and hallucinations, especially in long-tail knowledge distributions. We explore the potential of retrieval-augmented generation (RAG) models for long-form question answering (LFQA) in a specialized knowledge domain. We present VedantaNY-10M, a dataset curated from extensive public discourses on the ancient Indian philosophy of Advaita Vedanta. We develop and benchmark a RAG model against a standard, non-RAG LLM, focusing on transcription, retrieval, and generation performance. Human evaluations by computational linguists and domain experts show that the RAG model significantly outperforms the standard model in producing factual and comprehensive responses having fewer hallucinations. In addition, a keyword-based hybrid retriever that emphasizes unique low-frequency terms further improves results. Our study provides insights into effectively integrating modern large language models with ancient knowledge systems. Project page with dataset and code: https://sites.google.com/view/vedantany-10m
📅 2024-08-23
Federated Learning (FL) offers a promising approach for collaborative machine learning across distributed devices. However, its adoption is hindered by the complexity of building reliable communication architectures and the need for expertise in both machine learning and network programming. This paper presents a comprehensive solution that simplifies the orchestration of FL tasks while integrating intent-based automation. We develop a user-friendly web application supporting the federated averaging (FedAvg) algorithm, enabling users to configure parameters through an intuitive interface. The backend solution efficiently manages communication between the parameter server and edge nodes. We also implement model compression and scheduling algorithms to optimize FL performance. Furthermore, we explore intent-based automation in FL using a fine-tuned Language Model (LLM) trained on a tailored dataset, allowing users to conduct FL tasks using high-level prompts. We observe that the LLM-based automated solution achieves comparable test accuracy to the standard web-based solution while reducing transferred bytes by up to 64% and CPU time by up to 46% for FL tasks. Also, we leverage the neural architecture search (NAS) and hyperparameter optimization (HPO) using LLM to improve the performance. We observe that by using this approach test accuracy can be improved by 10-20% for the carried out FL tasks.
📅 2024-08-23 | 💬 Preprint, under review. 17 pages, 7 figures, 16 tables
Alignment approaches such as RLHF and DPO are actively investigated to align large language models (LLMs) with human preferences. Commercial large language models (LLMs) like GPT-4 have been recently employed to evaluate and compare different LLM alignment approaches. These models act as surrogates for human evaluators due to their promising abilities to approximate human preferences with remarkably faster feedback and lower costs. This methodology is referred to as LLM-as-a-judge. However, concerns regarding its reliability have emerged, attributed to LLM judges' biases and inconsistent decision-making. Previous research has sought to develop robust evaluation frameworks for assessing the reliability of LLM judges and their alignment with human preferences. However, the employed evaluation metrics often lack adequate explainability and fail to address the internal inconsistency of LLMs. Additionally, existing studies inadequately explore the impact of various prompt templates when applying LLM-as-a-judge methods, which leads to potentially inconsistent comparisons between different alignment algorithms. In this work, we systematically evaluate LLM judges on alignment tasks (e.g. summarization) by defining evaluation metrics with improved theoretical interpretability and disentangling reliability metrics with LLM internal inconsistency. We develop a framework to evaluate, compare, and visualize the reliability and alignment of LLM judges to provide informative observations that help choose LLM judges for alignment tasks. Our results indicate a significant impact of prompt templates on LLM judge performance, as well as a mediocre alignment level between the tested LLM judges and human evaluators.
📅 2024-08-23 | 💬 10 pages, 5 figures, accepted by ECAI 2024
While Large Language Models (LLMs) have achieved remarkable success in various fields, the efficiency of training and inference remains a major challenge. To address this issue, we propose SUBLLM, short for Subsampling-Upsampling-Bypass Large Language Model, an innovative architecture that extends the core decoder-only framework by incorporating subsampling, upsampling, and bypass modules. The subsampling modules are responsible for shortening the sequence, while the upsampling modules restore the sequence length, and the bypass modules enhance convergence. In comparison to LLaMA, the proposed SUBLLM exhibits significant enhancements in both training and inference speeds as well as memory usage, while maintaining competitive few-shot performance. During training, SUBLLM increases speeds by 26% and cuts memory by 10GB per GPU. In inference, it boosts speeds by up to 37% and reduces memory by 1GB per GPU. The training and inference speeds can be enhanced by 34% and 52% respectively when the context window is expanded to 8192. Our code is available at https://github.com/XiaoMi/subllm.
📅 2024-08-23 | 💬 Under Review
We propose a straightforward approach called Distillation Contrastive Decoding (DCD) to enhance the reasoning capabilities of Large Language Models (LLMs) during inference. In contrast to previous approaches that relied on smaller amateur models or analysis of hidden state differences, DCD employs Contrastive Chain-of-thought Prompting and advanced distillation techniques, including Dropout and Quantization. This approach effectively addresses the limitations of Contrastive Decoding (CD), which typically requires both an expert and an amateur model, thus increasing computational resource demands. By integrating contrastive prompts with distillation, DCD obviates the need for an amateur model and reduces memory usage. Our evaluations demonstrate that DCD significantly enhances LLM performance across a range of reasoning benchmarks, surpassing both CD and existing methods in the GSM8K and StrategyQA datasets.
📅 2024-08-23 | 💬 Code is available at https://github.com/kyleliang919/Online-Subspace-Descent
Recently, a wide range of memory-efficient LLM training algorithms have gained substantial popularity. These methods leverage the low-rank structure of gradients to project optimizer states into a subspace using projection matrix found by singular value decomposition (SVD). However, convergence of these algorithms is highly dependent on the update rules of their projection matrix. In this work, we provide the \emph{first} convergence guarantee for arbitrary update rules of projection matrix. This guarantee is generally applicable to optimizers that can be analyzed with Hamiltonian Descent, including most common ones, such as LION, Adam. Inspired by our theoretical understanding, we propose Online Subspace Descent, a new family of subspace descent optimizer without SVD. Instead of updating the projection matrix with eigenvectors, Online Subspace Descent updates the projection matrix with online PCA. Online Subspace Descent is flexible and introduces only minimum overhead to training. We show that for the task of pretraining LLaMA models ranging from 60M to 7B parameters on the C4 dataset, Online Subspace Descent achieves lower perplexity and better downstream tasks performance than state-of-the-art low-rank training methods across different settings and narrows the gap with full-rank baselines.
📅 2024-08-23
Commentary provides readers with a deep understanding of events by presenting diverse arguments and evidence. However, creating commentary is a time-consuming task, even for skilled commentators. Large language models (LLMs) have simplified the process of natural language generation, but their direct application in commentary creation still faces challenges due to unique task requirements. These requirements can be categorized into two levels: 1) fundamental requirements, which include creating well-structured and logically consistent narratives, and 2) advanced requirements, which involve generating quality arguments and providing convincing evidence. In this paper, we introduce Xinyu, an efficient LLM-based system designed to assist commentators in generating Chinese commentaries. To meet the fundamental requirements, we deconstruct the generation process into sequential steps, proposing targeted strategies and supervised fine-tuning (SFT) for each step. To address the advanced requirements, we present an argument ranking model for arguments and establish a comprehensive evidence database that includes up-to-date events and classic books, thereby strengthening the substantiation of the evidence with retrieval augmented generation (RAG) technology. To evaluate the generated commentaries more fairly, corresponding to the two-level requirements, we introduce a comprehensive evaluation metric that considers five distinct perspectives in commentary generation. Our experiments confirm the effectiveness of our proposed system. We also observe a significant increase in the efficiency of commentators in real-world scenarios, with the average time spent on creating a commentary dropping from 4 hours to 20 minutes. Importantly, such an increase in efficiency does not compromise the quality of the commentaries.
📅 2024-08-23
The development of Large Language Models (LLMs) provides human-centered Artificial General Intelligence (AGI) with a glimmer of hope. Empathy serves as a key emotional attribute of humanity, playing an irreplaceable role in human-centered AGI. Despite numerous researches aim to improve the cognitive empathy of models by incorporating external knowledge, there has been limited attention on the sensibility and rationality of the conversation itself, which are vital components of the empathy. However, the rationality information within the conversation is restricted, and previous methods of extending knowledge are subject to semantic conflict and single-role view. In this paper, we design an innovative encoder module inspired by self-presentation theory in sociology, which specifically processes sensibility and rationality sentences in dialogues. And we employ a LLM as a rational brain to decipher profound logical information preserved within the conversation, which assists our model in assessing the balance between sensibility and rationality to produce high-quality empathetic response. Experimental results demonstrate that our model outperforms other methods in both automatic and human evaluations.
📅 2024-08-23
The emergence of Large Language Models (LLMs) has revolutionized natural language processing in various applications especially in e-commerce. One crucial step before the application of such LLMs in these fields is to understand and compare the performance in different use cases in such tasks. This paper explored the efficacy of LLMs in the e-commerce domain, focusing on instruction-tuning an open source LLM model with public e-commerce datasets of varying sizes and comparing the performance with the conventional models prevalent in industrial applications. We conducted a comprehensive comparison between LLMs and traditional pre-trained language models across specific tasks intrinsic to the e-commerce domain, namely classification, generation, summarization, and named entity recognition (NER). Furthermore, we examined the effectiveness of the current niche industrial application of very large LLM, using in-context learning, in e-commerce specific tasks. Our findings indicate that few-shot inference with very large LLMs often does not outperform fine-tuning smaller pre-trained models, underscoring the importance of task-specific model optimization.Additionally, we investigated different training methodologies such as single-task training, mixed-task training, and LoRA merging both within domain/tasks and between different tasks. Through rigorous experimentation and analysis, this paper offers valuable insights into the potential effectiveness of LLMs to advance natural language processing capabilities within the e-commerce industry.
📅 2024-08-22 | 💬 preprint under review
Large language models (LLMs) are highly capable but face latency challenges in real-time applications, such as conducting online hallucination detection. To overcome this issue, we propose a novel framework that leverages a small language model (SLM) classifier for initial detection, followed by a LLM as constrained reasoner to generate detailed explanations for detected hallucinated content. This study optimizes the real-time interpretable hallucination detection by introducing effective prompting techniques that align LLM-generated explanations with SLM decisions. Empirical experiment results demonstrate its effectiveness, thereby enhancing the overall user experience.
📅 2024-08-22 | 💬 13 pages, 10 Figures
Understanding urban mobility patterns and analyzing how people move around cities helps improve the overall quality of life and supports the development of more livable, efficient, and sustainable urban areas. A challenging aspect of this work is the collection of mobility data by means of user tracking or travel surveys, given the associated privacy concerns, noncompliance, and high cost. This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs), aiming to leverage their vast amount of relevant background knowledge and text generation capabilities. Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different granularity levels. These levels include (i) pattern level, which compares aggregated metrics like the average number of locations traveled and travel time, (ii) trip level, which focuses on comparing trips as whole units using transition probabilities, and (iii) activity chain level, which examines the sequence of locations visited by individuals. Our work covers several proprietary and open-source LLMs, revealing that open-source base models like Llama-2, when fine-tuned on even a limited amount of actual data, can generate synthetic data that closely mimics the actual travel survey data, and as such provides an argument for using such data in mobility studies.
📅 2024-08-22 | 💬 22 pages pages (main text comprised of 19 pages, appendix comprised of three pages). 10 visualizations in the main text (four figures, six tables), three additional figures in the appendix
Large language models (LLMs) match and sometimes exceeding human performance in many domains. This study explores the potential of LLMs to augment human judgement in a forecasting task. We evaluate the effect on human forecasters of two LLM assistants: one designed to provide high-quality ("superforecasting") advice, and the other designed to be overconfident and base-rate neglecting, thus providing noisy forecasting advice. We compare participants using these assistants to a control group that received a less advanced model that did not provide numerical predictions or engaged in explicit discussion of predictions. Participants (N = 991) answered a set of six forecasting questions and had the option to consult their assigned LLM assistant throughout. Our preregistered analyses show that interacting with each of our frontier LLM assistants significantly enhances prediction accuracy by between 24 percent and 28 percent compared to the control group. Exploratory analyses showed a pronounced outlier effect in one forecasting item, without which we find that the superforecasting assistant increased accuracy by 41 percent, compared with 29 percent for the noisy assistant. We further examine whether LLM forecasting augmentation disproportionately benefits less skilled forecasters, degrades the wisdom-of-the-crowd by reducing prediction diversity, or varies in effectiveness with question difficulty. Our data do not consistently support these hypotheses. Our results suggest that access to a frontier LLM assistant, even a noisy one, can be a helpful decision aid in cognitively demanding tasks compared to a less powerful model that does not provide specific forecasting advice. However, the effects of outliers suggest that further research into the robustness of this pattern is needed.
📅 2024-08-22 | 💬 preprint / under review
Guiding large language models with a selected set of human-authored demonstrations is a common practice for improving LLM applications. However, human effort can be costly, especially in specialized domains (e.g., clinical diagnosis), and does not guarantee optimal performance due to the potential discrepancy of target skills between selected demonstrations and real test instances. Motivated by these, this paper explores the automatic creation of customized demonstrations, whose target skills align with the given target instance. We present SELF-TAUGHT, a problem-solving framework, which facilitates demonstrations that are "tailored" to the target problem and "filtered" for better quality (i.e., correctness) in a zero-shot manner. In 15 tasks of multiple-choice questions of diverse domains and the diagnosis of Alzheimer's disease (AD) with real-world patients, SELF-TAUGHT achieves superior performance to strong baselines (e.g., Few-shot CoT, Plan-and-Solve, Auto-CoT). We conduct comprehensive analyses on SELF-TAUGHT, including its generalizability to existing prompting methods and different LLMs, the quality of its intermediate generation, and more.
📅 2024-08-22 | 💬 11 pages
Large Language Models (LLMs) are increasingly adopted for applications in healthcare, reaching the performance of domain experts on tasks such as question answering and document summarisation. Despite their success on these tasks, it is unclear how well LLMs perform on tasks that are traditionally pursued in the biomedical domain, such as structured information extration. To breach this gap, in this paper, we systematically benchmark LLM performance in Medical Classification and Named Entity Recognition (NER) tasks. We aim to disentangle the contribution of different factors to the performance, particularly the impact of LLMs' task knowledge and reasoning capabilities, their (parametric) domain knowledge, and addition of external knowledge. To this end we evaluate various open LLMs -- including BioMistral and Llama-2 models -- on a diverse set of biomedical datasets, using standard prompting, Chain-of-Thought (CoT) and Self-Consistency based reasoning as well as Retrieval-Augmented Generation (RAG) with PubMed and Wikipedia corpora. Counter-intuitively, our results reveal that standard prompting consistently outperforms more complex techniques across both tasks, laying bare the limitations in the current application of CoT, self-consistency and RAG in the biomedical domain. Our findings suggest that advanced prompting methods developed for knowledge- or reasoning-intensive tasks, such as CoT or RAG, are not easily portable to biomedical tasks where precise structured outputs are required. This highlights the need for more effective integration of external knowledge and reasoning mechanisms in LLMs to enhance their performance in real-world biomedical applications.
📅 2024-08-22 | 💬 2nd place at SemEval-2024 Task 3, Subtask 2, to appear in SemEval-2024 proceedings
This paper describes the architecture of our system developed for Task 3 of SemEval-2024: Multimodal Emotion-Cause Analysis in Conversations. Our project targets the challenges of subtask 2, dedicated to Multimodal Emotion-Cause Pair Extraction with Emotion Category (MECPE-Cat), and constructs a dual-component system tailored to the unique challenges of this task. We divide the task into two subtasks: emotion recognition in conversation (ERC) and emotion-cause pair extraction (ECPE). To address these subtasks, we capitalize on the abilities of Large Language Models (LLMs), which have consistently demonstrated state-of-the-art performance across various natural language processing tasks and domains. Most importantly, we design an approach of emotion-cause-aware instruction-tuning for LLMs, to enhance the perception of the emotions with their corresponding causal rationales. Our method enables us to adeptly navigate the complexities of MECPE-Cat, achieving a weighted average 34.71% F1 score of the task, and securing the 2nd rank on the leaderboard. The code and metadata to reproduce our experiments are all made publicly available.
📅 2024-08-22 | 💬 Accepted by 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE'25)
The code written by developers usually suffers from efficiency problems and contain various performance bugs. These inefficiencies necessitate the research of automated refactoring methods for code optimization. Early research in code optimization employs rule-based methods and focuses on specific inefficiency issues, which are labor-intensive and suffer from the low coverage issue. Recent work regards the task as a sequence generation problem, and resorts to deep learning (DL) techniques such as large language models (LLMs). These methods typically prompt LLMs to directly generate optimized code. Although these methods show state-of-the-art performance, such one-step generation paradigm is hard to achieve an optimal solution. First, complex optimization methods such as combinatorial ones are hard to be captured by LLMs. Second, the one-step generation paradigm poses challenge in precisely infusing the knowledge required for effective code optimization within LLMs, resulting in under-optimized code.To address these problems, we propose to model this task from the search perspective, and propose a search-based LLMs framework named SBLLM that enables iterative refinement and discovery of improved optimization methods. SBLLM synergistically integrate LLMs with evolutionary search and consists of three key components: 1) an execution-based representative sample selection part that evaluates the fitness of each existing optimized code and prioritizes promising ones to pilot the generation of improved code; 2) an adaptive optimization pattern retrieval part that infuses targeted optimization patterns into the model for guiding LLMs towards rectifying and progressively enhancing their optimization methods; and 3) a genetic operator-inspired chain-of-thought prompting part that aids LLMs in combining different optimization methods and generating improved optimization methods.
📅 2024-08-22
Learned Sparse Retrievers (LSR) have evolved into an effective retrieval strategy that can bridge the gap between traditional keyword-based sparse retrievers and embedding-based dense retrievers. At its core, learned sparse retrievers try to learn the most important semantic keyword expansions from a query and/or document which can facilitate better retrieval with overlapping keyword expansions. LSR like SPLADE has typically been using encoder only models with MLM (masked language modeling) style objective in conjunction with known ways of retrieval performance improvement such as hard negative mining, distillation, etc. In this work, we propose to use decoder-only model for learning semantic keyword expansion. We posit, decoder only models that have seen much higher magnitudes of data are better equipped to learn keyword expansions needed for improved retrieval. We use Mistral as the backbone to develop our Learned Sparse Retriever similar to SPLADE and train it on a subset of sentence-transformer data which is often used for training text embedding models. Our experiments support the hypothesis that a sparse retrieval model based on decoder only large language model (LLM) surpasses the performance of existing LSR systems, including SPLADE and all its variants. The LLM based model (Echo-Mistral-SPLADE) now stands as a state-of-the-art learned sparse retrieval model on the BEIR text retrieval benchmark.
📅 2024-08-22 | 💬 10 pages, 8 figures
Machine learning is widely utilized across various industries. Identifying the appropriate machine learning models and datasets for specific tasks is crucial for the effective industrial application of machine learning. However, this requires expertise in both machine learning and the relevant domain, leading to a high learning cost. Therefore, research focused on extracting combinations of tasks, machine learning models, and datasets from academic papers is critically important, as it can facilitate the automatic recommendation of suitable methods. Conventional information extraction methods from academic papers have been limited to identifying machine learning models and other entities as named entities. To address this issue, this study proposes a methodology extracting tasks, machine learning methods, and dataset names from scientific papers and analyzing the relationships between these information by using LLM, embedding model, and network clustering. The proposed method's expression extraction performance, when using Llama3, achieves an F-score exceeding 0.8 across various categories, confirming its practical utility. Benchmarking results on financial domain papers have demonstrated the effectiveness of this method, providing insights into the use of the latest datasets, including those related to ESG (Environmental, Social, and Governance) data.
📅 2024-08-22
Large Language Models (LLM) are evolving and have significantly revolutionized the landscape of software development. If used well, they can significantly accelerate the software development cycle. At the same time, the community is very cautious of the models being trained on biased or sensitive data, which can lead to biased outputs along with the inadvertent release of confidential information. Additionally, the carbon footprints and the un-explainability of these black box models continue to raise questions about the usability of LLMs. With the abundance of opportunities LLMs have to offer, this paper explores the idea of judging tests used to evaluate compiler implementations of directive-based programming models as well as probe into the black box of LLMs. Based on our results, utilizing an agent-based prompting approach and setting up a validation pipeline structure drastically increased the quality of DeepSeek Coder, the LLM chosen for the evaluation purposes.
📅 2024-08-22 | 💬 Under Review
Large language models (LLMs) have achieved impressive advancements across numerous disciplines, yet the critical issue of knowledge conflicts, a major source of hallucinations, has rarely been studied. Only a few research explored the conflicts between the inherent knowledge of LLMs and the retrieved contextual knowledge. However, a thorough assessment of knowledge conflict in LLMs is still missing. Motivated by this research gap, we present ConflictBank, the first comprehensive benchmark developed to systematically evaluate knowledge conflicts from three aspects: (i) conflicts encountered in retrieved knowledge, (ii) conflicts within the models' encoded knowledge, and (iii) the interplay between these conflict forms. Our investigation delves into four model families and twelve LLM instances, meticulously analyzing conflicts stemming from misinformation, temporal discrepancies, and semantic divergences. Based on our proposed novel construction framework, we create 7,453,853 claim-evidence pairs and 553,117 QA pairs. We present numerous findings on model scale, conflict causes, and conflict types. We hope our ConflictBank benchmark will help the community better understand model behavior in conflicts and develop more reliable LLMs.
📅 2024-08-22
Nowadays, many applications do not exist independently but rely on various frameworks or libraries. The frequent evolution and the complex implementation of framework APIs induce many unexpected post-release crashes. Starting from the crash stack traces, existing approaches either perform direct call graph (CG) tracing or construct datasets with similar crash-fixing records to locate buggy methods. However, these approaches are limited by the completeness of CG or dependent on historical fixing records. Moreover, they fail to explain the buggy candidates by revealing their relationship with the crashing point. To fill the gap, we propose an explainable crashing fault localization approach by combining static analysis and LLM techniques. Our primary insight is that understanding the semantics of exception-throwing statements in the framework code can help find and apprehend the buggy methods in the app code. Based on this idea, first, we design the exception-thrown summary (ETS) that describes the key elements related to each framework-specific exception and extract ETSs by performing static analysis. Then we make data-tracking of its key elements to identify and sort buggy candidates for the given crash. After that, we introduce LLMs to improve the explainability of the localization results. To construct effective LLM prompts, we design the candidate information summary (CIS) that describes multiple types of explanation-related contexts and then extract CISs via static analysis. We apply our approach to one typical scenario, i.e., locating Android framework-specific crashing faults, and implement a tool CrashTracker. For fault localization, it exhibited an overall MRR value of 0.91 in precision. For fault explanation, compared to the naive one produced by static analysis only, the LLM-powered explanation achieved a 67.04% improvement in users' satisfaction score.
📅 2024-08-22 | 💬 arXiv admin note: substantial text overlap with arXiv:2404.15149
Large Language Models (LLMs) have emerged as promising solutions for a variety of medical and clinical decision support applications. However, LLMs are often subject to different types of biases, which can lead to unfair treatment of individuals, worsening health disparities, and reducing trust in AI-augmented medical tools. Aiming to address this important issue, in this study, we present a new model alignment approach for aligning LLMs using a preference optimization method within a knowledge distillation framework. Prior to presenting our proposed method, we first use an evaluation framework to conduct a comprehensive (largest to our knowledge) empirical evaluation to reveal the type and nature of existing biases in LLMs used for medical applications. We then offer a bias mitigation technique to reduce the unfair patterns in LLM outputs across different subgroups identified by the protected attributes. We show that our mitigation method is effective in significantly reducing observed biased patterns. Our code is publicly available at \url{https://github.com/healthylaife/FairAlignmentLLM}.
📅 2024-08-21
Large language models (LLMs) can often be made to behave in undesirable ways that they are explicitly fine-tuned not to. For example, the LLM red-teaming literature has produced a wide variety of 'jailbreaking' techniques to elicit harmful text from models that were fine-tuned to be harmless. Recent work on red-teaming, model editing, and interpretability suggests that this challenge stems from how (adversarial) fine-tuning largely serves to suppress rather than remove undesirable capabilities from LLMs. Prior work has introduced latent adversarial training (LAT) as a way to improve robustness to broad classes of failures. These prior works have considered untargeted latent space attacks where the adversary perturbs latent activations to maximize loss on examples of desirable behavior. Untargeted LAT can provide a generic type of robustness but does not leverage information about specific failure modes. Here, we experiment with targeted LAT where the adversary seeks to minimize loss on a specific competing task. We find that it can augment a wide variety of state-of-the-art methods. First, we use targeted LAT to improve robustness to jailbreaks, outperforming a strong R2D2 baseline with orders of magnitude less compute. Second, we use it to more effectively remove backdoors with no knowledge of the trigger. Finally, we use it to more effectively unlearn knowledge for specific undesirable tasks in a way that is also more robust to re-learning. Overall, our results suggest that targeted LAT can be an effective tool for defending against harmful behaviors from LLMs.
📅 2024-08-21 | 💬 Accepted by AIPR 2024
With the development of the modern social economy, tourism has become an important way to meet people's spiritual needs, bringing development opportunities to the tourism industry. However, existing large language models (LLMs) face challenges in personalized recommendation capabilities and the generation of content that can sometimes produce hallucinations. This study proposes an optimization scheme for Tibet tourism LLMs based on retrieval-augmented generation (RAG) technology. By constructing a database of tourist viewpoints and processing the data using vectorization techniques, we have significantly improved retrieval accuracy. The application of RAG technology effectively addresses the hallucination problem in content generation. The optimized model shows significant improvements in fluency, accuracy, and relevance of content generation. This research demonstrates the potential of RAG technology in the standardization of cultural tourism information and data analysis, providing theoretical and technical support for the development of intelligent cultural tourism service systems.
📅 2024-08-21
We introduce SimBench, a benchmark designed to evaluate the proficiency of student large language models (S-LLMs) in generating digital twins (DTs) that can be used in simulators for virtual testing. Given a collection of S-LLMs, this benchmark enables the ranking of the S-LLMs based on their ability to produce high-quality DTs. We demonstrate this by comparing over 20 open- and closed-source S-LLMs. Using multi-turn interactions, SimBench employs a rule-based judge LLM (J-LLM) that leverages both predefined rules and human-in-the-loop guidance to assign scores for the DTs generated by the S-LLM, thus providing a consistent and expert-inspired evaluation protocol. The J-LLM is specific to a simulator, and herein the proposed benchmarking approach is demonstrated in conjunction with the Chrono multi-physics simulator. Chrono provided the backdrop used to assess an S-LLM in relation to the latter's ability to create digital twins for multibody dynamics, finite element analysis, vehicle dynamics, robotic dynamics, and sensor simulations. The proposed benchmarking principle is broadly applicable and enables the assessment of an S-LLM's ability to generate digital twins for other simulation packages. All code and data are available at https://github.com/uwsbel/SimBench.
📅 2024-08-21
Large Language Models (LLMs) are being deployed across various domains today. However, their capacity to solve Capture the Flag (CTF) challenges in cybersecurity has not been thoroughly evaluated. To address this, we develop a novel method to assess LLMs in solving CTF challenges by creating a scalable, open-source benchmark database specifically designed for these applications. This database includes metadata for LLM testing and adaptive learning, compiling a diverse range of CTF challenges from popular competitions. Utilizing the advanced function calling capabilities of LLMs, we build a fully automated system with an enhanced workflow and support for external tool calls. Our benchmark dataset and automated framework allow us to evaluate the performance of five LLMs, encompassing both black-box and open-source models. This work lays the foundation for future research into improving the efficiency of LLMs in interactive cybersecurity tasks and automated task planning. By providing a specialized dataset, our project offers an ideal platform for developing, testing, and refining LLM-based approaches to vulnerability detection and resolution. Evaluating LLMs on these challenges and comparing with human performance yields insights into their potential for AI-driven cybersecurity solutions to perform real-world threat management. We make our dataset open source to public https://github.com/NYU-LLM-CTF/LLM_CTF_Database along with our playground automated framework https://github.com/NYU-LLM-CTF/llm_ctf_automation.
📅 2024-08-21 | 💬 KDD 2024 Tutorial&Survey; Tutorial Website: https://llm-ir-bias-fairness.github.io/
With the rapid advancements of large language models (LLMs), information retrieval (IR) systems, such as search engines and recommender systems, have undergone a significant paradigm shift. This evolution, while heralding new opportunities, introduces emerging challenges, particularly in terms of biases and unfairness, which may threaten the information ecosystem. In this paper, we present a comprehensive survey of existing works on emerging and pressing bias and unfairness issues in IR systems when the integration of LLMs. We first unify bias and unfairness issues as distribution mismatch problems, providing a groundwork for categorizing various mitigation strategies through distribution alignment. Subsequently, we systematically delve into the specific bias and unfairness issues arising from three critical stages of LLMs integration into IR systems: data collection, model development, and result evaluation. In doing so, we meticulously review and analyze recent literature, focusing on the definitions, characteristics, and corresponding mitigation strategies associated with these issues. Finally, we identify and highlight some open problems and challenges for future work, aiming to inspire researchers and stakeholders in the IR field and beyond to better understand and mitigate bias and unfairness issues of IR in this LLM era. We also consistently maintain a GitHub repository for the relevant papers and resources in this rising direction at https://github.com/KID-22/LLM-IR-Bias-Fairness-Survey.
📅 2024-08-21
Efforts directed towards promoting Open Government Data (OGD) have gained significant traction across various governmental tiers since the mid-2000s. As more datasets are published on OGD portals, finding specific data becomes harder, leading to information overload. Complete and accurate documentation of datasets, including association of proper tags with datasets is key to improving dataset findability and accessibility. Analysis conducted on the Estonian Open Data Portal, revealed that 11% datasets have no associated tags, while 26% had only one tag assigned to them, which underscores challenges in data findability and accessibility within the portal, which, according to the recent Open Data Maturity Report, is considered trend-setter. The aim of this study is to propose an automated solution to tagging datasets to improve data findability on OGD portals. This paper presents Tagify - a prototype of tagging interface that employs large language models (LLM) such as GPT-3.5-turbo and GPT-4 to automate dataset tagging, generating tags for datasets in English and Estonian, thereby augmenting metadata preparation by data publishers and improving data findability on OGD portals by data users. The developed solution was evaluated by users and their feedback was collected to define an agenda for future prototype improvements.
📅 2024-08-21 | 💬 Work in progress
Large Language Models (LLMs) have transformed machine learning but raised significant legal concerns due to their potential to produce text that infringes on copyrights, resulting in several high-profile lawsuits. The legal landscape is struggling to keep pace with these rapid advancements, with ongoing debates about whether generated text might plagiarize copyrighted materials. Current LLMs may infringe on copyrights or overly restrict non-copyrighted texts, leading to these challenges: (i) the need for a comprehensive evaluation benchmark to assess copyright compliance from multiple aspects; (ii) evaluating robustness against safeguard bypassing attacks; and (iii) developing effective defense targeted against the generation of copyrighted text. To tackle these challenges, we introduce a curated dataset to evaluate methods, test attack strategies, and propose lightweight, real-time defense to prevent the generation of copyrighted text, ensuring the safe and lawful use of LLMs. Our experiments demonstrate that current LLMs frequently output copyrighted text, and that jailbreaking attacks can significantly increase the volume of copyrighted output. Our proposed defense mechanism significantly reduces the volume of copyrighted text generated by LLMs by effectively refusing malicious requests. Code is publicly available at https://github.com/xz-liu/SHIELD
📅 2024-08-21 | 💬 Under Review
Large Language Models (LLMs) are versatile and demonstrate impressive generalization ability by mining and learning information from extensive unlabeled text. However, they still exhibit reasoning mistakes, often stemming from knowledge deficiencies, which can affect their trustworthiness and reliability. Although users can provide diverse and comprehensive queries, obtaining sufficient and effective feedback is demanding. Furthermore, evaluating LLMs comprehensively with limited labeled samples is difficult. This makes it a challenge to diagnose and remedy the deficiencies of LLMs through rich label-free user queries. To tackle this challenge, we propose a label-free curricular meaningful learning framework (LaMer). LaMer first employs relative entropy to automatically diagnose and quantify the knowledge deficiencies of LLMs in a label-free setting. Next, to remedy the diagnosed knowledge deficiencies, we apply curricular meaningful learning: first, we adopt meaningful learning to adaptively synthesize augmentation data according to the severity of the deficiencies, and then design a curricular deficiency remedy strategy to remedy the knowledge deficiencies of LLMs progressively. Experiments show that LaMer efficiently and effectively diagnoses and remedies knowledge deficiencies in LLMs, improving various LLMs across seven out-of-distribution (OOD) reasoning and language understanding benchmarks, achieving comparable results to baselines with just 40\% training data. LaMer even surpasses methods that rely on labeled datasets for deficiency diagnosis. In application, our label-free method can offer an effective knowledge deficiency diagnostic tool for efficient LLM development.