Skip to the content.

llm - 2025_01

Home / Papers / llm

Papers

📅 2025-01-31 | 💬 To appear in USENIX Security Symposium 2025
Automatically extracting personal information -- such as name, phone number, and email address -- from publicly available profiles at a large scale is a stepstone to many other security attacks including spear phishing. Traditional methods -- such as regular expression, keyword search, and entity detection -- achieve limited success at such personal information extraction. In this work, we perform a systematic measurement study to benchmark large language model (LLM) based personal information extraction and countermeasures. Towards this goal, we present a framework for LLM-based extraction attacks; collect four datasets including a synthetic dataset generated by GPT-4 and three real-world datasets with manually labeled eight categories of personal information; introduce a novel mitigation strategy based on prompt injection; and systematically benchmark LLM-based attacks and countermeasures using ten LLMs and five datasets. Our key findings include: LLM can be misused by attackers to accurately extract various personal information from personal profiles; LLM outperforms traditional methods; and prompt injection can defend against strong LLM-based attacks, reducing the attack to less effective traditional ones.
📅 2025-01-31 | 💬 19 pages, 8 tables, 5 figures, 3 listings
Code auditing is a code review process with the goal of finding bugs. Large Language Models (LLMs) have shown substantial potential in this task, offering the ability to analyze programs without compilation and enabling customized bug detection following specified prompts. However, applying LLMs to repository-level code auditing presents notable challenges. The inherent context limits and hallucinations of LLMs can lead to the low quality of bug reports. Meanwhile, the large size of software repositories introduces substantial time and token costs, hindering efficiency and scalability in real-world scenarios. This work introduces an autonomous LLM-agent, RepoAudit, designed to enable precise and efficient repository-level code auditing. Equipped with the agent memory, RepoAudit explores the code repository on demand, analyzing data-flow facts along different feasible program paths in individual functions. It also introduces the validator to check the data-flow facts for hallucination mitigation and examine the satisfiability of path conditions of potential buggy paths, which enables RepoAudit to discard false positives in the code auditing. Our experiment shows that RepoAudit powered by Claude 3.5 Sonnet successfully finds 38 true bugs in 15 real-world systems, consuming 0.44 hours and $2.54 per project on average.
📅 2025-01-31
Handcrafting heuristics for solving complex optimization tasks (e.g., route planning and task allocation) is a common practice but requires extensive domain knowledge. Recently, Large Language Model (LLM)-based automatic heuristic design (AHD) methods have shown promise in generating high-quality heuristics without manual interventions. Existing LLM-based AHD methods employ a population to maintain a fixed number of top-performing LLM-generated heuristics and introduce evolutionary computation (EC) to iteratively enhance the population. However, these population-based procedures cannot fully develop the potential of each heuristic and are prone to converge into local optima. To more comprehensively explore the space of heuristics, this paper proposes to use Monte Carlo Tree Search (MCTS) for LLM-based heuristic evolution. The proposed MCTS-AHD method organizes all LLM-generated heuristics in a tree structure and can better develop the potential of temporarily underperforming heuristics. In experiments, MCTS-AHD delivers significantly higher-quality heuristics on various complex tasks. Our code is available.
📅 2025-01-31 | 💬 fix typos, figures, tables, and other details; additional results
Recent advancements in multimodal models have shown a strong ability in visual perception, reasoning abilities, and vision-language understanding. However, studies on visual matching ability are missing, where finding the visual correspondence of objects is essential in vision research. Our research reveals that the matching capabilities in recent multimodal LLMs (MLLMs) still exhibit systematic shortcomings, even with current strong MLLMs models, GPT-4o. In particular, we construct a Multimodal Visual Matching (MMVM) benchmark to fairly benchmark over 30 different MLLMs. The MMVM benchmark is built from 15 open-source datasets and Internet videos with manual annotation. We categorize the data samples of MMVM benchmark into eight aspects based on the required cues and capabilities to more comprehensively evaluate and analyze current MLLMs. In addition, we have designed an automatic annotation pipeline to generate the MMVM SFT dataset, including 220K visual matching data with reasoning annotation. Finally, we present CoLVA, a novel contrastive MLLM with two novel technical designs: fine-grained vision expert with object-level contrastive learning and instruction augmentation strategy. CoLVA achieves 51.06\% overall accuracy (OA) on the MMVM benchmark, surpassing GPT-4o and baseline by 8.41\% and 23.58\% OA, respectively. The results show the effectiveness of our MMVM SFT dataset and our novel technical designs. Code, benchmark, dataset, and models are available at https://github.com/zhouyiks/CoLVA.
📅 2025-01-31
Large Language Models (LLMs) excel at in-context learning (ICL), a supervised learning technique that relies on adding annotated examples to the model context. We investigate a contextual bandit version of in-context reinforcement learning (ICRL), where models learn in-context, online, from external reward, instead of supervised data. We show that LLMs effectively demonstrate such learning, and provide a detailed study of the phenomena, experimenting with challenging classification tasks and models of sizes from 500M to 70B parameters. This includes identifying and addressing the instability of the process, demonstrating learning with both semantic and abstract labels, and showing scaling trends. Our findings highlight ICRL capabilities in LLMs, while also underscoring fundamental limitations in their implicit reasoning about errors.
📅 2025-01-31
Large language model-based (LLM-based) agents have become common in settings that include non-cooperative parties. In such settings, agents' decision-making needs to conceal information from their adversaries, reveal information to their cooperators, and infer information to identify the other agents' characteristics. To investigate whether LLMs have these information control and decision-making capabilities, we make LLM agents play the language-based hidden-identity game, The Chameleon. In the game, a group of non-chameleon agents who do not know each other aim to identify the chameleon agent without revealing a secret. The game requires the aforementioned information control capabilities both as a chameleon and a non-chameleon. The empirical results show that while non-chameleon LLM agents identify the chameleon, they fail to conceal the secret from the chameleon, and their winning probability is far from the levels of even trivial strategies. To formally explain this behavior, we give a theoretical analysis for a spectrum of strategies, from concealing to revealing, and provide bounds on the non-chameleons' winning probability. Based on the empirical results and theoretical analysis of different strategies, we deduce that LLM-based non-chameleon agents reveal excessive information to agents of unknown identities. Our results point to a weakness of contemporary LLMs, including GPT-4, GPT-4o, Gemini 1.5, and Claude 3.5 Sonnet, in strategic interactions.
📅 2025-01-31
Numerous powerful large language models (LLMs) are now available for use as writing support tools, idea generators, and beyond. Although these LLMs are marketed as helpful creative assistants, several works have shown that using an LLM as a creative partner results in a narrower set of creative outputs. However, these studies only consider the effects of interacting with a single LLM, begging the question of whether such narrowed creativity stems from using a particular LLM -- which arguably has a limited range of outputs -- or from using LLMs in general as creative assistants. To study this question, we elicit creative responses from humans and a broad set of LLMs using standardized creativity tests and compare the population-level diversity of responses. We find that LLM responses are much more similar to other LLM responses than human responses are to each other, even after controlling for response structure and other key variables. This finding of significant homogeneity in creative outputs across the LLMs we evaluate adds a new dimension to the ongoing conversation about creativity and LLMs. If today's LLMs behave similarly, using them as a creative partners -- regardless of the model used -- may drive all users towards a limited set of "creative" outputs.
📅 2025-01-31 | 💬 17 pages
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs). RSD synergistically combines a lightweight draft model with a more powerful target model, incorporating a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness. RSD employs a process reward model to evaluate intermediate decoding steps and dynamically decide whether to invoke the target model, optimizing the trade-off between computational cost and output quality. We theoretically demonstrate that a threshold-based mixture strategy achieves an optimal balance between resource utilization and performance. Extensive evaluations on challenging reasoning benchmarks, including Olympiad-level tasks, show that RSD delivers significant efficiency gains against decoding with the target model only (up to 4.4x fewer FLOPs), while achieving significant better accuracy than parallel decoding method on average (up to +3.5). These results highlight RSD as a robust and cost-effective approach for deploying LLMs in resource-intensive scenarios.
📅 2025-01-31 | 💬 8 pages, 15 figures
The majority of research around Large Language Models (LLM) application to software development has been on the subject of code generation. There is little literature on LLMs' impact on requirements engineering (RE), which deals with the process of developing and verifying the system requirements. Within RE, there is a subdiscipline of requirements elicitation, which is the practice of discovering and documenting requirements for a system from users, customers, and other stakeholders. In this analysis, we compare LLM's ability to elicit requirements of a software system, as compared to that of a human expert in a time-boxed and prompt-boxed study. We found LLM-generated requirements were evaluated as more aligned (+1.12) than human-generated requirements with a trend of being more complete (+10.2%). Conversely, we found users tended to believe that solutions they perceived as more aligned had been generated by human experts. Furthermore, while LLM-generated documents scored higher and performed at 720x the speed, their cost was, on average, only 0.06% that of a human expert. Overall, these findings indicate that LLMs will play an increasingly important role in requirements engineering by improving requirements definitions, enabling more efficient resource allocation, and reducing overall project timelines.
📅 2025-01-31 | 💬 USENIX Security 2025
Modern software often accepts inputs with highly complex grammars. Recent advances in large language models (LLMs) have shown that they can be used to synthesize high-quality natural language text and code that conforms to the grammar of a given input format. Nevertheless, LLMs are often incapable or too costly to generate non-textual outputs, such as images, videos, and PDF files. This limitation hinders the application of LLMs in grammar-aware fuzzing. We present a novel approach to enabling grammar-aware fuzzing over non-textual inputs. We employ LLMs to synthesize and also mutate input generators, in the form of Python scripts, that generate data conforming to the grammar of a given input format. Then, non-textual data yielded by the input generators are further mutated by traditional fuzzers (AFL++) to explore the software input space effectively. Our approach, namely G2FUZZ, features a hybrid strategy that combines a holistic search driven by LLMs and a local search driven by industrial quality fuzzers. Two key advantages are: (1) LLMs are good at synthesizing and mutating input generators and enabling jumping out of local optima, thus achieving a synergistic effect when combined with mutation-based fuzzers; (2) LLMs are less frequently invoked unless really needed, thus significantly reducing the cost of LLM usage. We have evaluated G2FUZZ on a variety of input formats, including TIFF images, MP4 audios, and PDF files. The results show that G2FUZZ outperforms SOTA tools such as AFL++, Fuzztruction, and FormatFuzzer in terms of code coverage and bug finding across most programs tested on three platforms: UNIFUZZ, FuzzBench, and MAGMA.
📅 2025-01-31
The integration of human-intuitive interactions into autonomous systems has been limited. Traditional Natural Language Processing (NLP) systems struggle with context and intent understanding, severely restricting human-robot interaction. Recent advancements in Large Language Models (LLMs) have transformed this dynamic, allowing for intuitive and high-level communication through speech and text, and bridging the gap between human commands and robotic actions. Additionally, autonomous navigation has emerged as a central focus in robotics research, with artificial intelligence (AI) increasingly being leveraged to enhance these systems. However, existing AI-based navigation algorithms face significant challenges in latency-critical tasks where rapid decision-making is critical. Traditional frame-based vision systems, while effective for high-level decision-making, suffer from high energy consumption and latency, limiting their applicability in real-time scenarios. Neuromorphic vision systems, combining event-based cameras and spiking neural networks (SNNs), offer a promising alternative by enabling energy-efficient, low-latency navigation. Despite their potential, real-world implementations of these systems, particularly on physical platforms such as drones, remain scarce. In this work, we present Neuro-LIFT, a real-time neuromorphic navigation framework implemented on a Parrot Bebop2 quadrotor. Leveraging an LLM for natural language processing, Neuro-LIFT translates human speech into high-level planning commands which are then autonomously executed using event-based neuromorphic vision and physics-driven planning. Our framework demonstrates its capabilities in navigating in a dynamic environment, avoiding obstacles, and adapting to human instructions in real-time.
📅 2025-01-31 | 💬 Published as a conference paper at ICLR 2025, GitHub: https://github.com/egozverev/Shold-It-Be-Executed-Or-Processed. 10 pages main text, 30 pages in total
Instruction-tuned Large Language Models (LLMs) show impressive results in numerous practical applications, but they lack essential safety features that are common in other areas of computer science, particularly an explicit separation of instructions and data. This makes them vulnerable to manipulations such as indirect prompt injections and generally unsuitable for safety-critical tasks. Surprisingly, there is currently no established definition or benchmark to quantify this phenomenon. In this work, we close this gap by introducing a formal measure for instruction-data separation and an empirical variant that is calculable from a model's outputs. We also present a new dataset, SEP, that allows estimating the measure for real-world models. Our results on various LLMs show that the problem of instruction-data separation is real: all models fail to achieve high separation, and canonical mitigation techniques, such as prompt engineering and fine-tuning, either fail to substantially improve separation or reduce model utility. The source code and SEP dataset are openly accessible at https://github.com/egozverev/Shold-It-Be-Executed-Or-Processed.
📅 2025-01-31 | 💬 11 pages
Zero-shot cross-domain sequential recommendation (ZCDSR) enables predictions in unseen domains without the need for additional training or fine-tuning, making it particularly valuable in data-sparse environments where traditional models struggle. Recent advancements in large language models (LLMs) have greatly improved ZCDSR by leveraging rich pretrained representations to facilitate cross-domain knowledge transfer. However, a key challenge persists: domain semantic bias, which arises from variations in vocabulary and content focus across domains. This misalignment leads to inconsistencies in item embeddings and hinders generalization. To address this issue, we propose a novel framework designed to enhance LLM-based ZCDSR by improving cross-domain alignment at both the item and sequential levels. At the item level, we introduce a generalization loss that promotes inter-domain compactness by aligning embeddings of similar items across domains while maintaining intra-domain diversity to preserve unique item characteristics. This prevents embeddings from becoming overly generic while ensuring effective transferability. At the sequential level, we develop a method for transferring user behavioral patterns by clustering user sequences in the source domain and applying attention-based aggregation for target domain inference. This dynamic adaptation of user embeddings allows effective zero-shot recommendations without requiring target-domain interactions. Comprehensive experiments across multiple datasets and domains demonstrate that our framework significantly improves sequential recommendation performance in the ZCDSR setting. By mitigating domain bias and enhancing the transferability of sequential patterns, our method provides a scalable and robust approach for achieving more effective zero-shot recommendations across domains.
📅 2025-01-31 | 💬 8 pages for main content of the paper
Current LLM customization typically relies on two deployment strategies: closed-source APIs, which require users to upload private data to external servers, and open-weight models, which allow local fine-tuning but pose misuse risks. In this position paper, we argue that (1) deploying closed-source LLMs within user-controlled infrastructure (\textit{on-premises deployment}) enhances data privacy and mitigates misuse risks, and (2) a well-designed on-premises deployment must ensure model confidentiality -- by preventing model theft -- and offer privacy-preserving customization. Prior research on small models has explored securing only the output layer within hardware-secured devices to balance confidentiality and customization efficiency. However, we show that this approach is insufficient for defending large-scale LLMs against distillation attacks. We therefore introduce a {semi-open deployment framework} that secures only a few, carefully chosen layers, achieving distillation resistance comparable to fully secured models while preserving fine-tuning flexibility. Through extensive experiments, we show that securing bottom layers significantly reduces functional extraction risks. Our findings demonstrate that privacy and confidentiality can coexist, paving the way for secure on-premises AI deployment that balances usability and protection.
📅 2025-01-31
Reranking is a critical component in recommender systems, playing an essential role in refining the output of recommendation algorithms. Traditional reranking models have focused predominantly on accuracy, but modern applications demand consideration of additional criteria such as diversity and fairness. Existing reranking approaches often fail to harmonize these diverse criteria effectively at the model level. Moreover, these models frequently encounter challenges with scalability and personalization due to their complexity and the varying significance of different reranking criteria in diverse scenarios. In response, we introduce a comprehensive reranking framework enhanced by LLM, designed to seamlessly integrate various reranking criteria while maintaining scalability and facilitating personalized recommendations. This framework employs a fully connected graph structure, allowing the LLM to simultaneously consider multiple aspects such as accuracy, diversity, and fairness through a coherent Chain-of-Thought (CoT) process. A customizable input mechanism is also integrated, enabling the tuning of the language model's focus to meet specific reranking needs. We validate our approach using three popular public datasets, where our framework demonstrates superior performance over existing state-of-the-art reranking models in balancing multiple criteria. The code for this implementation is publicly available.
📅 2025-01-31
Large language models (LLMs) are both storage-intensive and computation-intensive, posing significant challenges when deployed on resource-constrained hardware. As linear layers in LLMs are mainly resource consuming parts, this paper develops a tensor-train decomposition (TTD) for LLMs with a further hardware implementation on FPGA. TTD compression is applied to the linear layers in ChatGLM3-6B and LLaMA2-7B models with compression ratios (CRs) for the whole network 1.94$\times$ and 1.60$\times$, respectively. The compressed LLMs are further implemented on FPGA hardware within a highly efficient group vector systolic array (GVSA) architecture, which has DSP-shared parallel vector PEs for TTD inference, as well as optimized data communication in the accelerator. Experimental results show that the corresponding TTD based LLM accelerator implemented on FPGA achieves 1.45$\times$ and 1.57$\times$ reduction in first token delay for ChatGLM3-6B and LLaMA2-7B models, respectively.
📅 2025-01-31
Zeroth-order optimization (ZO) has demonstrated remarkable promise in efficient fine-tuning tasks for Large Language Models (LLMs). In particular, recent advances incorporate the low-rankness of gradients, introducing low-rank ZO estimators to further reduce GPU memory consumption. However, most existing works focus solely on the low-rankness of each individual gradient, overlooking a broader property shared by all gradients throughout the training, i.e., all gradients approximately reside within a similar subspace. In this paper, we consider two factors together and propose a novel low-rank ZO estimator, TeZO, which captures the low-rankness across both the model and temporal dimension. Specifically, we represent ZO perturbations along the temporal dimension as a 3D tensor and employ Canonical Polyadic Decomposition (CPD) to extract each low-rank 2D matrix, significantly reducing the training cost. TeZO can also be easily extended to the Adam variant while consuming less memory than MeZO-SGD, and requiring about only 35% memory of MeZO-Adam. Both comprehensive theoretical analysis and extensive experimental research have validated its efficiency, achieving SOTA-comparable results with lower overhead of time and memory.
📅 2025-01-31
I combine detection and mitigation techniques to addresses hallucinations in Large Language Models (LLMs). Mitigation is achieved in a question-answering Retrieval-Augmented Generation (RAG) framework while detection is obtained by introducing the Negative Missing Information Scoring System (NMISS), which accounts for contextual relevance in responses. While RAG mitigates hallucinations by grounding answers in external data, NMISS refines the evaluation by identifying cases where traditional metrics incorrectly flag contextually accurate responses as hallucinations. I use Italian health news articles as context to evaluate LLM performance. Results show that Gemma2 and GPT-4 outperform the other models, with GPT-4 producing answers closely aligned with reference responses. Mid-tier models, such as Llama2, Llama3, and Mistral benefit significantly from NMISS, highlighting their ability to provide richer contextual information. This combined approach offers new insights into the reduction and more accurate assessment of hallucinations in LLMs, with applications in real-world healthcare tasks and other domains.
📅 2025-01-31
Large Language Models (LLMs) have become an essential tool in the programmer's toolkit, but their tendency to hallucinate code can be used by malicious actors to introduce vulnerabilities to broad swathes of the software supply chain. In this work, we analyze package hallucination behaviour in LLMs across popular programming languages examining both existing package references and fictional dependencies. By analyzing this package hallucination behaviour we find potential attacks and suggest defensive strategies to defend against these attacks. We discover that package hallucination rate is predicated not only on model choice, but also programming language, model size, and specificity of the coding task request. The Pareto optimality boundary between code generation performance and package hallucination is sparsely populated, suggesting that coding models are not being optimized for secure code. Additionally, we find an inverse correlation between package hallucination rate and the HumanEval coding benchmark, offering a heuristic for evaluating the propensity of a model to hallucinate packages. Our metrics, findings and analyses provide a base for future models, securing AI-assisted software development workflows against package supply chain attacks.
📅 2025-01-31
Test collections are information retrieval tools that allow researchers to quickly and easily evaluate ranking algorithms. While test collections have become an integral part of IR research, the process of data creation involves significant effort in manual annotations, which often makes it very expensive and time-consuming. Thus, test collections could become too small when the budget is limited, which may lead to unstable evaluations. As a cheaper alternative, recent studies have proposed the use of large language models (LLMs) to completely replace human assessors. However, while LLMs may seem to somewhat correlate with human judgments, their predictions are not perfect and often show bias. Thus a complete replacement with LLMs is argued to be too risky and not fully reliable. Thus, in this paper, we propose LLM-Assisted Relevance Assessments (LARA), an effective method to balance manual annotations with LLM annotations, which helps to build a rich and reliable test collection even under a low budget. We use the LLM's predicted relevance probabilities to select the most profitable documents to manually annotate under a budget constraint. With theoretical reasoning, LARA effectively guides the human annotation process by actively learning to calibrate the LLM's predicted relevance probabilities. Then, using the calibration model learned from the limited manual annotations, LARA debiases the LLM predictions to annotate the remaining non-assessed data. Empirical evaluations on TREC-7 Ad Hoc, TREC-8 Ad Hoc, TREC Robust 2004, and TREC-COVID datasets show that LARA outperforms alternative solutions under almost any budget constraint.
📅 2025-01-31
With the advent of large language models (LLMs), there has been a great deal of interest in applying them to solve difficult programming tasks. Recent work has demonstrated their potential at program optimization, a key challenge in programming languages research. We propose a blackbox adaptation method called Retrieval Augmented Search (RAS) that performs beam search over candidate optimizations; at each step, it retrieves in-context examples from a given training dataset of slow-fast program pairs to guide the LLM. Critically, we find that performing contextual retrieval based on an LLM-generated natural language description significantly outperforms retrieval based on the source code. In addition, we propose a method called AEGIS for improving interpretability by decomposing training examples into "atomic edits" that are significantly more incremental in nature. We show that RAS performs 1.8$\times$ better than prior state-of-the-art blackbox adaptation strategies, and that AEGIS performs 1.37$\times$ better while performing significantly smaller edits.
📅 2025-01-31 | 💬 7 page body, 2 page references, 16 page appendix (25 pages total); 2 figures; submitted to IJCAI2025
Recent advancements in the reasoning skills of Large Language Models (LLMs) demonstrate an increase in the ability of LLMs to solve simple planning tasks. However, as long as the driving force behind improved reasoning capability is the size and complexity of the model, the financial and computational costs associated with running them will also increase. This trend raises questions about continued accessibility and whether these improvements will increase at the same pace as models continue to grow in size and expense. We propose two approaches to enhance the reasoning ability of less resource-intensive LLMs. (1) Provide them with a generalised strategy for solving tasks within a given domain, generated by a more resource-intensive LLM. (2) Exploit their cost-effectiveness by iteratively prompting these models to correct errors in their proposed solutions. Our empirical results from planning and mathematical reasoning tasks demonstrate that these methods improve the performance of less resource-intensive LLMs to levels comparable with their more resource-intensive counterparts, at a fraction of the cost. Additionally, we show that the utilisation of generalised strategies in our experiments reduced the cost of the less resource-intensive model by nearly 30 percent on average.
📅 2025-01-31
Preference tuning relies on high-quality human preference data, which is often expensive and time-consuming to gather. In this paper, we introduce Dr.SoW (Density Ratio of Strong over Weak) a cost-effective method that eliminates the reliance for human annotation by leveraging off-the-shelf LLMs for preference data annotation. Dr.SoW uses the log-density ratio between a better-aligned and a less-aligned LLM as a reward signal. We evaluate Dr.SoW across 221 different LLM pairs and empirically find a strong correlation between the performance gap of the paired models and the quality of the reward signal. This insight provides a practical guideline for selecting LLMs for data annotation. Additionally, we introduce an end-to-end pipeline that customizes reward functions based on user query domains. Without fine-tuning, it improves accuracy on domain-specific evaluations. With a pair of Mistral-7B models, Dr.SoW achieves a RewardBench score of 82.6, outperforming the best trained reward functions from same model class and demonstrating competitive performance against SoTA models in Safety (91.0) and Reasoning (88.0) domains. Further, we preference-tune Llama-3-8B-Instruct using data annotated by Dr.SoW. Our approach pushes Llama-3-8B to achieve a 37.4 % (+15.1 %) win rate on ArenaHard and a 40.7 % (+17.8 %) win rate on length-controlled AlpacaEval 2.0.
📅 2025-01-31
Translating legacy Fortran code into C++ is a crucial step in modernizing high-performance computing (HPC) applications. However, the scarcity of high-quality, parallel Fortran-to-C++ datasets and the limited domain-specific expertise in large language models (LLMs) present significant challenges for automated translation. In this paper, we introduce Fortran2CPP, a multi-turn dialogue dataset generated by a novel LLM agent-based approach that integrates a dual-LLM Questioner-Solver module to enhance translation accuracy. Our dataset comprises 11.7k dialogues capturing iterative feedback-decision workflows including code translation, compilation, execution, unit testing, and error-fixing. Using this dataset, we fine-tune several open-weight LLMs and achieve up to a 3.31x improvement in CodeBLEU scores and a 92\% increase in compilation success rate, demonstrating enhanced syntactic accuracy and functional reliability. Our findings highlight the value of dialogue-based LLM training for complex code translation tasks. The dataset and model have been open-sourced and are available on our public GitHub repository\footnote{\url{https://github.com/HPC-Fortran2CPP/Fortran2Cpp}}.
📅 2025-01-31
Accurate uncertainty quantification of large language models (LLMs) provides credibility measure over their outputs. However, fine-tuned LLMs often struggle with overconfidence in uncertain predictions due to the limitations in the models' ability to generalize with limited data. Existing parameter efficient fine-tuning (PEFT) uncertainty quantification methods for LLMs focus on post fine-tuning stage and fall short of calibrating epistemic uncertainty. To address these limitations, we propose Functional-Level Uncertainty Quantification for Calibrated Fine-Tuning (UQ4CT), which captures and calibrates epistemic uncertainty over the space of functions that map input prompts to outputs. We implement UQ4CT during the fine-tuning stage via a mixture-of-experts framework that hierarchically decomposes the functional space. We demonstrate that UQ4CT reduces Expected Calibration Error (ECE) by more than $25\%$ while maintaining high accuracy across $5$ benchmarks. Even under distribution shift, UQ4CT maintains superior ECE performance with high accuracy, showcasing improved generalizability.
📅 2025-01-31
Large language models (LLMs) continue to face challenges in reliably solving reasoning tasks, particularly tasks that involve precise rule following, as often found in mathematical reasoning tasks. This paper introduces a novel neurosymbolic method that improves LLM reasoning by encoding hidden states into neurosymbolic vectors, allowing for problem-solving within a neurosymbolic vector space. The results are decoded and combined with the original hidden state, boosting the model's performance on numerical reasoning tasks. By offloading computation through neurosymbolic representations, this method improves efficiency, reliability, and interpretability. Our experimental results demonstrate an average of $82.86\%$ lower cross entropy loss and $24.50$ times more problems correctly solved on a suite of mathematical reasoning problems compared to chain-of-thought prompting and supervised fine-tuning (LoRA), while at the same time not hindering the performance of the LLM on other tasks.
📅 2025-01-31
We present Branch-Train-Stitch (BTS), an efficient and flexible training algorithm for combining independently trained large language model (LLM) experts into a single, capable generalist model. Following Li et al., we start with a single seed language model which is branched into domain-specific (e.g., coding or math) experts with continual pretraining. BTS combines experts into a generalist model using lightweight stitch layers, which are inserted between frozen experts and the seed LLM, and trained on a small datamix of the expert domains. Stitch layers enable the seed LLM to integrate representations from any number of experts during the forward pass, allowing it to generalize to new domains, despite remaining frozen. Because BTS does not alter the constituent LLMs, BTS provides a modular and flexible approach: experts can be easily removed and new experts can be added with only a small amount of training. Compared to alternative model merging approaches, BTS yields the best generalist performance on a variety of downstream tasks, retaining the specialized capabilities of each of the experts.
📅 2025-01-31 | 💬 11 pages
Large language models (LLMs) are demonstrating increasing prowess in cybersecurity applications, creating creating inherent risks alongside their potential for strengthening defenses. In this position paper, we argue that current efforts to evaluate risks posed by these capabilities are misaligned with the goal of understanding real-world impact. Evaluating LLM cybersecurity risk requires more than just measuring model capabilities -- it demands a comprehensive risk assessment that incorporates analysis of threat actor adoption behavior and potential for impact. We propose a risk assessment framework for LLM cyber capabilities and apply it to a case study of language models used as cybersecurity assistants. Our evaluation of frontier models reveals high compliance rates but moderate accuracy on realistic cyber assistance tasks. However, our framework suggests that this particular use case presents only moderate risk due to limited operational advantages and impact potential. Based on these findings, we recommend several improvements to align research priorities with real-world impact assessment, including closer academia-industry collaboration, more realistic modeling of attacker behavior, and inclusion of economic metrics in evaluations. This work represents an important step toward more effective assessment and mitigation of LLM-enabled cybersecurity risks.
📅 2025-01-31 | 💬 72 pages
We investigate whether artificial intelligence can address the peer review crisis in economics by analyzing 27,090 evaluations of 9,030 unique submissions using a large language model (LLM). The experiment systematically varies author characteristics (e.g., affiliation, reputation, gender) and publication quality (e.g., top-tier, mid-tier, low-tier, AI generated papers). The results indicate that LLMs effectively distinguish paper quality but exhibit biases favoring prominent institutions, male authors, and renowned economists. Additionally, LLMs struggle to differentiate high-quality AI-generated papers from genuine top-tier submissions. While LLMs offer efficiency gains, their susceptibility to bias necessitates cautious integration and hybrid peer review models to balance equity and accuracy.
📅 2025-01-30
We introduce DeltaLLM, a new post-training compression technique to reduce the memory footprint of LLMs. We propose an alternative way of structuring LLMs with weight sharing between layers in subsequent Transformer blocks, along with additional low-rank difference matrices between them. For training, we adopt the progressing module replacement method and show that the lightweight training of the low-rank modules with approximately 30M-40M tokens is sufficient to achieve performance on par with LLMs of comparable sizes trained from scratch. We release the resultant models, DeltaLLAMA and DeltaPHI, with a 12% parameter reduction, retaining 90% of the performance of the base Llama and Phi models on common knowledge and reasoning benchmarks. Our method also outperforms compression techniques JointDrop, LaCo, ShortGPT and SliceGPT with the same number of parameters removed. For example, DeltaPhi 2.9B with a 24% reduction achieves similar average zero-shot accuracies as recovery fine-tuned SlicedPhi 3.3B with a 12% reduction, despite being approximately 400M parameters smaller with no fine-tuning applied. This work provides new insights into LLM architecture design and compression methods when storage space is critical.
📅 2025-01-30
Large language models (LLMs) such as OpenAI's o1 have demonstrated remarkable abilities in complex reasoning tasks by scaling test-time compute and exhibiting human-like deep thinking. However, we identify a phenomenon we term underthinking, where o1-like LLMs frequently switch between different reasoning thoughts without sufficiently exploring promising paths to reach a correct solution. This behavior leads to inadequate depth of reasoning and decreased performance, particularly on challenging mathematical problems. To systematically analyze this issue, we conduct experiments on three challenging test sets and two representative open-source o1-like models, revealing that frequent thought switching correlates with incorrect responses. We introduce a novel metric to quantify underthinking by measuring token efficiency in incorrect answers. To address underthinking, we propose a decoding strategy with thought switching penalty TIP that discourages premature transitions between thoughts, encouraging deeper exploration of each reasoning path. Experimental results demonstrate that our approach improves accuracy across challenging datasets without requiring model fine-tuning. Our findings contribute to understanding reasoning inefficiencies in o1-like LLMs and offer a practical solution to enhance their problem-solving capabilities.
📅 2025-01-30
Real-world open-domain questions can be complicated, particularly when answering them involves information from multiple information sources. LLMs have demonstrated impressive performance in decomposing complex tasks into simpler steps, and previous work has used it for better retrieval in support of complex questions. However, LLM's decomposition of questions is unaware of what data is available and how data is organized, often leading to a sub-optimal retrieval performance. Recent effort in agentic RAG proposes to perform retrieval in an iterative fashion, where a followup query is derived as an action based on previous rounds of retrieval. While this provides one way of interacting with the data collection, agentic RAG's exploration of data is inefficient because successive queries depend on previous results rather than being guided by the organization of available data in the collection. To address this problem, we propose an LLM-based retrieval method -- ARM, that aims to better align the question with the organization of the data collection by exploring relationships among data objects beyond matching the utterance of the query, thus leading to a retrieve-all-at-once solution for complex queries. We evaluated ARM on two datasets, Bird and OTT-QA. On Bird, it outperforms standard RAG with query decomposition by up to 5.2 pt in execution accuracy and agentic RAG (ReAct) by up to 15.9 pt. On OTT-QA, it achieves up to 5.5 pt and 19.3 pt higher F1 match scores compared to these approaches.
📅 2025-01-30
Consider a scenario in which a user searches for information, only to encounter texts flooded with misleading or non-relevant content. This scenario exemplifies a simple yet potent vulnerability in neural Information Retrieval (IR) pipelines: content injection attacks. We find that embedding models for retrieval, rerankers, and large language model (LLM) relevance judges are vulnerable to these attacks, in which adversaries insert misleading text into passages to manipulate model judgements. We identify two primary threats: (1) inserting unrelated or harmful content within passages that still appear deceptively "relevant", and (2) inserting entire queries or key query terms into passages to boost their perceived relevance. While the second tactic has been explored in prior research, we present, to our knowledge, the first empirical analysis of the first threat, demonstrating how state-of-the-art models can be easily misled. Our study systematically examines the factors that influence an attack's success, such as the placement of injected content and the balance between relevant and non-relevant material. Additionally, we explore various defense strategies, including adversarial passage classifiers, retriever fine-tuning to discount manipulated content, and prompting LLM judges to adopt a more cautious approach. However, we find that these countermeasures often involve trade-offs, sacrificing effectiveness for attack robustness and sometimes penalizing legitimate documents in the process. Our findings highlight the need for stronger defenses against these evolving adversarial strategies to maintain the trustworthiness of IR systems. We release our code and scripts to facilitate further research.
📅 2025-01-30 | 💬 Main Paper 1-9 pages, Supplementary Materials: 10-17, 13 figures
Hacking poses a significant threat to cybersecurity, inflicting billions of dollars in damages annually. To mitigate these risks, ethical hacking, or penetration testing, is employed to identify vulnerabilities in systems and networks. Recent advancements in large language models (LLMs) have shown potential across various domains, including cybersecurity. However, there is currently no comprehensive, open, end-to-end automated penetration testing benchmark to drive progress and evaluate the capabilities of these models in security contexts. This paper introduces a novel open benchmark for LLM-based automated penetration testing, addressing this critical gap. We first evaluate the performance of LLMs, including GPT-4o and Llama 3.1-405B, using the state-of-the-art PentestGPT tool. Our findings reveal that while Llama 3.1 demonstrates an edge over GPT-4o, both models currently fall short of performing fully automated, end-to-end penetration testing. Next, we advance the state-of-the-art and present ablation studies that provide insights into improving the PentestGPT tool. Our research illuminates the challenges LLMs face in each aspect of Pentesting, e.g. enumeration, exploitation, and privilege escalation. This work contributes to the growing body of knowledge on AI-assisted cybersecurity and lays the foundation for future research in automated penetration testing using large language models.
📅 2025-01-30 | 💬 22 pages, 18 figures
As LLMs increasingly impact safety-critical applications, ensuring their safety using guardrails remains a key challenge. This paper proposes GuardReasoner, a new safeguard for LLMs, by guiding the guard model to learn to reason. Concretely, we first create the GuardReasonerTrain dataset, which consists of 127K samples with 460K detailed reasoning steps. Then, we introduce reasoning SFT to unlock the reasoning capability of guard models. In addition, we present hard sample DPO to further strengthen their reasoning ability. In this manner, GuardReasoner achieves better performance, explainability, and generalizability. Extensive experiments and analyses on 13 benchmarks of 3 guardrail tasks demonstrate its superiority. Remarkably, GuardReasoner 8B surpasses GPT-4o+CoT by 5.74% and LLaMA Guard 3 8B by 20.84% F1 score on average. We release the training data, code, and models with different scales (1B, 3B, 8B) of GuardReasoner : https://github.com/yueliu1999/GuardReasoner/.
📅 2025-01-30 | 💬 To appear in USENIX Security Symposium 2025
Automatically extracting personal information--such as name, phone number, and email address--from publicly available profiles at a large scale is a stepstone to many other security attacks including spear phishing. Traditional methods--such as regular expression, keyword search, and entity detection--achieve limited success at such personal information extraction. In this work, we perform a systematic measurement study to benchmark large language model (LLM) based personal information extraction and countermeasures. Towards this goal, we present a framework for LLM-based extraction attacks; collect four datasets including a synthetic dataset generated by GPT-4 and three real-world datasets with manually labeled eight categories of personal information; introduce a novel mitigation strategy based on prompt injection; and systematically benchmark LLM-based attacks and countermeasures using ten LLMs and five datasets. Our key findings include: LLM can be misused by attackers to accurately extract various personal information from personal profiles; LLM outperforms traditional methods; and prompt injection can defend against strong LLM-based attacks, reducing the attack to less effective traditional ones.
📅 2025-01-30
Fine-tuning large language models (LLMs) using low-rank adaptation (LoRA) has become a highly efficient approach for downstream tasks, particularly in scenarios with limited computational resources. However, applying LoRA techniques to quantized LLMs poses unique challenges due to the reduced representational precision of quantized weights. In this paper, we introduce CLoQ (Calibrated LoRA initialization for Quantized LLMs), a simplistic initialization strategy designed to overcome these challenges. Our approach focuses on minimizing the layer-wise discrepancy between the original LLM and its quantized counterpart with LoRA components during initialization. By leveraging a small calibration dataset, CLoQ quantizes a pre-trained LLM and determines the optimal LoRA components for each layer, ensuring a strong foundation for subsequent fine-tuning. A key contribution of this work is a novel theoretical result that enables the accurate and closed-form construction of these optimal LoRA components. We validate the efficacy of CLoQ across multiple tasks such as language generation, arithmetic reasoning, and commonsense reasoning, demonstrating that it consistently outperforms existing LoRA fine-tuning methods for quantized LLMs, especially at ultra low-bit widths.
📅 2025-01-30
Large Language Models (LLMs) have reshaped natural language processing, powering applications from multi-hop retrieval and question answering to autonomous agent workflows. Yet, prompt engineering -- the task of crafting textual inputs to effectively direct LLMs -- remains difficult and labor-intensive, particularly for complex pipelines that combine multiple LLM calls with functional operations like retrieval and data formatting. We introduce LLM-AutoDiff: a novel framework for Automatic Prompt Engineering (APE) that extends textual gradient-based methods (such as Text-Grad) to multi-component, potentially cyclic LLM architectures. Implemented within the AdalFlow library, LLM-AutoDiff treats each textual input as a trainable parameter and uses a frozen backward engine LLM to generate feedback-akin to textual gradients -- that guide iterative prompt updates. Unlike prior single-node approaches, LLM-AutoDiff inherently accommodates functional nodes, preserves time-sequential behavior in repeated calls (e.g., multi-hop loops), and combats the "lost-in-the-middle" problem by isolating distinct sub-prompts (instructions, formats, or few-shot examples). It further boosts training efficiency by focusing on error-prone samples through selective gradient computation. Across diverse tasks, including single-step classification, multi-hop retrieval-based QA, and agent-driven pipelines, LLM-AutoDiff consistently outperforms existing textual gradient baselines in both accuracy and training cost. By unifying prompt optimization through a graph-centric lens, LLM-AutoDiff offers a powerful new paradigm for scaling and automating LLM workflows - mirroring the transformative role that automatic differentiation libraries have long played in neural network research.
📅 2025-01-30
Safety alignment mechanism are essential for preventing large language models (LLMs) from generating harmful information or unethical content. However, cleverly crafted prompts can bypass these safety measures without accessing the model's internal parameters, a phenomenon known as black-box jailbreak. Existing heuristic black-box attack methods, such as genetic algorithms, suffer from limited effectiveness due to their inherent randomness, while recent reinforcement learning (RL) based methods often lack robust and informative reward signals. To address these challenges, we propose a novel black-box jailbreak method leveraging RL, which optimizes prompt generation by analyzing the embedding proximity between benign and malicious prompts. This approach ensures that the rewritten prompts closely align with the intent of the original prompts while enhancing the attack's effectiveness. Furthermore, we introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success. Experimental results show the superiority of our approach, achieving state-of-the-art (SOTA) performance on several prominent open and closed-source LLMs, including Qwen2.5-7B-Instruct, Llama3.1-8B-Instruct, and GPT-4o-0806. Our method sets a new benchmark in jailbreak attack effectiveness, highlighting potential vulnerabilities in LLMs. The codebase for this work is available at https://github.com/Aegis1863/xJailbreak.
📅 2025-01-30 | 💬 7 pages
Federated Learning (FL) is increasingly being adopted in military collaborations to develop Large Language Models (LLMs) while preserving data sovereignty. However, prompt injection attacks-malicious manipulations of input prompts-pose new threats that may undermine operational security, disrupt decision-making, and erode trust among allies. This perspective paper highlights four potential vulnerabilities in federated military LLMs: secret data leakage, free-rider exploitation, system disruption, and misinformation spread. To address these potential risks, we propose a human-AI collaborative framework that introduces both technical and policy countermeasures. On the technical side, our framework uses red/blue team wargaming and quality assurance to detect and mitigate adversarial behaviors of shared LLM weights. On the policy side, it promotes joint AI-human policy development and verification of security protocols. Our findings will guide future research and emphasize proactive strategies for emerging military contexts.
📅 2025-01-30 | 💬 Preprints
Scaling the input context length of a large language model (LLM) incurs a significant increase in computation cost and memory footprint to maintain the attention key-value (KV) cache. Existing KV cache compression methods suffer from inefficient compression strategies and limited memory reduction effects, making it difficult for LLMs to conduct long-context inference on consumer-grade devices, especially when inferring long-context stream input. Such obstacles prevent consumer-grade devices from supporting more complex applications, creating challenges for the democratization of LLMs. To overcome this, we propose Locret, the first framework to create an eviction policy compatible with chunked prefill. By evaluating the causal importance of KV cache units by learnable retaining heads, Locret enables precise eviction of cache units, facilitating efficient long-context inference. In our extensive empirical studies, Locret outperforms the recent popular and competitive approaches in terms of memory efficiency and generation quality -- Locret achieves up to 20x of KV cache compression ratio within less than 10% performance loss. Furthermore, Locret achieves 128K+ long-context inference on a single NVIDIA 4090 GPU without compromising generation quality and only costs <1 GPU hour of additional training.
📅 2025-01-30
Automated optimization modeling (AOM) has evoked considerable interest with the rapid evolution of large language models (LLMs). Existing approaches predominantly rely on prompt engineering, utilizing meticulously designed expert response chains or structured guidance. However, prompt-based techniques have failed to perform well in the sensor array signal processing (SASP) area due the lack of specific domain knowledge. To address this issue, we propose an automated modeling approach based on retrieval-augmented generation (RAG) technique, which consists of two principal components: a multi-agent (MA) structure and a graph-based RAG (Graph-RAG) process. The MA structure is tailored for the architectural AOM process, with each agent being designed based on principles of human modeling procedure. The Graph-RAG process serves to match user query with specific SASP modeling knowledge, thereby enhancing the modeling result. Results on ten classical signal processing problems demonstrate that the proposed approach (termed as MAG-RAG) outperforms several AOM benchmarks.
📅 2025-01-30
The security issue of large language models (LLMs) has gained significant attention recently, with various defense mechanisms developed to prevent harmful outputs, among which safeguards based on text embedding models serve as a fundamental defense. Through testing, we discover that the distribution of text embedding model outputs is significantly biased with a large mean. Inspired by this observation, we propose novel efficient methods to search for universal magic words that can attack text embedding models. The universal magic words as suffixes can move the embedding of any text towards the bias direction, therefore manipulate the similarity of any text pair and mislead safeguards. By appending magic words to user prompts and requiring LLMs to end answers with magic words, attackers can jailbreak the safeguard. To eradicate this security risk, we also propose defense mechanisms against such attacks, which can correct the biased distribution of text embeddings in a train-free manner.
📅 2025-01-30 | 💬 18 pages; 7 figures; 5 tables
With the degradation of guardrails against mis- and disinformation online, it is more critical than ever to be able to effectively combat it. In this paper, we explore the efficiency and effectiveness of using crowd-sourced truthfulness assessments based on condensed, large language model (LLM) generated summaries of online sources. We compare the use of generated summaries to the use of original web pages in an A/B testing setting, where we employ a large and diverse pool of crowd-workers to perform the truthfulness assessment. We evaluate the quality of assessments, the efficiency with which assessments are performed, and the behavior and engagement of participants. Our results demonstrate that the Summary modality, which relies on summarized evidence, offers no significant change in assessment accuracy over the Standard modality, while significantly increasing the speed with which assessments are performed. Workers using summarized evidence produce a significantly higher number of assessments in the same time frame, reducing the cost needed to acquire truthfulness assessments. Additionally, the Summary modality maximizes both the inter-annotator agreements as well as the reliance on and perceived usefulness of evidence, demonstrating the utility of summarized evidence without sacrificing the quality of assessments.
📅 2025-01-30
The evaluation of generative or discriminative large language model (LLM)-based systems is often a complex multi-dimensional problem. Typically, a set of system configuration alternatives are evaluated on one or more benchmark datasets, each with one or more evaluation metrics, which may differ between datasets. We often want to evaluate -- with a statistical measure of significance -- whether systems perform differently either on a given dataset according to a single metric, on aggregate across metrics on a dataset, or across datasets. Such evaluations can be done to support decision-making, such as deciding whether a particular system component change (e.g., choice of LLM or hyperparameter values) significantly improves performance over the current system configuration, or, more generally, whether a fixed set of system configurations (e.g., a leaderboard list) have significantly different performances according to metrics of interest. We present a framework implementation that automatically performs the correct statistical tests, properly aggregates the statistical results across metrics and datasets (a nontrivial task), and can visualize the results. The framework is demonstrated on the multi-lingual code generation benchmark CrossCodeEval, for several state-of-the-art LLMs.
📅 2025-01-30 | 💬 8 pages
Large Language Models (LLMs) demand significant computational resources, making it essential to enhance their capabilities without retraining from scratch. A key challenge in this domain is \textit{catastrophic forgetting} (CF), which hampers performance during Continuous Pre-training (CPT) and Continuous Supervised Fine-Tuning (CSFT). We propose \textbf{Control LLM}, a novel approach that leverages parallel pre-trained and expanded transformer blocks, aligning their hidden-states through interpolation strategies This method effectively preserves performance on existing tasks while seamlessly integrating new knowledge. Extensive experiments demonstrate the effectiveness of Control LLM in both CPT and CSFT. On Llama3.1-8B-Instruct, it achieves significant improvements in mathematical reasoning ($+14.4\%$ on Math-Hard) and coding performance ($+10\%$ on MBPP-PLUS). On Llama3.1-8B, it enhances multilingual capabilities ($+10.6\%$ on C-Eval, $+6.8\%$ on CMMLU, and $+30.2\%$ on CMMLU-0shot-CoT). It surpasses existing methods and achieves SOTA among open-source models tuned from the same base model, using substantially less data and compute. Crucially, these gains are realized while preserving strong original capabilities, with minimal degradation ($<4.3\% \text{on MMLU}$) compared to $>35\%$ in open-source Math and Coding models. This approach has been successfully deployed in LinkedIn's GenAI-powered job seeker and Ads unit products. To support further research, we release the training and evaluation code (https://github.com/linkedin/ControlLLM) along with models trained on public datasets (https://huggingface.co/ControlLLM) to the community.
📅 2025-01-30 | 💬 Corrected Version - Solved Some Issues with reference compilation by latex
Recent advances in Large Language Models (LLMs) have incorporated planning and reasoning capabilities, enabling models to outline steps before execution and provide transparent reasoning paths. This enhancement has reduced errors in mathematical and logical tasks while improving accuracy. These developments have facilitated LLMs' use as agents that can interact with tools and adapt their responses based on new information. Our study examines DeepSeek R1, a model trained to output reasoning tokens similar to OpenAI's o1. Testing revealed concerning behaviors: the model exhibited deceptive tendencies and demonstrated self-preservation instincts, including attempts of self-replication, despite these traits not being explicitly programmed (or prompted). These findings raise concerns about LLMs potentially masking their true objectives behind a facade of alignment. When integrating such LLMs into robotic systems, the risks become tangible - a physically embodied AI exhibiting deceptive behaviors and self-preservation instincts could pursue its hidden objectives through real-world actions. This highlights the critical need for robust goal specification and safety frameworks before any physical implementation.
📅 2025-01-30 | 💬 Conditionally accepted to IUI 2025
Taking notes quickly while effectively capturing key information can be challenging, especially when watching videos that present simultaneous visual and auditory streams. Manually taken notes often miss crucial details due to the fast-paced nature of the content, while automatically generated notes fail to incorporate user preferences and discourage active engagement with the content. To address this, we propose an interactive system, NoTeeline, for supporting real-time, personalized notetaking. Given micronotes, NoTeeline automatically expands them into full-fledged notes using a Large Language Model (LLM). The generated notes build on the content of micronotes by adding relevant details while maintaining consistency with the user's writing style. In a within-subjects study (n=12), we found that NoTeeline creates high-quality notes that capture the essence of participant micronotes with 93.2% factual correctness and accurately align with participant writing style (8.33% improvement). Using NoTeeline, participants could capture their desired notes with significantly reduced mental effort, writing 47.0% less text and completing their notes in 43.9% less time compared to a manual notetaking baseline. Our results suggest that NoTeeline enables users to integrate LLM assistance in a familiar notetaking workflow while ensuring consistency with their preferences - providing an example of how to address broader challenges in designing AI-assisted tools to augment human capabilities without compromising user autonomy and personalization.
📅 2025-01-30
Guesstimation, the task of making approximate quantity estimates, is a common real-world challenge. However, it has been largely overlooked in large language models (LLMs) and vision language models (VLMs) research. We introduce a novel guesstimation dataset, MARBLES. This dataset requires one to estimate how many items (e.g., marbles) can fit into containers (e.g., a one-cup measuring cup), both with and without accompanying images. Inspired by the social science concept of the ``Wisdom of Crowds'' (WOC) - taking the median from estimates from a crowd), which has proven effective in guesstimation, we propose ``WOC decoding'' strategy for LLM guesstimation. We show that LLMs/VLMs perform well on guesstimation, suggesting that they possess some level of a "world model" necessary for guesstimation. Moreover, similar to human performance, the WOC decoding method improves LLM/VLM guesstimation accuracy. Furthermore, the inclusion of images in the multimodal condition enhances model performance. These results highlight the value of WOC decoding strategy for LLMs/VLMs and position guesstimation as a probe for evaluating LLMs/VLMs' world model. As LLMs' world model is a fundamental prerequisite for many real-world tasks, e.g., human-AI teaming, our findings have broad implications for the AI community.
📅 2025-01-30 | 💬 19 pages, 8 tables, 5 figures, 3 listings
Code auditing is a code review process with the goal of finding bugs. Large Language Models (LLMs) have shown substantial potential in this task, offering the ability to analyze programs without compilation and enabling customized bug detection following specified prompts. However, applying LLMs to repository-level code auditing presents notable challenges. The inherent context limits and hallucinations of LLMs can lead to the low quality of bug reports. Meanwhile, the large size of software repositories introduces substantial time and token costs, hindering efficiency and scalability in real-world scenarios. This work introduces an autonomous LLM-agent, RepoAudit, designed to enable precise and efficient repository-level code auditing. Equipped with the agent memory, RepoAudit explores the code repository on demand, analyzing data-flow facts along different feasible program paths in individual functions. It also introduces the validator to check the data-flow facts for hallucination mitigation and examine the satisfiability of path conditions of potential buggy paths, which enables RepoAudit to discard false positives in the code auditing. Our experiment shows that RepoAudit powered by Claude 3.5 Sonnet successfully finds 38 true bugs in 15 real-world systems, consuming 0.44 hours and $2.54 per project on average.
📅 2025-01-30 | 💬 NAACL 2025
Large language models (LLM) have shown remarkable abilities in text generation, question answering, language translation, reasoning and many other tasks. It continues to advance rapidly and is becoming increasingly influential in various fields, from technology and business to education and entertainment. Despite LLM's success in multiple areas, its ability to play abstract games, such as chess, is underexplored. Chess-playing requires the language models to output legal and reasonable moves from textual inputs. Here, we propose the Large language model ChessLLM to play full chess games. We transform the game into a textual format with the best move represented in the Forsyth-Edwards Notation. We show that by simply supervised fine-tuning, our model has achieved a professional-level Elo rating of 1788 in matches against the standard Elo-rated Stockfish when permitted to sample 10 times. We further show that data quality is important. Long-round data supervision enjoys a 350 Elo rating improvement over short-round data.
📅 2025-01-30 | 💬 Accepted at The 26th International Symposium on Quality Electronic Design (ISQED'25)
Battery health monitoring is critical for the efficient and reliable operation of electric vehicles (EVs). This study introduces a transformer-based framework for estimating the State of Health (SoH) and predicting the Remaining Useful Life (RUL) of lithium titanate (LTO) battery cells by utilizing both cycle-based and instantaneous discharge data. Testing on eight LTO cells under various cycling conditions over 500 cycles, we demonstrate the impact of charge durations on energy storage trends and apply Differential Voltage Analysis (DVA) to monitor capacity changes (dQ/dV) across voltage ranges. Our LLM model achieves superior performance, with a Mean Absolute Error (MAE) as low as 0.87\% and varied latency metrics that support efficient processing, demonstrating its strong potential for real-time integration into EVs. The framework effectively identifies early signs of degradation through anomaly detection in high-resolution data, facilitating predictive maintenance to prevent sudden battery failures and enhance energy efficiency.
📅 2025-01-30
LLM-as-a-Judge models generate chain-of-thought (CoT) sequences intended to capture the step-bystep reasoning process that underlies the final evaluation of a response. However, due to the lack of human annotated CoTs for evaluation, the required components and structure of effective reasoning traces remain understudied. Consequently, previous approaches often (1) constrain reasoning traces to hand-designed components, such as a list of criteria, reference answers, or verification questions and (2) structure them such that planning is intertwined with the reasoning for evaluation. In this work, we propose EvalPlanner, a preference optimization algorithm for Thinking-LLM-as-a-Judge that first generates an unconstrained evaluation plan, followed by its execution, and then the final judgment. In a self-training loop, EvalPlanner iteratively optimizes over synthetically constructed evaluation plans and executions, leading to better final verdicts. Our method achieves a new state-of-the-art performance for generative reward models on RewardBench (with a score of 93.9), despite being trained on fewer amount of, and synthetically generated, preference pairs. Additional experiments on other benchmarks like RM-Bench, JudgeBench, and FollowBenchEval further highlight the utility of both planning and reasoning for building robust LLM-as-a-Judge reasoning models.
📅 2025-01-30 | 💬 Code: https://github.com/facebookresearch/MILS
We present MILS: Multimodal Iterative LLM Solver, a surprisingly simple, training-free approach, to imbue multimodal capabilities into your favorite LLM. Leveraging their innate ability to perform multi-step reasoning, MILS prompts the LLM to generate candidate outputs, each of which are scored and fed back iteratively, eventually generating a solution to the task. This enables various applications that typically require training specialized models on task-specific data. In particular, we establish a new state-of-the-art on emergent zero-shot image, video and audio captioning. MILS seamlessly applies to media generation as well, discovering prompt rewrites to improve text-to-image generation, and even edit prompts for style transfer! Finally, being a gradient-free optimization approach, MILS can invert multimodal embeddings into text, enabling applications like cross-modal arithmetic.
📅 2025-01-30 | 💬 Accepted by AAAI workshop
Mathematical modeling (MM) is considered a fundamental skill for students in STEM disciplines. Practicing the MM skill is often the most effective when students can engage in group discussion and collaborative problem-solving. However, due to unevenly distributed teachers and educational resources needed to monitor such group activities, students do not always receive equal opportunities for this practice. Excitingly, large language models (LLMs) have recently demonstrated strong capability in both modeling mathematical problems and simulating characters with different traits and properties. Drawing inspiration from the advancement of LLMs, in this work, we present MATHVC, the very first LLM-powered virtual classroom containing multiple LLM-simulated student characters, with whom a human student can practice their MM skill. To encourage each LLM character's behaviors to be aligned with their specified math-relevant properties (termed "characteristics alignment") and the overall conversational procedure to be close to an authentic student MM discussion (termed "conversational procedural alignment"), we proposed three innovations: integrating MM domain knowledge into the simulation, defining a symbolic schema as the ground for character simulation, and designing a meta planner at the platform level to drive the conversational procedure. Through experiments and ablation studies, we confirmed the effectiveness of our simulation approach and showed the promise for MATHVC to benefit real-life students in the future.
📅 2025-01-30 | 💬 Accepted by the Network and Distributed System Security (NDSS) Symposium 2025
Large language models (LLMs) extended as systems, such as ChatGPT, have begun supporting third-party applications. These LLM apps leverage the de facto natural language-based automated execution paradigm of LLMs: that is, apps and their interactions are defined in natural language, provided access to user data, and allowed to freely interact with each other and the system. These LLM app ecosystems resemble the settings of earlier computing platforms, where there was insufficient isolation between apps and the system. Because third-party apps may not be trustworthy, and exacerbated by the imprecision of natural language interfaces, the current designs pose security and privacy risks for users. In this paper, we evaluate whether these issues can be addressed through execution isolation and what that isolation might look like in the context of LLM-based systems, where there are arbitrary natural language-based interactions between system components, between LLM and apps, and between apps. To that end, we propose IsolateGPT, a design architecture that demonstrates the feasibility of execution isolation and provides a blueprint for implementing isolation, in LLM-based systems. We evaluate IsolateGPT against a number of attacks and demonstrate that it protects against many security, privacy, and safety issues that exist in non-isolated LLM-based systems, without any loss of functionality. The performance overhead incurred by IsolateGPT to improve security is under 30% for three-quarters of tested queries.
📅 2025-01-30
Domain-independent heuristics have long been a cornerstone of AI planning, offering general solutions applicable across a wide range of tasks without requiring domain-specific engineering. However, the advent of large language models (LLMs) presents an opportunity to generate heuristics tailored to specific planning problems, potentially challenging the necessity of domain independence as a strict design principle. In this paper, we explore the use of LLMs to automatically derive planning heuristics from task descriptions represented as successor generators and goal tests written in general purpose programming language. We investigate the trade-offs between domain-specific LLM-generated heuristics and traditional domain-independent methods in terms of computational efficiency and explainability. Our experiments demonstrate that LLMs can create heuristics that achieve state-of-the-art performance on some standard IPC domains, as well as their ability to solve problems that lack an adequate Planning Domain Definition Language ({\sc pddl}) representation. We discuss whether these results signify a paradigm shift and how they can complement existing approaches.
📅 2025-01-30
Fingerprinting refers to the process of identifying underlying Machine Learning (ML) models of AI Systemts, such as Large Language Models (LLMs), by analyzing their unique characteristics or patterns, much like a human fingerprint. The fingerprinting of Large Language Models (LLMs) has become essential for ensuring the security and transparency of AI-integrated applications. While existing methods primarily rely on access to direct interactions with the application to infer model identity, they often fail in real-world scenarios involving multi-agent systems, frequent model updates, and restricted access to model internals. In this paper, we introduce a novel fingerprinting framework designed to address these challenges by integrating static and dynamic fingerprinting techniques. Our approach identifies architectural features and behavioral traits, enabling accurate and robust fingerprinting of LLMs in dynamic environments. We also highlight new threat scenarios where traditional fingerprinting methods are ineffective, bridging the gap between theoretical techniques and practical application. To validate our framework, we present an extensive evaluation setup that simulates real-world conditions and demonstrate the effectiveness of our methods in identifying and monitoring LLMs in Gen-AI applications. Our results highlight the framework's adaptability to diverse and evolving deployment contexts.
📅 2025-01-30
Large language models (LLMs) have significantly facilitated human life, and prompt engineering has improved the efficiency of these models. However, recent years have witnessed a rise in prompt engineering-empowered attacks, leading to issues such as privacy leaks, increased latency, and system resource wastage. Though safety fine-tuning based methods with Reinforcement Learning from Human Feedback (RLHF) are proposed to align the LLMs, existing security mechanisms fail to cope with fickle prompt attacks, highlighting the necessity of performing security detection on prompts. In this paper, we jointly consider prompt security, service latency, and system resource optimization in Edge-Cloud LLM (EC-LLM) systems under various prompt attacks. To enhance prompt security, a vector-database-enabled lightweight attack detector is proposed. We formalize the problem of joint prompt detection, latency, and resource optimization into a multi-stage dynamic Bayesian game model. The equilibrium strategy is determined by predicting the number of malicious tasks and updating beliefs at each stage through Bayesian updates. The proposed scheme is evaluated on a real implemented EC-LLM system, and the results demonstrate that our approach offers enhanced security, reduces the service latency for benign users, and decreases system resource consumption compared to state-of-the-art algorithms.
📅 2025-01-29
Query rewriting (QR) is a critical technique in e-commerce search, addressing the lexical gap between user queries and product descriptions to enhance search performance. Existing QR approaches typically fall into two categories: discriminative models and generative methods leveraging large language models (LLMs). Discriminative models often struggle with natural language understanding and offer limited flexibility in rewriting, while generative LLMs, despite producing high-quality rewrites, face high inference latency and cost in online settings. These limitations force offline deployment, making them vulnerable to issues like information staleness and semantic drift. To overcome these challenges, we propose a novel hybrid pipeline for QR that balances efficiency and effectiveness. Our approach combines offline knowledge distillation to create a lightweight but efficient student model with online reinforcement learning (RL) to refine query rewriting dynamically using real-time feedback. A key innovation is the use of LLMs as simulated human feedback, enabling scalable reward signals and cost-effective evaluation without manual annotations. Experimental results on Amazon ESCI dataset demonstrate significant improvements in query relevance, diversity, and adaptability, as well as positive feedback from the LLM simulation. This work contributes to advancing LLM capabilities for domain-specific applications, offering a robust solution for dynamic and complex e-commerce search environments.
📅 2025-01-29 | 💬 24 pages, 9 figures, 10 tables. arXiv admin note: text overlap with arXiv:2405.15808
EVINCE (Entropy and Variation IN Conditional Exchanges) is a novel framework for optimizing multi-LLM dialogues using conditional statistics and information theory. It addresses limitations in multi-agent debate (MAS) frameworks, where multiple LLMs ``chat'' without behavior modulation or mutual information quality assessment. Using dual entropy optimization to balance perspective diversity and prior knowledge, $\EVINCE$ provides quantitative tools to dynamically regulate LLM linguistic behaviors. When mutual information is low and both cross-entropy and Wasserstein distance are high, EVINCE promotes contentious dialogues to expose diverse perspectives and uncover inconsistencies. Conversely, as cross-entropy decreases and mutual information stabilizes, it transitions discussions into a conciliatory phase, encouraging compromise and acknowledgment of valid points. Using information-theoretic metrics and optimizing mutual information, $\EVINCE$ emerges as a structured and highly effective framework for multi-LLM collaboration.
📅 2025-01-29 | 💬 Published in the proceedings of SIGIR'23
This paper explores the utility of a Large Language Model (LLM) to automatically generate queries and query variants from a description of an information need. Given a set of information needs described as backstories, we explore how similar the queries generated by the LLM are to those generated by humans. We quantify the similarity using different metrics and examine how the use of each set would contribute to document pooling when building test collections. Our results show potential in using LLMs to generate query variants. While they may not fully capture the wide variety of human-generated variants, they generate similar sets of relevant documents, reaching up to 71.1% overlap at a pool depth of 100.
📅 2025-01-29 | 💬 Published in the proceedings of SIGIR-AP'24
LLMs are increasingly being used to assess the relevance of information objects. This work reports on experiments to study the labelling of short texts (i.e., passages) for relevance, using multiple open-source and proprietary LLMs. While the overall agreement of some LLMs with human judgements is comparable to human-to-human agreement measured in previous research, LLMs are more likely to label passages as relevant compared to human judges, indicating that LLM labels denoting non-relevance are more reliable than those indicating relevance. This observation prompts us to further examine cases where human judges and LLMs disagree, particularly when the human judge labels the passage as non-relevant and the LLM labels it as relevant. Results show a tendency for many LLMs to label passages that include the original query terms as relevant. We, therefore, conduct experiments to inject query words into random and irrelevant passages, not unlike the way we inserted the query "best caf\'e near me" into this paper. The results show that LLMs are highly influenced by the presence of query words in the passages under assessment, even if the wider passage has no relevance to the query. This tendency of LLMs to be fooled by the mere presence of query words demonstrates a weakness in our current measures of LLM labelling: relying on overall agreement misses important patterns of failures. There is a real risk of bias in LLM-generated relevance labels and, therefore, a risk of bias in rankers trained on those labels. We also investigate the effects of deliberately manipulating LLMs by instructing them to label passages as relevant, similar to the instruction "this paper is perfectly relevant" inserted above. We find that such manipulation influences the performance of some LLMs, highlighting the critical need to consider potential vulnerabilities when deploying LLMs in real-world applications.
📅 2025-01-29
As large language models (LLMs) become increasingly integrated into educational technology, their potential to assist in developing curricula has gained interest among educators. Despite this growing attention, their applicability in culturally responsive Indigenous educational settings like Hawai`i's public schools and Kaiapuni (immersion language) programs, remains understudied. Additionally, `Olelo Hawai`i, the Hawaiian language, as a low-resource language, poses unique challenges and concerns about cultural sensitivity and the reliability of generated content. Through surveys and interviews with kumu (educators), this study explores the perceived benefits and limitations of using LLMs for culturally revitalizing computer science (CS) education in Hawaiian public schools with Kaiapuni programs. Our findings highlight AI's time-saving advantages while exposing challenges such as cultural misalignment and reliability concerns. We conclude with design recommendations for future AI tools to better align with Hawaiian cultural values and pedagogical practices, towards the broader goal of trustworthy, effective, and culturally grounded AI technologies.
📅 2025-01-29
Large Language Models (LLMs) have demonstrated remarkable performance on various tasks, yet their ability to extract and internalize deeper insights from domain-specific datasets remains underexplored. In this study, we investigate how continual pre-training can enhance LLMs' capacity for insight learning across three distinct forms: declarative, statistical, and probabilistic insights. Focusing on two critical domains: medicine and finance, we employ LoRA to train LLMs on two existing datasets. To evaluate each insight type, we create benchmarks to measure how well continual pre-training helps models go beyond surface-level knowledge. We also assess the impact of document modification on capturing insights. The results show that, while continual pre-training on original documents has a marginal effect, modifying documents to retain only essential information significantly enhances the insight-learning capabilities of LLMs.
📅 2025-01-29 | 💬 7 pages, 3 figures
We explore the capabilities of LVLMs and LLMs in deciphering rare scripts not encoded in Unicode. We introduce a novel approach to construct a multimodal dataset of linguistic puzzles involving such scripts, utilizing a tokenization method for language glyphs. Our methods include the Picture Method for LVLMs and the Description Method for LLMs, enabling these models to tackle these challenges. We conduct experiments using prominent models, GPT-4o, Gemini, and Claude 3.5 Sonnet, on linguistic puzzles. Our findings reveal the strengths and limitations of current AI methods in linguistic decipherment, highlighting the impact of Unicode encoding on model performance and the challenges of modeling visual language tokens through descriptions. Our study advances understanding of AI's potential in linguistic decipherment and underscores the need for further research.
📅 2025-01-29
We propose a novel Two-Stage framework for Structured Pruning (2SSP) for pruning Large Language Models (LLMs), which combines two different strategies of pruning, namely Width and Depth Pruning. The first stage (Width Pruning) removes entire neurons, hence their corresponding rows and columns, aiming to preserve the connectivity among the pruned structures in the intermediate state of the Feed-Forward Networks in each Transformer block. This is done based on an importance score measuring the impact of each neuron over the output magnitude. The second stage (Depth Pruning), instead, removes entire Attention submodules. This is done by applying an iterative process that removes the Attention submodules with the minimum impact on a given metric of interest (in our case, perplexity). We also propose a novel mechanism to balance the sparsity rate of the two stages w.r.t. to the desired global sparsity. We test 2SSP on four LLM families and three sparsity rates (25\%, 37.5\%, and 50\%), measuring the resulting perplexity over three language modeling datasets as well as the performance over six downstream tasks. Our method consistently outperforms five state-of-the-art competitors over three language modeling and six downstream tasks, with an up to two-order-of-magnitude gain in terms of pruning time. The code is available at available at \url{https://github.com/FabrizioSandri/2SSP}.
📅 2025-01-29 | 💬 Accepted at NAACL 2025 Main Track
Answering questions that require reasoning and aggregation across both structured (tables) and unstructured (raw text) data sources presents significant challenges. Current methods rely on fine-tuning and high-quality, human-curated data, which is difficult to obtain. Recent advances in Large Language Models (LLMs) have shown promising results for multi-hop question answering (QA) over single-source text data in a zero-shot setting, yet exploration into multi-source Table-Text QA remains limited. In this paper, we present a novel Hybrid Graph-based approach for Table-Text QA that leverages LLMs without fine-tuning. Our method constructs a unified Hybrid Graph from textual and tabular data, pruning information based on the input question to provide the LLM with relevant context concisely. We evaluate our approach on the challenging Hybrid-QA and OTT-QA datasets using state-of-the-art LLMs, including GPT-3.5, GPT-4, and LLaMA-3. Our method achieves the best zero-shot performance on both datasets, improving Exact Match scores by up to 10% on Hybrid-QA and 5.4% on OTT-QA. Moreover, our approach reduces token usage by up to 53% compared to the original context.
📅 2025-01-29 | 💬 57 pages, 25 figures, 15 tables
While large language models (LLMs) have recently demonstrated strong potential in solving planning problems, there is a trade-off between flexibility and complexity. LLMs, as zero-shot planners themselves, are still not capable of directly generating valid plans for complex planning problems such as multi-constraint or long-horizon tasks. On the other hand, many frameworks aiming to solve complex planning problems often rely on task-specific preparatory efforts, such as task-specific in-context examples and pre-defined critics/verifiers, which limits their cross-task generalization capability. In this paper, we tackle these challenges by observing that the core of many planning problems lies in optimization problems: searching for the optimal solution (best plan) with goals subject to constraints (preconditions and effects of decisions). With LLMs' commonsense, reasoning, and programming capabilities, this opens up the possibilities of a universal LLM-based approach to planning problems. Inspired by this observation, we propose LLMFP, a general-purpose framework that leverages LLMs to capture key information from planning problems and formally formulate and solve them as optimization problems from scratch, with no task-specific examples needed. We apply LLMFP to 9 planning problems, ranging from multi-constraint decision making to multi-step planning problems, and demonstrate that LLMFP achieves on average 83.7% and 86.8% optimal rate across 9 tasks for GPT-4o and Claude 3.5 Sonnet, significantly outperforming the best baseline (direct planning with OpenAI o1-preview) with 37.6% and 40.7% improvements. We also validate components of LLMFP with ablation experiments and analyzed the underlying success and failure reasons. Project page: https://sites.google.com/view/llmfp.
📅 2025-01-29 | 💬 To appear in AAAI 2025, Main Track
Malware authors often employ code obfuscations to make their malware harder to detect. Existing tools for generating obfuscated code often require access to the original source code (e.g., C++ or Java), and adding new obfuscations is a non-trivial, labor-intensive process. In this study, we ask the following question: Can Large Language Models (LLMs) potentially generate a new obfuscated assembly code? If so, this poses a risk to anti-virus engines and potentially increases the flexibility of attackers to create new obfuscation patterns. We answer this in the affirmative by developing the MetamorphASM benchmark comprising MetamorphASM Dataset (MAD) along with three code obfuscation techniques: dead code, register substitution, and control flow change. The MetamorphASM systematically evaluates the ability of LLMs to generate and analyze obfuscated code using MAD, which contains 328,200 obfuscated assembly code samples. We release this dataset and analyze the success rate of various LLMs (e.g., GPT-3.5/4, GPT-4o-mini, Starcoder, CodeGemma, CodeLlama, CodeT5, and LLaMA 3.1) in generating obfuscated assembly code. The evaluation was performed using established information-theoretic metrics and manual human review to ensure correctness and provide the foundation for researchers to study and develop remediations to this risk.
📅 2025-01-29 | 💬 WWW 2025
Despite the widespread adoption of large language models (LLMs) for recommendation, we demonstrate that LLMs often exhibit uncertainty in their recommendations. To ensure the trustworthy use of LLMs in generating recommendations, we emphasize the importance of assessing the reliability of recommendations generated by LLMs. We start by introducing a novel framework for estimating the predictive uncertainty to quantitatively measure the reliability of LLM-based recommendations. We further propose to decompose the predictive uncertainty into recommendation uncertainty and prompt uncertainty, enabling in-depth analyses of the primary source of uncertainty. Through extensive experiments, we (1) demonstrate predictive uncertainty effectively indicates the reliability of LLM-based recommendations, (2) investigate the origins of uncertainty with decomposed uncertainty measures, and (3) propose uncertainty-aware prompting for a lower predictive uncertainty and enhanced recommendation. Our source code and model weights are available at https://github.com/WonbinKweon/UNC_LLM_REC_WWW2025
📅 2025-01-29 | 💬 12 pages, 6 figures, 4 tables, 1 listing, revised arguments
The Cancer Registry of Norway (CRN) uses an automated cancer registration support system (CaReSS) to support core cancer registry activities, i.e, data capture, data curation, and producing data products and statistics for various stakeholders. GURI is a core component of CaReSS, which is responsible for validating incoming data with medical rules. Such medical rules are manually implemented by medical experts based on medical standards, regulations, and research. Since large language models (LLMs) have been trained on a large amount of public information, including these documents, they can be employed to generate tests for GURI. Thus, we propose an LLM-based test generation and differential testing approach (LLMeDiff) to test GURI. We experimented with four different LLMs, two medical rule engine implementations, and 58 real medical rules to investigate the hallucination, success, time efficiency, and robustness of the LLMs to generate tests, and these tests' ability to find potential issues in GURI. Our results showed that GPT-3.5 hallucinates the least, is the most successful, and is generally the most robust; however, it has the worst time efficiency. Our differential testing revealed 22 medical rules where implementation inconsistencies were discovered (e.g., regarding handling rule versions). Finally, we provide insights for practitioners and researchers based on the results.
📅 2025-01-29
Electronic Medical Records (EMRs), while integral to modern healthcare, present challenges for clinical reasoning and diagnosis due to their complexity and information redundancy. To address this, we proposed medIKAL (Integrating Knowledge Graphs as Assistants of LLMs), a framework that combines Large Language Models (LLMs) with knowledge graphs (KGs) to enhance diagnostic capabilities. medIKAL assigns weighted importance to entities in medical records based on their type, enabling precise localization of candidate diseases within KGs. It innovatively employs a residual network-like approach, allowing initial diagnosis by the LLM to be merged into KG search results. Through a path-based reranking algorithm and a fill-in-the-blank style prompt template, it further refined the diagnostic process. We validated medIKAL's effectiveness through extensive experiments on a newly introduced open-sourced Chinese EMR dataset, demonstrating its potential to improve clinical diagnosis in real-world settings.
📅 2025-01-29
Traditional depression screening methods, such as the PHQ-9, are particularly challenging for children in pediatric primary care due to practical limitations. AI has the potential to help, but the scarcity of annotated datasets in mental health, combined with the computational costs of training, highlights the need for efficient, zero-shot approaches. In this work, we investigate the feasibility of state-of-the-art LLMs for depressive symptom extraction in pediatric settings (ages 6-24). This approach aims to complement traditional screening and minimize diagnostic errors. Our findings show that all LLMs are 60% more efficient than word match, with Flan leading in precision (average F1: 0.65, precision: 0.78), excelling in the extraction of more rare symptoms like "sleep problems" (F1: 0.92) and "self-loathing" (F1: 0.8). Phi strikes a balance between precision (0.44) and recall (0.60), performing well in categories like "Feeling depressed" (0.69) and "Weight change" (0.78). Llama 3, with the highest recall (0.90), overgeneralizes symptoms, making it less suitable for this type of analysis. Challenges include the complexity of clinical notes and overgeneralization from PHQ-9 scores. The main challenges faced by LLMs include navigating the complex structure of clinical notes with content from different times in the patient trajectory, as well as misinterpreting elevated PHQ-9 scores. We finally demonstrate the utility of symptom annotations provided by Flan as features in an ML algorithm, which differentiates depression cases from controls with high precision of 0.78, showing a major performance boost compared to a baseline that does not use these features.
📅 2025-01-29
Large Language Models (LLMs) have shown remarkable capabilities across various natural language processing tasks but often struggle to excel uniformly in diverse or complex domains. We propose a novel ensemble method - Diverse Fingerprint Ensemble (DFPE), which leverages the complementary strengths of multiple LLMs to achieve more robust performance. Our approach involves: (1) clustering models based on response "fingerprints" patterns, (2) applying a quantile-based filtering mechanism to remove underperforming models at a per-subject level, and (3) assigning adaptive weights to remaining models based on their subject-wise validation accuracy. In experiments on the Massive Multitask Language Understanding (MMLU) benchmark, DFPE outperforms the best single model by 3% overall accuracy and 5% in discipline-level accuracy. This method increases the robustness and generalization of LLMs and underscores how model selection, diversity preservation, and performance-driven weighting can effectively address challenging, multi-faceted language understanding tasks.
📅 2025-01-29 | 💬 Accepted for publication at 2025 IEEE Conference on Software Testing, Verification and Validation (ICST)
Automated test generation is crucial for ensuring the reliability and robustness of software applications while at the same time reducing the effort needed. While significant progress has been made in test generation research, generating valid test oracles still remains an open problem. To address this challenge, we present AugmenTest, an approach leveraging Large Language Models (LLMs) to infer correct test oracles based on available documentation of the software under test. Unlike most existing methods that rely on code, AugmenTest utilizes the semantic capabilities of LLMs to infer the intended behavior of a method from documentation and developer comments, without looking at the code. AugmenTest includes four variants: Simple Prompt, Extended Prompt, RAG with a generic prompt (without the context of class or method under test), and RAG with Simple Prompt, each offering different levels of contextual information to the LLMs. To evaluate our work, we selected 142 Java classes and generated multiple mutants for each. We then generated tests from these mutants, focusing only on tests that passed on the mutant but failed on the original class, to ensure that the tests effectively captured bugs. This resulted in 203 unique tests with distinct bugs, which were then used to evaluate AugmenTest. Results show that in the most conservative scenario, AugmenTest's Extended Prompt consistently outperformed the Simple Prompt, achieving a success rate of 30\% for generating correct assertions. In comparison, the state-of-the-art TOGA approach achieved 8.2\%. Contrary to our expectations, the RAG-based approaches did not lead to improvements, with performance of 18.2\% success rate for the most conservative scenario.
📅 2025-01-29 | 💬 To appear in ASPLOS 2025
PagedAttention is a popular approach for dynamic memory allocation in LLM serving systems. It enables on-demand allocation of GPU memory to mitigate KV cache fragmentation -- a phenomenon that crippled the batch size (and consequently throughput) in prior systems. However, in trying to allocate physical memory at runtime, PagedAttention ends up changing the virtual memory layout of the KV cache from contiguous to non-contiguous. Such a design leads to non-trivial programming and performance overheads. We present vAttention -- an approach that mitigates fragmentation in physical memory while retaining the contiguity of KV cache in virtual memory. We achieve this by decoupling the allocation of virtual and physical memory using CUDA virtual memory management APIs. We also introduce various LLM-specific optimizations to address the limitations of CUDA virtual memory support. Overall, vAttention is a simpler, portable, and performant alternative to PagedAttention: it supports various attention kernels out-of-the-box and improves LLM serving throughput by up to 1.23x compared to the use of PagedAttention-based kernels of FlashAttention and FlashInfer.
📅 2025-01-29
We present MultiChallenge, a pioneering benchmark evaluating large language models (LLMs) on conducting multi-turn conversations with human users, a crucial yet underexamined capability for their applications. MultiChallenge identifies four categories of challenges in multi-turn conversations that are not only common and realistic among current human-LLM interactions, but are also challenging to all current frontier LLMs. All 4 challenges require accurate instruction-following, context allocation, and in-context reasoning at the same time. We also develop LLM as judge with instance-level rubrics to facilitate an automatic evaluation method with fair agreement with experienced human raters. Despite achieving near-perfect scores on existing multi-turn evaluation benchmarks, all frontier models have less than 50% accuracy on MultiChallenge, with the top-performing Claude 3.5 Sonnet (June 2024) achieving just a 41.4% average accuracy.
📅 2025-01-29 | 💬 ICLR 2025
The emergence of large language models (LLMs) has significantly pushed the frontiers of program synthesis. Advancement of LLM-based program synthesis calls for a thorough evaluation of LLM-generated code. Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations. In this work, we develop ENAMEL (EfficeNcy AutoMatic EvaLuator), a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code. Firstly, we propose a new efficiency metric called eff@k, which generalizes the pass@k metric from correctness to efficiency and appropriately handles right-censored execution time. Furthermore, we derive an unbiased and variance-reduced estimator of eff@k via Rao--Blackwellization; we also provide a numerically stable implementation for the new estimator. Secondly, to set a high-standard for efficiency evaluation, we employ a human expert to design best algorithms and implementations as our reference solutions of efficiency, many of which are much more efficient than existing canonical solutions in HumanEval and HumanEval+. Moreover, to ensure a rigorous evaluation, we employ a human expert to curate strong test case generators to filter out wrong code and differentiate suboptimal algorithms. An extensive study across 30 popular LLMs using our benchmark ENAMEL shows that LLMs still fall short of generating expert-level efficient code. Using two subsets of our problem set, we demonstrate that such deficiency is because current LLMs struggle in designing advanced algorithms and are barely aware of implementation optimization. Our benchmark is publicly available at https://github.com/q-rz/enamel .
📅 2025-01-29
With their advanced capabilities, Large Language Models (LLMs) can generate highly convincing and contextually relevant fake news, which can contribute to disseminating misinformation. Though there is much research on fake news detection for human-written text, the field of detecting LLM-generated fake news is still under-explored. This research measures the efficacy of detectors in identifying LLM-paraphrased fake news, in particular, determining whether adding a paraphrase step in the detection pipeline helps or impedes detection. This study contributes: (1) Detectors struggle to detect LLM-paraphrased fake news more than human-written text, (2) We find which models excel at which tasks (evading detection, paraphrasing to evade detection, and paraphrasing for semantic similarity). (3) Via LIME explanations, we discovered a possible reason for detection failures: sentiment shift. (4) We discover a worrisome trend for paraphrase quality measurement: samples that exhibit sentiment shift despite a high BERTSCORE. (5) We provide a pair of datasets augmenting existing datasets with paraphrase outputs and scores. The dataset is available on GitHub
📅 2025-01-29
In the past five years, research has shifted from traditional Machine Learning (ML) and Deep Learning (DL) approaches to leveraging Large Language Models (LLMs) , including multimodality, for data augmentation to enhance generalization, and combat overfitting in training deep convolutional neural networks. However, while existing surveys predominantly focus on ML and DL techniques or limited modalities (text or images), a gap remains in addressing the latest advancements and multi-modal applications of LLM-based methods. This survey fills that gap by exploring recent literature utilizing multimodal LLMs to augment image, text, and audio data, offering a comprehensive understanding of these processes. We outlined various methods employed in the LLM-based image, text and speech augmentation, and discussed the limitations identified in current approaches. Additionally, we identified potential solutions to these limitations from the literature to enhance the efficacy of data augmentation practices using multimodal LLMs. This survey serves as a foundation for future research, aiming to refine and expand the use of multimodal LLMs in enhancing dataset quality and diversity for deep learning applications. (Surveyed Paper GitHub Repo: https://github.com/WSUAgRobotics/data-aug-multi-modal-llm. Keywords: LLM data augmentation, LLM text data augmentation, LLM image data augmentation, LLM speech data augmentation, audio augmentation, voice augmentation, chatGPT for data augmentation, DeepSeek R1 text data augmentation, DeepSeek R1 image augmentation, Image Augmentation using LLM, Text Augmentation using LLM, LLM data augmentation for deep learning applications)
📅 2025-01-29
Large Language Models (LLMs) leverage chain-of-thought (CoT) prompting to provide step-by-step rationales, improving performance on complex tasks. Despite its benefits, vanilla CoT often fails to fully verify intermediate inferences and can produce misleading explanations. In this work, we propose Layered Chain-of-Thought (Layered-CoT) Prompting, a novel framework that systematically segments the reasoning process into multiple layers, each subjected to external checks and optional user feedback. We expand on the key concepts, present three scenarios -- medical triage, financial risk assessment, and agile engineering -- and demonstrate how Layered-CoT surpasses vanilla CoT in terms of transparency, correctness, and user engagement. By integrating references from recent arXiv papers on interactive explainability, multi-agent frameworks, and agent-based collaboration, we illustrate how Layered-CoT paves the way for more reliable and grounded explanations in high-stakes domains.
📅 2025-01-29 | 💬 8 pages, 2 figures
Given the exponential advancement in AI technologies and the potential escalation of harmful effects from recommendation systems, it is crucial to simulate and evaluate these effects early on. Doing so can help prevent possible damage to both societies and technology companies. This paper introduces the Recommender Systems LLMs Playground (RecSysLLMsP), a novel simulation framework leveraging Large Language Models (LLMs) to explore the impacts of different content recommendation setups on user engagement and polarization in social networks. By creating diverse AI agents (AgentPrompts) with descriptive, static, and dynamic attributes, we assess their autonomous behaviour across three scenarios: Plurality, Balanced, and Similarity. Our findings reveal that the Similarity Scenario, which aligns content with user preferences, maximizes engagement while potentially fostering echo chambers. Conversely, the Plurality Scenario promotes diverse interactions but produces mixed engagement results. Our study emphasizes the need for a careful balance in recommender system designs to enhance user satisfaction while mitigating societal polarization. It underscores the unique value and challenges of incorporating LLMs into simulation environments. The benefits of RecSysLLMsP lie in its potential to calculate polarization effects, which is crucial for assessing societal impacts and determining user engagement levels with diverse recommender system setups. This advantage is essential for developing and maintaining a successful business model for social media companies. However, the study's limitations revolve around accurately emulating reality. Future efforts should validate the similarity in behaviour between real humans and AgentPrompts and establish metrics for measuring polarization scores.
📅 2025-01-28 | 💬 9 pages, 17 figures
Three publicly-available LLM specifically designed for legal tasks have been implemented and shown that classification accuracy can benefit from training over legal corpora, but why and how? Here we use two publicly-available legal datasets, a simpler binary classification task of ``overruling'' texts, and a more elaborate multiple choice task identifying ``holding'' judicial decisions. We report on experiments contrasting the legal LLM and a generic BERT model for comparison, against both datasets. We use integrated gradient attribution techniques to impute ``causes'' of variation in the models' perfomance, and characterize them in terms of the tokenizations each use. We find that while all models can correctly classify some test examples from the casehold task, other examples can only be identified by only one, model, and attribution can be used to highlight the reasons for this. We find that differential behavior of the models' tokenizers accounts for most of the difference and analyze these differences in terms of the legal language they process. Frequency analysis of tokens generated by dataset texts, combined with use of known ``stop word'' lists, allow identification of tokens that are clear signifiers of legal topics.
📅 2025-01-28
Large Language Models (LLMs) are becoming increasingly persuasive, demonstrating the ability to personalize arguments in conversation with humans by leveraging their personal data. This may have serious impacts on the scale and effectiveness of disinformation campaigns. We studied the persuasiveness of LLMs in a debate setting by having humans $(n=33)$ engage with LLM-generated arguments intended to change the human's opinion. We quantified the LLM's effect by measuring human agreement with the debate's hypothesis pre- and post-debate and analyzing both the magnitude of opinion change, as well as the likelihood of an update in the LLM's direction. We compare persuasiveness across established persuasion strategies, including personalized arguments informed by user demographics and personality, appeal to fabricated statistics, and a mixed strategy utilizing both personalized arguments and fabricated statistics. We found that static arguments generated by humans and GPT-4o-mini have comparable persuasive power. However, the LLM outperformed static human-written arguments when leveraging the mixed strategy in an interactive debate setting. This approach had a $\mathbf{51\%}$ chance of persuading participants to modify their initial position, compared to $\mathbf{32\%}$ for the static human-written arguments. Our results highlight the concerning potential for LLMs to enable inexpensive and persuasive large-scale disinformation campaigns.
📅 2025-01-28 | 💬 8 pages, 8 figures
Large language models (LLMs) excel in many natural language tasks, yet they struggle with complex mathemat-ical problem-solving, particularly in symbolic reasoning and maintaining consistent output. This study evalu-ates 10 LLMs with 7 to 8 billion parameters using 945 competition-level problems from the MATH dataset. The focus is on their ability to generate executable Python code as a step in their reasoning process, involving over 9,450 code executions. The research introduces an evaluation framework using mistral-large-2411 to rate answers on a 5-point scale, which helps address inconsistencies in mathematical notation. It also examines the impact of regenerating output token-by-token on refining results. The findings reveal a significant 34.5% per-formance gap between the top commercial model (gpt-4o-mini, scoring 83.7%) and the least effective open-source model (open-codestral-mamba:v0.1, scoring 49.2%). This disparity is especially noticeable in complex areas like Number Theory. While token-by-token regeneration slightly improved accuracy (+0.8%) for the model llama3.1:8b, it also reduced code execution time by 36.7%, highlighting a trade-off between efficiency and precision. The study also noted a consistent trend where harder problems correlated with lower accuracy across all models. Despite using controlled execution environments, less than 1% of the generated code was unsafe, and 3.17% of problems remained unsolved after 10 attempts, suggesting that hybrid reasoning methods may be beneficial.
📅 2025-01-28
Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks but face significant challenges with complex, knowledge-intensive multi-hop queries, particularly those involving new or long-tail knowledge. Existing benchmarks often fail to fully address these challenges. To bridge this gap, we introduce MINTQA (Multi-hop Question Answering on New and Tail Knowledge), a comprehensive benchmark to evaluate LLMs' capabilities in multi-hop reasoning across four critical dimensions: question handling strategy, sub-question generation, retrieval-augmented generation, and iterative or dynamic decomposition and retrieval. MINTQA comprises 10,479 question-answer pairs for evaluating new knowledge and 17,887 pairs for assessing long-tail knowledge, with each question equipped with corresponding sub-questions and answers. Our systematic evaluation of 22 state-of-the-art LLMs on MINTQA reveals significant limitations in their ability to handle complex knowledge base queries, particularly in handling new or unpopular knowledge. Our findings highlight critical challenges and offer insights for advancing multi-hop reasoning capabilities. The MINTQA benchmark is available at https://github.com/probe2/multi-hop/.
📅 2025-01-28
In the Python ecosystem, the adoption of idiomatic constructs has been fostered because of their expressiveness, increasing productivity and even efficiency, despite controversial arguments concerning familiarity or understandability issues. Recent research contributions have proposed approaches -- based on static code analysis and transformation -- to automatically identify and enact refactoring opportunities of non-idiomatic code into idiomatic ones. Given the potential recently offered by Large Language Models (LLMs) for code-related tasks, in this paper, we present the results of a replication study in which we investigate GPT-4 effectiveness in recommending and suggesting idiomatic refactoring actions. Our results reveal that GPT-4 not only identifies idiomatic constructs effectively but frequently exceeds the benchmark in proposing refactoring actions where the existing baseline failed. A manual analysis of a random sample shows the correctness of the obtained recommendations. Our findings underscore the potential of LLMs to achieve tasks where, in the past, implementing recommenders based on complex code analyses was required.
📅 2025-01-28
LLM-based tool agents offer natural language interfaces, enabling users to seamlessly interact with computing services. While REST APIs are valuable resources for building such agents, they must first be transformed into AI-compatible tools. Automatically generating AI-compatible tools from REST API documents can greatly streamline tool agent development and minimize user learning curves. However, API documentation often suffers from a lack of standardization, inconsistent schemas, and incomplete information. To address these issues, we developed \textbf{ToolFactory}, an open-source pipeline for automating tool generation from unstructured API documents. To enhance the reliability of the developed tools, we implemented an evaluation method to diagnose errors. Furthermore, we built a knowledge base of verified tools, which we leveraged to infer missing information from poorly documented APIs. We developed the API Extraction Benchmark, comprising 167 API documents and 744 endpoints in various formats, and designed a JSON schema to annotate them. This annotated dataset was utilized to train and validate ToolFactory. The experimental results highlight the effectiveness of ToolFactory. We also demonstrated ToolFactory by creating a domain-specific AI agent for glycomaterials research. ToolFactory exhibits significant potential for facilitating the seamless integration of scientific REST APIs into AI workflows.
📅 2025-01-28
Large language models (LLMs) represent a significant advancement in integrating physical robots with AI-driven systems. We showcase the capabilities of our framework within the context of the real-world household competition. This research introduces a framework that utilizes RDMM (Robotics Decision-Making Models), which possess the capacity for decision-making within domain-specific contexts, as well as an awareness of their personal knowledge and capabilities. The framework leverages information to enhance the autonomous decision-making of the system. In contrast to other approaches, our focus is on real-time, on-device solutions, successfully operating on hardware with as little as 8GB of memory. Our framework incorporates visual perception models equipping robots with understanding of their environment. Additionally, the framework has integrated real-time speech recognition capabilities, thus enhancing the human-robot interaction experience. Experimental results demonstrate that the RDMM framework can plan with an 93\% accuracy. Furthermore, we introduce a new dataset consisting of 27k planning instances, as well as 1.3k text-image annotated samples derived from the competition. The framework, benchmarks, datasets, and models developed in this work are publicly available on our GitHub repository at https://github.com/shadynasrat/RDMM.
📅 2025-01-28 | 💬 arXiv admin note: substantial text overlap with arXiv:2407.09756
Science journalism reports current scientific discoveries to non-specialists, aiming to enable public comprehension of the state of the art. This task is challenging as the audience often lacks specific knowledge about the presented research. We propose a JRE-L framework that integrates three LLMs mimicking the writing-reading-feedback-revision loop. In JRE-L, one LLM acts as the journalist, another LLM as the general public reader, and the third LLM as an editor. The journalist's writing is iteratively refined by feedback from the reader and suggestions from the editor. Our experiments demonstrate that by leveraging the collaboration of two 7B and one 1.8B open-source LLMs, we can generate articles that are more accessible than those generated by existing methods, including prompting single advanced models such as GPT-4 and other LLM-collaboration strategies. Our code is publicly available at github.com/Zzoay/JRE-L.
📅 2025-01-28 | 💬 10 pages, 6 figures
Much is promised in relation to AI-supported software development. However, there has been limited evaluation effort in the research domain aimed at validating the true utility of such techniques, especially when compared to human coding outputs. We bridge this gap, where a benchmark dataset comprising 72 distinct software engineering tasks is used to compare the effectiveness of large language models (LLMs) and human programmers in producing Python software code. GPT-4 is used as a representative LLM, where for the code generated by humans and this LLM, we evaluate code quality and adherence to Python coding standards, code security and vulnerabilities, code complexity and functional correctness. We use various static analysis benchmarks, including Pylint, Radon, Bandit and test cases. Among the notable outcomes, results show that human-generated code recorded higher ratings for adhering to coding standards than GPT-4. We observe security flaws in code generated by both humans and GPT-4, however, code generated by humans shows a greater variety of problems, but GPT-4 code included more severe outliers. Our results show that although GPT-4 is capable of producing coding solutions, it frequently produces more complex code that may need more reworking to ensure maintainability. On the contrary however, our outcomes show that a higher number of test cases passed for code generated by GPT-4 across a range of tasks than code that was generated by humans. That said, GPT-4 frequently struggles with complex problem-solving that involve in-depth domain knowledge. This study highlights the potential utility of LLMs for supporting software development, however, tasks requiring comprehensive, innovative or unconventional solutions, and careful debugging and error correction seem to be better developed by human programmers. We plot an agenda for the software engineering community.
📅 2025-01-28 | 💬 13 pages, 7 figures, 4 tables; Accepted to NAACL 2025
Although many efforts have been made, it is still a challenge to balance the training budget, downstream performance, and the general capabilities of the LLMs in many applications. Training the whole model for downstream tasks is expensive, and could easily result in catastrophic forgetting. By introducing parameter-efficient fine-tuning (PEFT), the training cost could be reduced, but it still suffers from forgetting, and limits the learning on the downstream tasks. To efficiently fine-tune the LLMs with less limitation to their downstream performance while mitigating the forgetting of general capabilities, we propose a novel mixture of expert (MoE) framework based on Soft LoRA and Identity Mixture (SLIM), that allows dynamic routing between LoRA adapters and skipping connection, enables the suppression of forgetting. We adopt weight-yielding with sliding clustering for better out-of-domain distinguish to enhance the routing. We also propose to convert the mixture of low-rank adapters to the model merging formulation and introduce fast dynamic merging of LoRA adapters to keep the general capabilities of the base model. Extensive experiments demonstrate that the proposed SLIM is comparable to the state-of-the-art PEFT approaches on the downstream tasks while achieving the leading performance in mitigating catastrophic forgetting.
📅 2025-01-28 | 💬 12 pages, 11 figures
Serving systems for Large Language Models (LLMs) improve throughput by processing several requests concurrently. However, multiplexing hardware resources between concurrent requests involves non-trivial scheduling decisions. Practical serving systems typically implement these decisions at two levels: First, a load balancer routes requests to different servers which each hold a replica of the LLM. Then, on each server, an engine-level scheduler decides when to run a request, or when to queue or preempt it. Improved scheduling policies may benefit a wide range of LLM deployments and can often be implemented as "drop-in replacements" to a system's current policy. In this work, we survey scheduling techniques from the literature and from practical serving systems. We find that schedulers from the literature often achieve good performance but introduce significant complexity. In contrast, schedulers in practical deployments often leave easy performance gains on the table but are easy to implement, deploy and configure. This finding motivates us to introduce two new scheduling techniques, which are both easy to implement, and outperform current techniques on production workload traces.
📅 2025-01-28 | 💬 Experimental verification and more formal argument for Markov approximation of bias propagation to be released soon. Primarily pushed now to establish novelty and ease of sharing. Please do not cite this work until the forthcoming experimental validation and updated mathematical model are provided
This paper introduces a continuous-time stochastic dynamical framework for understanding how large language models (LLMs) may self-amplify latent biases or toxicity through their own chain-of-thought reasoning. The model posits an instantaneous "severity" variable $x(t) \in [0,1]$ evolving under a stochastic differential equation (SDE) with a drift term $\mu(x)$ and diffusion $\sigma(x)$. Crucially, such a process can be consistently analyzed via the Fokker--Planck approach if each incremental step behaves nearly Markovian in severity space. The analysis investigates critical phenomena, showing that certain parameter regimes create phase transitions from subcritical (self-correcting) to supercritical (runaway severity). The paper derives stationary distributions, first-passage times to harmful thresholds, and scaling laws near critical points. Finally, it highlights implications for agents and extended LLM reasoning models: in principle, these equations might serve as a basis for formal verification of whether a model remains stable or propagates bias over repeated inferences.
📅 2025-01-28
Large Language Models (LLMs) have raised increasing concerns about their misuse in generating hate speech. Among all the efforts to address this issue, hate speech detectors play a crucial role. However, the effectiveness of different detectors against LLM-generated hate speech remains largely unknown. In this paper, we propose HateBench, a framework for benchmarking hate speech detectors on LLM-generated hate speech. We first construct a hate speech dataset of 7,838 samples generated by six widely-used LLMs covering 34 identity groups, with meticulous annotations by three labelers. We then assess the effectiveness of eight representative hate speech detectors on the LLM-generated dataset. Our results show that while detectors are generally effective in identifying LLM-generated hate speech, their performance degrades with newer versions of LLMs. We also reveal the potential of LLM-driven hate campaigns, a new threat that LLMs bring to the field of hate speech detection. By leveraging advanced techniques like adversarial attacks and model stealing attacks, the adversary can intentionally evade the detector and automate hate campaigns online. The most potent adversarial attack achieves an attack success rate of 0.966, and its attack efficiency can be further improved by $13-21\times$ through model stealing attacks with acceptable attack performance. We hope our study can serve as a call to action for the research community and platform moderators to fortify defenses against these emerging threats.
📅 2025-01-28
Large Language Models (LLMs) have shown remarkable advancements but also raise concerns about cultural bias, often reflecting dominant narratives at the expense of under-represented subcultures. In this study, we evaluate the capacity of LLMs to recognize and accurately respond to the Little Traditions within Indian society, encompassing localized cultural practices and subcultures such as caste, kinship, marriage, and religion. Through a series of case studies, we assess whether LLMs can balance the interplay between dominant Great Traditions and localized Little Traditions. We explore various prompting strategies and further investigate whether using prompts in regional languages enhances the models cultural sensitivity and response quality. Our findings reveal that while LLMs demonstrate an ability to articulate cultural nuances, they often struggle to apply this understanding in practical, context-specific scenarios. To the best of our knowledge, this is the first study to analyze LLMs engagement with Indian subcultures, offering critical insights into the challenges of embedding cultural diversity in AI systems.
📅 2025-01-28 | 💬 28 pages, 5 figures, 11 tables Published as a conference paper at ICLR 2025 Github link: https://github.com/THU-BPM/Watermarked_LLM_Identification
Text watermarking for Large Language Models (LLMs) has made significant progress in detecting LLM outputs and preventing misuse. Current watermarking techniques offer high detectability, minimal impact on text quality, and robustness to text editing. However, current researches lack investigation into the imperceptibility of watermarking techniques in LLM services. This is crucial as LLM providers may not want to disclose the presence of watermarks in real-world scenarios, as it could reduce user willingness to use the service and make watermarks more vulnerable to attacks. This work is the first to investigate the imperceptibility of watermarked LLMs. We design an identification algorithm called Water-Probe that detects watermarks through well-designed prompts to the LLM. Our key motivation is that current watermarked LLMs expose consistent biases under the same watermark key, resulting in similar differences across prompts under different watermark keys. Experiments show that almost all mainstream watermarking algorithms are easily identified with our well-designed prompts, while Water-Probe demonstrates a minimal false positive rate for non-watermarked LLMs. Finally, we propose that the key to enhancing the imperceptibility of watermarked LLMs is to increase the randomness of watermark key selection. Based on this, we introduce the Water-Bag strategy, which significantly improves watermark imperceptibility by merging multiple watermark keys.
📅 2025-01-28 | 💬 Accepted at the AAAI-2025 Deployable AI Workshop
This paper introduces a scalable Anomaly Detection Service with a generalizable API tailored for industrial time-series data, designed to assist Site Reliability Engineers (SREs) in managing cloud infrastructure. The service enables efficient anomaly detection in complex data streams, supporting proactive identification and resolution of issues. Furthermore, it presents an innovative approach to anomaly modeling in cloud infrastructure by utilizing Large Language Models (LLMs) to understand key components, their failure modes, and behaviors. A suite of algorithms for detecting anomalies is offered in univariate and multivariate time series data, including regression-based, mixture-model-based, and semi-supervised approaches. We provide insights into the usage patterns of the service, with over 500 users and 200,000 API calls in a year. The service has been successfully applied in various industrial settings, including IoT-based AI applications. We have also evaluated our system on public anomaly benchmarks to show its effectiveness. By leveraging it, SREs can proactively identify potential issues before they escalate, reducing downtime and improving response times to incidents, ultimately enhancing the overall customer experience. We plan to extend the system to include time series foundation models, enabling zero-shot anomaly detection capabilities.
📅 2025-01-28 | 💬 Preprint. Work in progress
3D vision and spatial reasoning have long been recognized as preferable for accurately perceiving our three-dimensional world, especially when compared with traditional visual reasoning based on 2D images. Due to the difficulties in collecting high-quality 3D data, research in this area has only recently gained momentum. With the advent of powerful large language models (LLMs), multi-modal LLMs for 3D vision have been developed over the past few years. However, most of these models focus primarily on the vision encoder for 3D data. In this paper, we propose converting existing densely activated LLMs into mixture-of-experts (MoE) models, which have proven effective for multi-modal data processing. In addition to leveraging these models' instruction-following capabilities, we further enable embodied task planning by attaching a diffusion head, Pose-DiT, that employs a novel rectified flow diffusion scheduler. Experimental results on 3D question answering and task-planning tasks demonstrate that our 3D-MoE framework achieves improved performance with fewer activated parameters.