llm - 2025_09
Navigation
- Part 1
- Part 2
- Part 3
- Part 4
- Part 5
- Part 6
- Part 7
- Part 8
- Part 9
- Part 10
- Part 11
- Part 12
- Part 13
- Part 14
- Part 15
- Part 16
Papers
      As large language models (LLMs) become increasingly integrated into personal writing tools, a critical question arises: can LLMs faithfully imitate an individual's writing style from just a few examples? Personal style is often subtle and implicit, making it difficult to specify through prompts yet essential for user-aligned generation. This work presents a comprehensive evaluation of state-of-the-art LLMs' ability to mimic personal writing styles via in-context learning from a small number of user-authored samples. We introduce an ensemble of complementary metrics-including authorship attribution, authorship verification, style matching, and AI detection-to robustly assess style imitation. Our evaluation spans over 40000 generations per model across domains such as news, email, forums, and blogs, covering writing samples from more than 400 real-world authors. Results show that while LLMs can approximate user styles in structured formats like news and email, they struggle with nuanced, informal writing in blogs and forums. Further analysis on various prompting strategies such as number of demonstrations reveal key limitations in effective personalization. Our findings highlight a fundamental gap in personalized LLM adaptation and the need for improved techniques to support implicit, style-consistent generation. To aid future research and for reproducibility, we open-source our data and code.
    
      Large Language Models(LLMs) excel in general tasks but struggle in specialized domains like healthcare due to limited domain-specific knowledge.Supervised Fine-Tuning(SFT) data construction for domain adaptation often relies on heuristic methods, such as GPT-4 annotation or manual data selection, with a data-centric focus on presumed diverse, high-quality datasets. However, these methods overlook the model's inherent knowledge distribution, introducing noise, redundancy, and irrelevant data, leading to a mismatch between the selected data and the model's learning task, resulting in suboptimal performance. To address this, we propose a two-stage model-centric data selection framework, Decomposed Difficulty Data Selection (3DS), which aligns data with the model's knowledge distribution for optimized adaptation. In Stage1, we apply Prompt-Driven Data Selection via Explicit Alignment, where the the model filters irrelevant or redundant data based on its internal knowledge. In Stage2, we perform Decomposed Difficulty Data Selection, where data selection is guided by our defined difficulty decomposition, using three metrics: Instruction Understanding, Response Confidence, and Response Correctness. Additionally, an attention-based importance weighting mechanism captures token importance for more accurate difficulty calibration. This two-stage approach ensures the selected data is not only aligned with the model's knowledge and preferences but also appropriately challenging for the model to learn, leading to more effective and targeted domain adaptation. In the case study of the medical domain, our extensive experiments on real-world healthcare datasets demonstrate the superiority of 3DS over exisiting methods in accuracy by over 5.29%. Our dataset and code has been open-sourced at https://github.com/PuppyKnightUniversity/3DS.
    
      Zero-shot Event Detection (ED), the task of identifying event mentions in natural language text without any training data, is critical for document understanding in specialized domains. Understanding the complex event ontology, extracting domain-specific triggers from the passage, and structuring them appropriately overloads and limits the utility of Large Language Models (LLMs) for zero-shot ED. To this end, we propose DiCoRe, a divergent-convergent reasoning framework that decouples the task of ED using Dreamer and Grounder. Dreamer encourages divergent reasoning through open-ended event discovery, which helps to boost event coverage. Conversely, Grounder introduces convergent reasoning to align the free-form predictions with the task-specific instructions using finite-state machine guided constrained decoding. Additionally, an LLM-Judge verifies the final outputs to ensure high precision. Through extensive experiments on six datasets across five domains and nine LLMs, we demonstrate how DiCoRe consistently outperforms prior zero-shot, transfer-learning, and reasoning baselines, achieving 4-7% average F1 gains over the best baseline -- establishing DiCoRe as a strong zero-shot ED framework.
    
      Large Language Models (LLMs) often fail on complex reasoning tasks due to flawed question comprehension, not just flawed logic. This paper presents a systematic investigation into these comprehension failures. Our work yields three key insights: (1) the step-by-step principle, effective for calculation, can be migrated to the reading process to enhance comprehension; (2) increasing the proportion of question-related tokens (e.g., via repetition) succeeds by refocusing attention, a mechanism that can be explicitly controlled; and (3) backward dependencies represent a core bottleneck for decoder-only models that persists even with strong methods like Chain-of-Thought. Based on these findings, we introduce the Step-by-Step Reading (SSR) family of prompts. This multi-stage approach culminates in SSR++, a method specifically engineered to deepen model comprehension by guiding it to parse questions with finer granularity, focus attention on critical tokens, and resolve backward dependencies through iterative re-contextualization. SSR++ sets a new state-of-the-art on multiple reasoning benchmarks, and our analysis confirms it works by directly mitigating semantic misunderstanding. These results demonstrate that guiding how a model reads is a powerful and efficient method for improving its reasoning ability.
    
      Objective: Zero-shot methodology promises to cut down on costs of dataset annotation and domain expertise needed to make use of NLP. Generative large language models trained to align with human goals have achieved high zero-shot performance across a wide variety of tasks. As of yet, it is unclear how well these models perform on biomedical relation extraction (RE). To address this knowledge gap, we explore patterns in the performance of OpenAI LLMs across a diverse sampling of RE tasks. Methods: We use OpenAI GPT-4-turbo and OpenAI's reasoning models o1 and GPT-OSS to conduct end-to-end RE experiments on seven datasets. We use the JSON generation capabilities of GPT models to generate structured output in two ways: (1) by defining an explicit schema describing the structure of relations, and (2) using a setting that infers the structure from the prompt language. Results: Our work is the first to study and compare the performance of the GPT-4, o1 and GPT-OSS for the end-to-end zero-shot biomedical RE task across a broad array of datasets. We found the zero-shot performances to be proximal to that of fine-tuned methods. The limitations of this approach are that it performs poorly on instances containing many relations and errs on the boundaries of textual mentions. Conclusion: LLMs exhibit promising zero-shot capabilities in complex biomedical RE tasks, offering competitive performance with reduced dataset curation costs and NLP modeling needs but with increased perpetual compute costs. Addressing the limitations we identify could further boost reliability. The code, data, and prompts for all our experiments are publicly available for additional benchmarking by the community: https://github.com/bionlproc/ZeroShotRE
    
      This study investigates the register variation in texts written by humans and comparable texts produced by large language models (LLMs). Biber's multidimensional analysis (MDA) is applied to a sample of human-written texts and AI-created texts generated to be their counterparts to find the dimensions of variation in which LLMs differ most significantly and most systematically from humans. As textual material, a new LLM-generated corpus AI-Brown is used, which is comparable to BE-21 (a Brown family corpus representing contemporary British English). Since all languages except English are underrepresented in the training data of frontier LLMs, similar analysis is replicated on Czech using AI-Koditex corpus and Czech multidimensional model. Examined were 16 frontier models in various settings and prompts, with emphasis placed on the difference between base models and instruction-tuned models. Based on this, a benchmark is created through which models can be compared with each other and ranked in interpretable dimensions.
    
      Concept Bottleneck Models (CBMs) have been proposed as a compromise between white-box and black-box models, aiming to achieve interpretability without sacrificing accuracy. The standard training procedure for CBMs is to predefine a candidate set of human-interpretable concepts, extract their values from the training data, and identify a sparse subset as inputs to a transparent prediction model. However, such approaches are often hampered by the tradeoff between exploring a sufficiently large set of concepts versus controlling the cost of obtaining concept extractions, resulting in a large interpretability-accuracy tradeoff. This work investigates a novel approach that sidesteps these challenges: BC-LLM iteratively searches over a potentially infinite set of concepts within a Bayesian framework, in which Large Language Models (LLMs) serve as both a concept extraction mechanism and prior. Even though LLMs can be miscalibrated and hallucinate, we prove that BC-LLM can provide rigorous statistical inference and uncertainty quantification. Across image, text, and tabular datasets, BC-LLM outperforms interpretable baselines and even black-box models in certain settings, converges more rapidly towards relevant concepts, and is more robust to out-of-distribution samples.
    
      Large Language Models (LLMs) promise impressive capabilities, yet their multi-billion-parameter scale makes on-device or low-resource deployment prohibitive. Mixed-precision quantization offers a compelling solution, but existing methods struggle when the average precision drops below four bits, as they rely on isolated, layer-specific metrics that overlook critical inter-layer interactions affecting overall performance. In this paper, we propose two innovations to address these limitations. First, we frame the mixed-precision quantization problem as a cooperative game among layers and introduce Shapley-based Progressive Quantization Estimation (SPQE) to efficiently obtain accurate Shapley estimates of layer sensitivities and inter-layer interactions. Second, building upon SPQE, we propose Interaction-aware Mixed-Precision Quantization (IMPQ) which translates these Shapley estimates into a binary quadratic optimization formulation, assigning either 2 or 4-bit precision to layers under strict memory constraints. Comprehensive experiments conducted on Llama-3, Gemma-2, and Qwen-3 models across three independent PTQ backends (Quanto, HQQ, GPTQ) demonstrate IMPQ's scalability and consistently superior performance compared to methods relying solely on isolated metrics. Across average precisions spanning 4 bit down to 2 bit, IMPQ cuts Perplexity by 20 to 80 percent relative to the best baseline, with the margin growing as the bit-width tightens.
    
      Miscalibration in Large Language Models (LLMs) undermines their reliability, highlighting the need for accurate confidence estimation. We introduce CCPS (Calibrating LLM Confidence by Probing Perturbed Representation Stability), a novel method analyzing internal representational stability in LLMs. CCPS applies targeted adversarial perturbations to final hidden states, extracts features reflecting the model's response to these perturbations, and uses a lightweight classifier to predict answer correctness. CCPS was evaluated on LLMs from 8B to 32B parameters (covering Llama, Qwen, and Mistral architectures) using MMLU and MMLU-Pro benchmarks in both multiple-choice and open-ended formats. Our results show that CCPS significantly outperforms current approaches. Across four LLMs and three MMLU variants, CCPS reduces Expected Calibration Error by approximately 55% and Brier score by 21%, while increasing accuracy by 5 percentage points, Area Under the Precision-Recall Curve by 4 percentage points, and Area Under the Receiver Operating Characteristic Curve by 6 percentage points, all relative to the strongest prior method. CCPS delivers an efficient, broadly applicable, and more accurate solution for estimating LLM confidence, thereby improving their trustworthiness.
    
      LLM Ensemble -- which involves the comprehensive use of multiple large language models (LLMs), each aimed at handling user queries during downstream inference, to benefit from their individual strengths -- has gained substantial attention recently. The widespread availability of LLMs, coupled with their varying strengths and out-of-the-box usability, has profoundly advanced the field of LLM Ensemble. This paper presents the first systematic review of recent developments in LLM Ensemble. First, we introduce our taxonomy of LLM Ensemble and discuss several related research problems. Then, we provide a more in-depth classification of the methods under the broad categories of "ensemble-before-inference, ensemble-during-inference, ensemble-after-inference'', and review all relevant methods. Finally, we introduce related benchmarks and applications, summarize existing studies, and suggest several future research directions. A curated list of papers on LLM Ensemble is available at https://github.com/junchenzhi/Awesome-LLM-Ensemble.
    
      A Large Language Model (LLM) offers versatility across domains and tasks, purportedly benefiting users with a wide variety of behaviors and preferences. We question this perception about an LLM when users have inherently subjective behaviors and preferences, as seen in their ubiquitous and idiosyncratic browsing of websites or apps. The sequential behavior logs of pages, thus generated, form something akin to each user's self-constructed "language", albeit without the structure and grammar imbued in natural languages. We ask: (i) Can a small LM represent the "language of browsing" better than a large LM? (ii) Can an LM with a single set of parameters (or, single LM) adequately capture myriad users' heterogeneous, subjective behaviors and preferences? (iii) Can a single LM with high average performance, yield low variance in performance to make alignment good at user level? We introduce clusterwise LM training, HeTLM (Heterogeneity aware Training of Language Model), appropriate for subjective behaviors. We find that (i) a small LM trained using a page-level tokenizer outperforms large pretrained or finetuned LMs; (ii) HeTLM with heterogeneous cluster specific set of parameters outperforms a single LM of the same family, controlling for the number of parameters; and (iii) a higher mean and a lower variance in generation ensues, implying improved alignment.
    
      Large Language Models are increasingly used in applications requiring objective assessment, which could be compromised by political bias. Many studies found preferences for left-leaning positions in LLMs, but downstream effects on tasks like fact-checking remain underexplored. In this study, we systematically investigate political bias through exchanging words with euphemisms or dysphemisms in German claims. We construct minimal pairs of factually equivalent claims that differ in political connotation, to assess the consistency of LLMs in classifying them as true or false. We evaluate six LLMs and find that, more than political leaning, the presence of judgmental words significantly influences truthfulness assessment. While a few models show tendencies of political bias, this is not mitigated by explicitly calling for objectivism in prompts.
    
      This study examines the performance of today's open-source, locally hosted large-language models (LLMs) in handling complex competitive programming tasks with extended problem descriptions and contexts. Building on the original Framework for AI-driven Code Generation Evaluation (FACE), the authors retrofit the pipeline to work entirely offline through the Ollama runtime, collapsing FACE's sprawling per-problem directory tree into a handful of consolidated JSON files, and adding robust checkpointing so multi-day runs can resume after failures. The enhanced framework generates, submits, and records solutions for the full Kattis corpus of 3,589 problems across eight code-oriented models ranging from 6.7-9 billion parameters. The submission results show that the overall pass@1 accuracy is modest for the local models, with the best models performing at approximately half the acceptance rate of the proprietary models, Gemini 1.5 and ChatGPT-4. These findings expose a persistent gap between private, cost-controlled LLM deployments and state-of-the-art proprietary services, yet also highlight the rapid progress of open models and the practical benefits of an evaluation workflow that organizations can replicate on in-house hardware.
    
      Large Language Models (LLMs) are being integrated into applications such as chatbots or email assistants. To prevent improper responses, safety mechanisms, such as Reinforcement Learning from Human Feedback (RLHF), are implemented in them. In this work, we bypass these safety measures for ChatGPT, Gemini, and Deepseek by making them impersonate complex personas with personality characteristics that are not aligned with a truthful assistant. First, we create elaborate biographies of these personas, which we then use in a new session with the same chatbots. Our conversations then follow a role-play style to elicit prohibited responses. Using personas, we show that prohibited responses are provided, making it possible to obtain unauthorized, illegal, or harmful information when querying ChatGPT, Gemini, and Deepseek. We show that these chatbots are vulnerable to this attack by getting dangerous information for 40 out of 40 illicit questions in GPT-4.1-mini, Gemini-1.5-flash, 39 out of 40 in GPT-4o-mini, 38 out of 40 in GPT-3.5-turbo, and 2 out of 2 cases in Gemini-2.5-flash and DeepSeek V3. The attack can be carried out manually or automatically using a support LLM, and has proven effective against models deployed between 2023 and 2025.
    
      The advancement of Large Language Models (LLMs) has transformed natural language processing; however, their safety mechanisms remain under-explored in low-resource, multilingual settings. Here, we aim to bridge this gap. In particular, we introduce \textsf{SGToxicGuard}, a novel dataset and evaluation framework for benchmarking LLM safety in Singapore's diverse linguistic context, including Singlish, Chinese, Malay, and Tamil. SGToxicGuard adopts a red-teaming approach to systematically probe LLM vulnerabilities in three real-world scenarios: \textit{conversation}, \textit{question-answering}, and \textit{content composition}. We conduct extensive experiments with state-of-the-art multilingual LLMs, and the results uncover critical gaps in their safety guardrails. By offering actionable insights into cultural sensitivity and toxicity mitigation, we lay the foundation for safer and more inclusive AI systems in linguistically diverse environments.\footnote{Link to the dataset: https://github.com/Social-AI-Studio/SGToxicGuard.} \textcolor{red}{Disclaimer: This paper contains sensitive content that may be disturbing to some readers.}
    
      With the different roles that AI is expected to play in human life, imbuing large language models (LLMs) with different personalities has attracted increasing research interests. While the "personification" enhances human experiences of interactivity and adaptability of LLMs, it gives rise to critical concerns about content safety, particularly regarding bias, sentiment and toxicity of LLM generation. This study explores how assigning different personality traits to LLMs affects the toxicity and biases of their outputs. Leveraging the widely accepted HEXACO personality framework developed in social psychology, we design experimentally sound prompts to test three LLMs' performance on three toxic and bias benchmarks. The findings demonstrate the sensitivity of all three models to HEXACO personality traits and, more importantly, a consistent variation in the biases, negative sentiment and toxicity of their output. In particular, adjusting the levels of several personality traits can effectively reduce bias and toxicity in model performance, similar to humans' correlations between personality traits and toxic behaviors. The findings highlight the additional need to examine content safety besides the efficiency of training or fine-tuning methods for LLM personification. They also suggest a potential for the adjustment of personalities to be a simple and low-cost method to conduct controlled text generation.
    
      Modern software development pipelines face growing challenges in securing large codebases with extensive dependencies. Static analysis tools like Bandit are effective at vulnerability detection but suffer from high false positives and lack repair capabilities. Large Language Models (LLMs), in contrast, can suggest fixes but often hallucinate changes and lack self-validation. We present SecureFixAgent, a hybrid repair framework integrating Bandit with lightweight local LLMs (<8B parameters) in an iterative detect-repair-validate loop. To improve precision, we apply parameter-efficient LoRA-based fine-tuning on a diverse, curated dataset spanning multiple Python project domains, mitigating dataset bias and reducing unnecessary edits. SecureFixAgent uses Bandit for detection, the LLM for candidate fixes with explanations, and Bandit re-validation for verification, all executed locally to preserve privacy and reduce cloud reliance. Experiments show SecureFixAgent reduces false positives by 10.8% over static analysis, improves fix accuracy by 13.51%, and lowers false positives by 5.46% compared to pre-trained LLMs, typically converging within three iterations. Beyond metrics, developer studies rate explanation quality 4.5/5, highlighting its value for human trust and adoption. By combining verifiable security improvements with transparent rationale in a resource-efficient local framework, SecureFixAgent advances trustworthy, automated vulnerability remediation for modern pipelines.
    
      Extended reality (XR) applications increasingly integrate Large Language Models (LLMs) to enhance user experience, scene understanding, and even generate executable XR content, and are often called "AI glasses". Despite these potential benefits, the integrated XR-LLM pipeline makes XR applications vulnerable to new forms of attacks. In this paper, we analyze LLM-Integated XR systems in the literature and in practice and categorize them along different dimensions from a systems perspective. Building on this categorization, we identify a common threat model and demonstrate a series of proof-of-concept attacks on multiple XR platforms that employ various LLM models (Meta Quest 3, Meta Ray-Ban, Android, and Microsoft HoloLens 2 running Llama and GPT models). Although these platforms each implement LLM integration differently, they share vulnerabilities where an attacker can modify the public context surrounding a legitimate LLM query, resulting in erroneous visual or auditory feedback to users, thus compromising their safety or privacy, sowing confusion, or other harmful effects. To defend against these threats, we discuss mitigation strategies and best practices for developers, including an initial defense prototype, and call on the community to develop new protection mechanisms to mitigate these risks.
    
      We propose FlowRL: matching the full reward distribution via flow balancing instead of maximizing rewards in large language model (LLM) reinforcement learning (RL). Recent advanced reasoning models adopt reward-maximizing methods (\eg, PPO and GRPO), which tend to over-optimize dominant reward signals while neglecting less frequent but valid reasoning paths, thus reducing diversity. In contrast, we transform scalar rewards into a normalized target distribution using a learnable partition function, and then minimize the reverse KL divergence between the policy and the target distribution. We implement this idea as a flow-balanced optimization method that promotes diverse exploration and generalizable reasoning trajectories. We conduct experiments on math and code reasoning tasks: FlowRL achieves a significant average improvement of $10.0\%$ over GRPO and $5.1\%$ over PPO on math benchmarks, and performs consistently better on code reasoning tasks. These results highlight reward distribution-matching as a key step toward efficient exploration and diverse reasoning in LLM reinforcement learning.
    
      Jailbreak attacks pose persistent threats to large language models (LLMs). Current safety alignment methods have attempted to address these issues, but they experience two significant limitations: insufficient safety alignment depth and unrobust internal defense mechanisms. These limitations make them vulnerable to adversarial attacks such as prefilling and refusal direction manipulation. We introduce DeepRefusal, a robust safety alignment framework that overcomes these issues. DeepRefusal forces the model to dynamically rebuild its refusal mechanisms from jailbreak states. This is achieved by probabilistically ablating the refusal direction across layers and token depths during fine-tuning. Our method not only defends against prefilling and refusal direction attacks but also demonstrates strong resilience against other unseen jailbreak strategies. Extensive evaluations on four open-source LLM families and six representative attacks show that DeepRefusal reduces attack success rates by approximately 95%, while maintaining model capabilities with minimal performance degradation.
    
      LLM-based agentic systems leverage large language models to handle user queries, make decisions, and execute external tools for complex tasks across domains like chatbots, customer service, and software engineering. A critical component of these systems is the Tool Invocation Prompt (TIP), which defines tool interaction protocols and guides LLMs to ensure the security and correctness of tool usage. Despite its importance, TIP security has been largely overlooked. This work investigates TIP-related security risks, revealing that major LLM-based systems like Cursor, Claude Code, and others are vulnerable to attacks such as remote code execution (RCE) and denial of service (DoS). Through a systematic TIP exploitation workflow (TEW), we demonstrate external tool behavior hijacking via manipulated tool invocations. We also propose defense mechanisms to enhance TIP security in LLM-based agentic systems.
    
      Alignment of large language models (LLMs) with principles like helpfulness, honesty, and harmlessness typically relies on scalar rewards that obscure which objectives drive the training signal. We introduce QA-LIGN, which decomposes monolithic rewards into interpretable principle-specific evaluations through structured natural language programs. Models learn through a draft, critique, and revise pipeline, where symbolic evaluation against the rubrics provides transparent feedback for both initial and revised responses during GRPO training. Applied to uncensored Llama-3.1-8B-Instruct, QA-LIGN reduces attack success rates by up to 68.7% while maintaining a 0.67% false refusal rate, achieving Pareto optimal safety-helpfulness performance and outperforming both DPO and GRPO with state-of-the-art reward models given equivalent training. These results demonstrate that making reward signals interpretable and modular improves alignment effectiveness, suggesting transparency enhances LLM safety.
    
      Large language models (LLMs) are playing an increasingly integral, though largely informal, role in scholarly peer review. Yet it remains unclear whether LLMs reproduce the biases observed in human decision-making. We adapt a resume-style audit to scientific publishing, developing a multi-role LLM simulation (editor/reviewer) that evaluates a representative set of high-quality manuscripts across the physical, biological, and social sciences under randomized author identities (institutional prestige, gender, race). The audit reveals a strong and consistent institutional-prestige bias: identical papers attributed to low-prestige affiliations face a significantly higher risk of rejection, despite only modest differences in LLM-assessed quality. To probe mechanisms, we generate synthetic CVs for the same author profiles; these encode large prestige-linked disparities and an inverted prestige-tenure gradient relative to national benchmarks. The results suggest that both domain norms and prestige-linked priors embedded in training data shape paper-level outcomes once identity is visible, converting affiliation into a decisive status cue.
    
      Humanitarian Mine Action has generated extensive best-practice knowledge, but much remains locked in unstructured reports. We introduce TextMine, an ontology-guided pipeline that uses Large Language Models to extract knowledge triples from HMA texts. TextMine integrates document chunking, domain-aware prompting, triple extraction, and both reference-based and LLM-as-a-Judge evaluation. We also create the first HMA ontology and a curated dataset of real-world demining reports. Experiments show ontology-aligned prompts boost extraction accuracy by 44.2%, cut hallucinations by 22.5%, and improve format conformance by 20.9% over baselines. While validated on Cambodian reports, TextMine can adapt to global demining efforts or other domains, transforming unstructured data into structured knowledge.
    
      Automatic Speech Recognition (ASR) systems remain prone to errors that affect downstream applications. In this paper, we propose LIR-ASR, a heuristic optimized iterative correction framework using LLMs, inspired by human auditory perception. LIR-ASR applies a "Listening-Imagining-Refining" strategy, generating phonetic variants and refining them in context. A heuristic optimization with finite state machine (FSM) is introduced to prevent the correction process from being trapped in local optima and rule-based constraints help maintain semantic fidelity. Experiments on both English and Chinese ASR outputs show that LIR-ASR achieves average reductions in CER/WER of up to 1.5 percentage points compared to baselines, demonstrating substantial accuracy gains in transcription.
    
      Coarse-grained Reconfigurable Arrays (CGRAs) are a promising computing architecture that can deliver high-performance, energy-efficient acceleration across diverse domains. By supporting reconfiguration at the functional unit level, CGRAs efficiently adapt to varying computational patterns and optimize resource utilization. However, designing CGRAs is highly challenging due to the vast design space, independent architectural parameters, and the time-consuming nature of manual design. Fortunately, the rapid advancement of large language models (LLMs) presents new opportunities to automate this process. In this work, we propose MACO -- an open-source multi-agent LLM-based framework for Hardware/Software (HW/SW) co-design of CGRAs. The framework employs LLM reasoning to generate CGRAs across four stages: HW/SW co-design, Design error correction, Best design selection, and Evaluation & Feedback. Furthermore, MACO iteratively optimizes the generated CGRAs, leveraging agent reasoning and feedback to achieve higher PPA (that is, power, performance, and area) design points for a given domain. In addition, we introduce an LLM self-learning mechanism that employs LLM-driven decision making to select the optimal CGRA to accelerate the design process. We evaluate the framework with state-of-the-art LLM-based methods and manual CGRA design, in terms of performance, power consumption, and area. Experimental results show that MACO efficiently generates high-quality CGRA architectures, significantly reducing manual design effort and demonstrating the potential of our framework for real-world CGRA design.
    
      When evaluating large language models (LLMs) with multiple-choice question answering (MCQA), it is common to end the prompt with the string "Answer:" to facilitate automated answer extraction via next-token probabilities. However, there is no consensus on how to tokenize the space following the colon, often overlooked as a trivial choice. In this paper, we uncover accuracy differences of up to 11% due to this (seemingly irrelevant) tokenization variation as well as reshuffled model rankings, raising concerns about the reliability of LLM comparisons in prior work. Surprisingly, we are able to recommend one specific strategy -- tokenizing the space together with the answer letter -- as we observe consistent and statistically significant performance improvements. Additionally, it improves model calibration, enhancing the reliability of the model's confidence estimates. Our findings underscore the importance of careful evaluation design and highlight the need for standardized, transparent evaluation protocols to ensure reliable and comparable results.
    
      Medical decision-making often involves integrating knowledge from multiple clinical specialties, typically achieved through multidisciplinary teams. Inspired by this collaborative process, recent work has leveraged large language models (LLMs) in multi-agent collaboration frameworks to emulate expert teamwork. While these approaches improve reasoning through agent interaction, they are limited by static, pre-assigned roles, which hinder adaptability and dynamic knowledge integration. To address these limitations, we propose KAMAC, a Knowledge-driven Adaptive Multi-Agent Collaboration framework that enables LLM agents to dynamically form and expand expert teams based on the evolving diagnostic context. KAMAC begins with one or more expert agents and then conducts a knowledge-driven discussion to identify and fill knowledge gaps by recruiting additional specialists as needed. This supports flexible, scalable collaboration in complex clinical scenarios, with decisions finalized through reviewing updated agent comments. Experiments on two real-world medical benchmarks demonstrate that KAMAC significantly outperforms both single-agent and advanced multi-agent methods, particularly in complex clinical scenarios (i.e., cancer prognosis) requiring dynamic, cross-specialty expertise. Our code is publicly available at: https://github.com/XiaoXiao-Woo/KAMAC.
    
      Using Large Language Models (LLMs) to generate semantic features has been demonstrated as a powerful paradigm for enhancing Sequential Recommender Systems (SRS). This typically involves three stages: processing item text, extracting features with LLMs, and adapting them for downstream models. However, existing methods vary widely in prompting, architecture, and adaptation strategies, making it difficult to fairly compare design choices and identify what truly drives performance. In this work, we propose RecXplore, a modular analytical framework that decomposes the LLM-as-feature-extractor pipeline into four modules: data processing, semantic feature extraction, feature adaptation, and sequential modeling. Instead of proposing new techniques, RecXplore revisits and organizes established methods, enabling systematic exploration of each module in isolation. Experiments on four public datasets show that simply combining the best designs from existing techniques without exhaustive search yields up to 18.7% relative improvement in NDCG@5 and 12.7% in HR@5 over strong baselines. These results underscore the utility of modular benchmarking for identifying effective design patterns and promoting standardized research in LLM-enhanced recommendation.
    
      As global e-commerce platforms continue to expand, companies are entering new markets where they encounter cold-start challenges due to limited human labels and user behaviors. In this paper, we share our experiences in Coupang to provide a competitive cold-start performance of relevance matching for emerging e-commerce markets. Specifically, we present a Cold-Start Relevance Matching (CSRM) framework, utilizing a multilingual Large Language Model (LLM) to address three challenges: (1) activating cross-lingual transfer learning abilities of LLMs through machine translation tasks; (2) enhancing query understanding and incorporating e-commerce knowledge by retrieval-based query augmentation; (3) mitigating the impact of training label errors through a multi-round self-distillation training strategy. Our experiments demonstrate the effectiveness of CSRM-LLM and the proposed techniques, resulting in successful real-world deployment and significant online gains, with a 45.8% reduction in defect ratio and a 0.866% uplift in session purchase rate.
    
      Text Implicitness has always been challenging in Natural Language Processing (NLP), with traditional methods relying on explicit statements to identify entities and their relationships. From the sentence "Zuhdi attends church every Sunday", the relationship between Zuhdi and Christianity is evident for a human reader, but it presents a challenge when it must be inferred automatically. Large language models (LLMs) have proven effective in NLP downstream tasks such as text comprehension and information extraction (IE). This study examines how textual implicitness affects IE tasks in pre-trained LLMs: LLaMA 2.3, DeepSeekV1, and Phi1.5. We generate two synthetic datasets of 10k implicit and explicit verbalization of biographic information to measure the impact on LLM performance and analyze whether fine-tuning implicit data improves their ability to generalize in implicit reasoning tasks. This research presents an experiment on the internal reasoning processes of LLMs in IE, particularly in dealing with implicit and explicit contexts. The results demonstrate that fine-tuning LLM models with LoRA (low-rank adaptation) improves their performance in extracting information from implicit texts, contributing to better model interpretability and reliability.
    
      LLM-as-a-Judge employs large language models (LLMs), such as GPT-4, to evaluate the quality of LLM-generated responses, gaining popularity for its cost-effectiveness and strong alignment with human evaluations. However, training proxy judge models using evaluation data generated by powerful teacher models introduces a critical yet previously overlooked issue: teacher preference bias, where the proxy judge model learns a biased preference for responses from the teacher model. To tackle this problem, we propose a novel setting that incorporates an additional assistant model, which is not biased toward the teacher model's responses, to complement the training data. Building on this setup, we introduce AGDe-Judge, a three-stage framework designed to debias from both the labels and feedbacks in the training data. Extensive experiments demonstrate that AGDe-Judge effectively reduces teacher preference bias while maintaining strong performance across six evaluation benchmarks. Code is available at https://github.com/Liuz233/AGDe-Judge.
    
      Optimizing language models for use in conversational agents requires large quantities of example dialogues. Increasingly, these dialogues are synthetically generated by using powerful large language models (LLMs), especially in domains where obtaining authentic human data is challenging. One such domain is human resources (HR). In this context, we compare two LLM-based dialogue generation methods for producing HR job interviews, and assess which method generates higher-quality dialogues, i.e., those more difficult to distinguish from genuine human discourse. The first method uses a single prompt to generate the complete interview dialogue. The second method uses two agents that converse with each other. To evaluate dialogue quality under each method, we ask a judge LLM to determine whether AI was used for interview generation, using pairwise interview comparisons. We empirically find that, at the expense of a sixfold increase in token count, interviews generated with the dual-prompt method achieve a win rate 2 to 10 times higher than those generated with the single-prompt method. This difference remains consistent regardless of whether GPT-4o or Llama 3.3 70B is used for either interview generation or quality judging.
    
      The emergence of large language models (LLMs) has brought a new paradigm to automated essay scoring (AES), a long-standing and practical application of natural language processing in education. However, achieving human-level multi-perspective understanding and judgment remains a challenge. In this work, we propose Roundtable Essay Scoring (RES), a multi-agent evaluation framework designed to perform precise and human-aligned scoring under a zero-shot setting. RES constructs evaluator agents based on LLMs, each tailored to a specific prompt and topic context. Each agent independently generates a trait-based rubric and conducts a multi-perspective evaluation. Then, by simulating a roundtable-style discussion, RES consolidates individual evaluations through a dialectical reasoning process to produce a final holistic score that more closely aligns with human evaluation. By enabling collaboration and consensus among agents with diverse evaluation perspectives, RES outperforms prior zero-shot AES approaches. Experiments on the ASAP dataset using ChatGPT and Claude show that RES achieves up to a 34.86% improvement in average QWK over straightforward prompting (Vanilla) methods.
    
      Large language models (LLMs) are increasingly used in group decision-making, but their influence risks fostering conformity and reducing epistemic vigilance. Drawing on the Argumentative Theory of Reasoning, we argue that confirmation bias, often seen as detrimental, can be harnessed as a resource when paired with critical evaluation. We propose a three-step process in which individuals first generate ideas independently, then use LLMs to refine and articulate them, and finally engage with LLMs as epistemic provocateurs to anticipate group critique. This framing positions LLMs as tools for scaffolding disagreement, helping individuals prepare for more productive group discussions.
    
      In online learning environments, students often lack personalized peer interactions, which play a crucial role in supporting cognitive development and learning engagement. Although previous studies have utilized large language models (LLMs) to simulate interactive dynamic learning environments for students, these interactions remain limited to conversational exchanges, lacking insights and adaptations to the learners' individualized learning and cognitive states. As a result, students' interest in discussions with AI learning companions is low, and they struggle to gain inspiration from such interactions. To address this challenge, we propose OnlineMate, a multi-agent learning companion system driven by LLMs that integrates the Theory of Mind (ToM). OnlineMate is capable of simulating peer-like agent roles, adapting to learners' cognitive states during collaborative discussions, and inferring their psychological states, such as misunderstandings, confusion, or motivation. By incorporating Theory of Mind capabilities, the system can dynamically adjust its interaction strategies to support the development of higher-order thinking and cognition. Experimental results in simulated learning scenarios demonstrate that OnlineMate effectively fosters deep learning and discussions while enhancing cognitive engagement in online educational settings.
    
      JSON Lines (JSONL) is widely used for managing large collections of semi-structured data, ranging from large language model (LLM) prompts to chemical compound records and geospatial datasets. A key operation is substructure search, which identifies all JSON objects containing a query pattern. This task underpins applications such as drug discovery (querying compounds for functional groups), prompt engineering (extracting prompts with schema fragments), and geospatial analytics (finding entities with nested attributes). However, existing methods are inefficient: traversal requires exhaustive tree matching, succinct JSON representations save space but do not accelerate search, and XML-based approaches incur conversion overhead and semantic mismatches. We present jXBW, a compressed index for efficient substructure search over JSONL. jXBW introduces three innovations: (i) a merged tree representation that consolidates repeated structures, (ii) a succinct tree index based on the eXtended Burrows--Wheeler Transform (XBW), and (iii) a three-phase algorithm for substructure search. These enable query-dependent complexity, where cost depends on query characteristics rather than dataset size, while retaining succinct space. This resolves a key bottleneck in retrieval-augmented generation (RAG) systems requiring structure-aware retrieval. Experiments on seven real datasets, including PubChem (1M compounds) and OSM geospatial data (6.6M objects), achieve up to 4,700$\times$ speedup over tree-based methods and over $6\times 10^6$ speedup relative to XML-based approaches. jXBW makes JSONL substructure search practical for the first time, opening opportunities for large-scale LLM-based analytics.
    
      Metadata extraction is essential for cataloging and preserving datasets, enabling effective research discovery and reproducibility, especially given the current exponential growth in scientific research. While Masader (Alyafeai et al.,2021) laid the groundwork for extracting a wide range of metadata attributes from Arabic NLP datasets' scholarly articles, it relies heavily on manual annotation. In this paper, we present MOLE, a framework that leverages Large Language Models (LLMs) to automatically extract metadata attributes from scientific papers covering datasets of languages other than Arabic. Our schema-driven methodology processes entire documents across multiple input formats and incorporates robust validation mechanisms for consistent output. Additionally, we introduce a new benchmark to evaluate the research progress on this task. Through systematic analysis of context length, few-shot learning, and web browsing integration, we demonstrate that modern LLMs show promising results in automating this task, highlighting the need for further future work improvements to ensure consistent and reliable performance. We release the code: https://github.com/IVUL-KAUST/MOLE and dataset: https://huggingface.co/datasets/IVUL-KAUST/MOLE for the research community.
    
      Large language model (LLM) inference has been a prevalent demand in daily life and industries. The large tensor sizes and computing complexities in LLMs have brought challenges to memory, computing, and databus. This paper proposes a computation/memory/communication co-designed non-von Neumann accelerator by aggregating processing-in-memory (PIM) and computational network-on-chip (NoC), termed LEAP. The matrix multiplications in LLMs are assigned to PIM or NoC based on the data dynamicity to maximize data locality. Model partition and mapping are optimized by heuristic design space exploration. Dedicated fine-grained parallelism and tiling techniques enable high-throughput dataflow across the distributed resources in PIM and NoC. The architecture is evaluated on Llama 1B/8B/13B models and shows $\sim$2.55$\times$ throughput (tokens/sec) improvement and $\sim$71.94$\times$ energy efficiency (tokens/Joule) boost compared to the A100 GPU.
    
      We present a survey of methods for assessing and enhancing the quality of online discussions, focusing on the potential of LLMs. While online discourses aim, at least in theory, to foster mutual understanding, they often devolve into harmful exchanges, such as hate speech, threatening social cohesion and democratic values. Recent advancements in LLMs enable artificial facilitation agents to not only moderate content, but also actively improve the quality of interactions. Our survey synthesizes ideas from NLP and Social Sciences to provide (a) a new taxonomy on discussion quality evaluation, (b) an overview of intervention and facilitation strategies, (c) along with a new taxonomy of conversation facilitation datasets, (d) an LLM-oriented roadmap of good practices and future research directions, from technological and societal perspectives.
    
      Benchmark saturation and contamination undermine confidence in LLM evaluation. We present Nazonazo, a cost-effective and extensible benchmark built from Japanese children's riddles to test insight-based reasoning. Items are short (mostly one sentence), require no specialized domain knowledge, and can be generated at scale, enabling rapid refresh of blind sets when leakage is suspected. We evaluate 38 frontier models and 126 adults on 120 riddles. No model except for GPT-5 is comparable to human performance, which achieves a 52.9% mean accuracy. Model comparison on extended 201 items shows that reasoning models significantly outperform non-reasoning peers, while model size shows no reliable association with accuracy. Beyond aggregate accuracy, an informal candidate-tracking analysis of thought logs reveals many cases of verification failure: models often produce the correct solution among intermediate candidates yet fail to select it as the final answer, which we illustrate with representative examples observed in multiple models. Nazonazo thus offers a cost-effective, scalable, and easily renewable benchmark format that addresses the current evaluation crisis while also suggesting a recurrent meta-cognitive weakness, providing clear targets for future control and calibration methods.
    
      Multi-agent reinforcement learning (MARL) holds substantial promise for intelligent decision-making in complex environments. However, it suffers from a coordination and scalability bottleneck as the number of agents increases. To address these issues, we propose the LLM-empowered expert demonstrations framework for multi-agent reinforcement learning (LEED). LEED consists of two components: a demonstration generation (DG) module and a policy optimization (PO) module. Specifically, the DG module leverages large language models to generate instructions for interacting with the environment, thereby producing high-quality demonstrations. The PO module adopts a decentralized training paradigm, where each agent utilizes the generated demonstrations to construct an expert policy loss, which is then integrated with its own policy loss. This enables each agent to effectively personalize and optimize its local policy based on both expert knowledge and individual experience. Experimental results show that LEED achieves superior sample efficiency, time efficiency, and robust scalability compared to state-of-the-art baselines.
    
      The large language models (LLMs) are able to generate high-quality texts in multiple languages. Such texts are often not recognizable by humans as generated, and therefore present a potential of LLMs for misuse (e.g., plagiarism, spams, disinformation spreading). An automated detection is able to assist humans to indicate the machine-generated texts; however, its robustness to out-of-distribution data is still challenging. This notebook describes our mdok approach in robust detection, based on fine-tuning smaller LLMs for text classification. It is applied to both subtasks of Voight-Kampff Generative AI Detection 2025, providing remarkable performance (1st rank) in both, the binary detection as well as the multiclass classification of various cases of human-AI collaboration.
    
      Assertion-Based Verification (ABV) is a crucial method for ensuring that logic designs conform to their architectural specifications. However, existing assertion generation methods primarily rely on information either from the design specification, or register-transfer level (RTL) code. The former methods are typically limited to generating assertions for the top-level design. As the top-level design is composed of different modules without module-level specifications, they are unable to generate deep assertions that target the internal functionality of modules. The latter methods often rely on a golden RTL model, which is difficult to obtain. To address the above limitations, this paper presents a novel large language model (LLM)-aided verification framework named DeepAssert. DeepAssert is capable of analyzing the invocation relationships between modules and extracting independent specifications for each module with its I/O port information. These extracted specifications are subsequently used to guide LLMs to automatically generate fine-grained deep assertions for these modules. Our evaluation demonstrates that DeepAssert significantly outperforms existing methods such as AssertLLM and Spec2Assertion in generating high-quality deep assertions for modules. Furthermore, when integrated with these methods, DeepAssert can enhance the overall quality of the assertions generated. This allows for a more comprehensive and effective verification process.
    
      Decompilation is widely used in reverse engineering to recover high-level language code from binary executables. While recent approaches leveraging Large Language Models (LLMs) have shown promising progress, they typically treat assembly code as a linear sequence of instructions, overlooking arbitrary jump patterns and isolated data segments inherent to binary files. This limitation significantly hinders their ability to correctly infer source code semantics from assembly code. To address this limitation, we propose \saltm, a novel binary decompilation method that abstracts stable logical features shared between binary and source code. The core idea of \saltm is to abstract selected binary-level operations, such as specific jumps, into a high-level logic framework that better guides LLMs in semantic recovery. Given a binary function, \saltm constructs a Source-level Abstract Logic Tree (\salt) from assembly code to approximate the logic structure of high-level language. It then fine-tunes an LLM using the reconstructed \salt to generate decompiled code. Finally, the output is refined through error correction and symbol recovery to improve readability and correctness. We compare \saltm to three categories of baselines (general-purpose LLMs, commercial decompilers, and decompilation methods) using three well-known datasets (Decompile-Eval, MBPP, Exebench). Our experimental results demonstrate that \saltm is highly effective in recovering the logic of the source code, significantly outperforming state-of-the-art methods (e.g., 70.4\% TCP rate on Decompile-Eval with a 10.6\% improvement). The results further validate its robustness against four commonly used obfuscation techniques. Additionally, analyses of real-world software and a user study confirm that our decompiled output offers superior assistance to human analysts in comprehending binary functions.
    
      Large language model (LLM) unlearning has demonstrated effectiveness in removing the influence of undesirable data (also known as forget data). Existing approaches typically assume full access to the forget dataset, overlooking two key challenges: (1) Forget data is often privacy-sensitive, rare, or legally regulated, making it expensive or impractical to obtain (2) The distribution of available forget data may not align with how that information is represented within the model. To address these limitations, we propose a ``Reveal-and-Release'' method to unlearn with self-generated data, where we prompt the model to reveal what it knows using optimized instructions. To fully utilize the self-generated forget data, we propose an iterative unlearning framework, where we make incremental adjustments to the model's weight space with parameter-efficient modules trained on the forget data. Experimental results demonstrate that our method balances the tradeoff between forget quality and utility preservation.
    
      Reinforcement learning (RL) often struggles with reward misalignment, where agents optimize given rewards but fail to exhibit the desired behaviors. This arises when the reward function incentivizes proxy behaviors misaligned with the true objective. While human-in-the-loop (HITL) methods can mitigate this issue, they also introduce biases, leading to inconsistent and subjective feedback that complicates learning. To address these challenges, we propose two key contributions. First, we extend the use of zero-shot, off-the-shelf large language models (LLMs) for reward shaping beyond natural language processing (NLP) to continuous control tasks. Using LLMs as direct feedback providers eliminates the need for surrogate models trained on human feedback, which often inherit biases from training data. Second, we introduce a hybrid framework (LLM-HFBF) that enables LLMs to identify and correct biases in human feedback while incorporating this feedback into the reward shaping process. The LLM-HFBF framework creates a more balanced and reliable system by addressing both the limitations of LLMs (e.g., lack of domain-specific knowledge) and human supervision (e.g., inherent biases). By enabling human feedback bias flagging and correction, our approach improves reinforcement learning performance and reduces reliance on potentially biased human feedback. Empirical experiments show that biased human feedback significantly reduces performance, with Average Episodic Reward dropping by nearly 94% compared to unbiased approaches. In contrast, LLM-based methods sustain performance at a similar level to unbiased feedback, even in challenging edge-case scenarios.
    
      Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our Middo consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are coming soon. Our datasets, models, and code are publicly available at https://github.com/Word2VecT/Middo
    
      Chain-of-Thought (CoT) prompting has significantly advanced the reasoning capabilities of Large Language Models (LLMs), yet the reliability of these reasoning chains remains a critical challenge. A widely held "cascading failure" hypothesis suggests that errors are most detrimental when they occur early in the reasoning process. This paper challenges that assumption through systematic error-injection experiments, revealing a counter-intuitive phenomenon we term "Late-Stage Fragility": errors introduced in the later stages of a CoT chain are significantly more likely to corrupt the final answer than identical errors made at the beginning. To address this specific vulnerability, we introduce the Adaptive Self-Correction Chain-of-Thought (ASCoT) method. ASCoT employs a modular pipeline in which an Adaptive Verification Manager (AVM) operates first, followed by the Multi-Perspective Self-Correction Engine (MSCE). The AVM leverages a Positional Impact Score function I(k) that assigns different weights based on the position within the reasoning chains, addressing the Late-Stage Fragility issue by identifying and prioritizing high-risk, late-stage steps. Once these critical steps are identified, the MSCE applies robust, dual-path correction specifically to the failure parts. Extensive experiments on benchmarks such as GSM8K and MATH demonstrate that ASCoT achieves outstanding accuracy, outperforming strong baselines, including standard CoT. Our work underscores the importance of diagnosing specific failure modes in LLM reasoning and advocates for a shift from uniform verification strategies to adaptive, vulnerability-aware correction mechanisms.
    
      LLMs have shown strong performance on human-centric reasoning tasks. While previous evaluations have explored whether LLMs can infer intentions or detect deception, they often overlook the individualized reasoning styles that influence how people interpret and act in social contexts. Social deduction games (SDGs) provide a natural testbed for evaluating individualized reasoning styles, where different players may adopt diverse but contextually valid reasoning strategies under identical conditions. To address this, we introduce InMind, a cognitively grounded evaluation framework designed to assess whether LLMs can capture and apply personalized reasoning styles in SDGs. InMind enhances structured gameplay data with round-level strategy traces and post-game reflections, collected under both Observer and Participant modes. It supports four cognitively motivated tasks that jointly evaluate both static alignment and dynamic adaptation. As a case study, we apply InMind to the game Avalon, evaluating 11 state-of-the-art LLMs. General-purpose LLMs, even GPT-4o frequently rely on lexical cues, struggling to anchor reflections in temporal gameplay or adapt to evolving strategies. In contrast, reasoning-enhanced LLMs like DeepSeek-R1 exhibit early signs of style-sensitive reasoning. These findings reveal key limitations in current LLMs' capacity for individualized, adaptive reasoning, and position InMind as a step toward cognitively aligned human-AI interaction.
    
      Large language models (LLMs) are known to perpetuate stereotypes and exhibit biases. Various strategies have been proposed to mitigate these biases, but most work studies biases as a black-box problem without considering how concepts are represented within the model. We adapt techniques from representation engineering to study how the concept of "gender" is represented within LLMs. We introduce a new method that extracts concept representations via probability weighting without labeled data and efficiently selects a steering vector for measuring and manipulating the model's representation. We develop a projection-based method that enables precise steering of model predictions and demonstrate its effectiveness in mitigating gender bias in LLMs and show that it also generalizes to racial bias. Our code is available at: https://github.com/hannahxchen/gender-bias-steering
    
      Large language models (LLMs) can lead to undesired consequences when misaligned with human values, especially in scenarios involving complex and sensitive social biases. Previous studies have revealed the misalignment of LLMs with human values using expert-designed or agent-based emulated bias scenarios. However, it remains unclear whether the alignment of LLMs with human values differs across different types of scenarios (e.g., scenarios containing negative vs. non-negative questions). In this study, we investigate the alignment of LLMs with human values regarding social biases (HVSB) in different types of bias scenarios. Through extensive analysis of 12 LLMs from four model families and four datasets, we demonstrate that LLMs with large model parameter scales do not necessarily have lower misalignment rate and attack success rate. Moreover, LLMs show a certain degree of alignment preference for specific types of scenarios and the LLMs from the same model family tend to have higher judgment consistency. In addition, we study the understanding capacity of LLMs with their explanations of HVSB. We find no significant differences in the understanding of HVSB across LLMs. We also find LLMs prefer their own generated explanations. Additionally, we endow smaller language models (LMs) with the ability to explain HVSB. The generation results show that the explanations generated by the fine-tuned smaller LMs are more readable, but have a relatively lower model agreeability.
    
      Requirements classification assigns natural language requirements to predefined classes, such as functional and non functional. Accurate classification reduces risk and improves software quality. Most existing models rely on supervised learning, which needs large labeled data that are costly, slow to create, and domain dependent; they also generalize poorly and often require retraining for each task. This study tests whether prompt based large language models can reduce data needs. We benchmark several models and prompting styles (zero shot, few shot, persona, and chain of thought) across multiple tasks on two English datasets, PROMISE and SecReq. For each task we compare model prompt configurations and then compare the best LLM setups with a strong fine tuned transformer baseline. Results show that prompt based LLMs, especially with few shot prompts, can match or exceed the baseline. Adding a persona, or persona plus chain of thought, can yield further gains. We conclude that prompt based LLMs are a practical and scalable option that reduces dependence on large annotations and can improve generalizability across tasks.
    
      Modern large language models (LLMs) employ diverse logical inference mechanisms for reasoning, making the strategic optimization of these approaches critical for advancing their capabilities. This paper systematically investigate the comparative dynamics of inductive (System 1) versus abductive/deductive (System 2) inference in LLMs. We utilize a controlled analogical reasoning environment, varying modality (textual, visual, symbolic), difficulty, and task format (MCQ / free-text). Our analysis reveals System 2 pipelines generally excel, particularly in visual/symbolic modalities and harder tasks, while System 1 is competitive for textual and easier problems. Crucially, task format significantly influences their relative advantage, with System 1 sometimes outperforming System 2 in free-text rule-execution. These core findings generalize to broader in-context learning. Furthermore, we demonstrate that advanced System 2 strategies like hypothesis selection and iterative refinement can substantially scale LLM reasoning. This study offers foundational insights and actionable guidelines for strategically deploying logical inference to enhance LLM reasoning. Resources are available at https://github.com/HKUST-KnowComp/LogiDynamics.
    
      Efficient instruction tuning aims to enhance the ultimate performance of large language models (LLMs) trained on a given instruction dataset. Curriculum learning as a typical data organization strategy has shown preliminary effectiveness in instruction tuning. However, current curriculum tuning methods suffer from the curriculum rigidity, since they rely solely on static heuristic difficulty metrics. These methods fail to adapt to the evolving capabilities of models during training, resulting in a fixed and potentially sub-optimal learning trajectory. To address the issue, Competence-Aware Multi-Perspective cUrriculum inStruction tuning framework termed CAMPUS is proposed. CAMPUS offers several advantages: (1) Dynamic selection for sub-curriculum. (2) Competency-aware adjustment to the curriculum schedule. (3) Multiple difficulty-based scheduling. Extensive experiments prove the superior performance of CAMPUS, compared to other state-of-the-art baselines for efficient instruction tuning.
    
      Ternary quantization has emerged as a powerful technique for reducing both computational and memory footprint of large language models (LLM), enabling efficient real-time inference deployment without significantly compromising model accuracy. Conventional LLM inference platforms (e.g GPUs) cannot capitalize on its benefits, as they (i) lack native support for ternary arithmetic and memory specialization and (ii) remain severely under-utilized in low-batch, real-time scenarios. In this work, we propose TENET, a sparse-aware LUT-centric architecture that co-optimizes algorithm, compute, and memory for ternary LLM inference. To maximize the efficiency of Ternary Linear layer, TENET introduces a Sparse Ternary LUT (STL) core that optimizes ternary mixed-precision GEMM using a symmetric precompute lookup table. It also features Dynamic Activation N:M Sparsity to exploit the sparsity within the activation of each token. Additionally, we propose a LUT-based 64B:80B ternary weight decompression module to fully exploit the memory efficiency of ternary values. At the system level, we design a heterogeneous TENET accelerator with full programmability that integrates STL cores with high-precision cores. An associated Linear-Projection-aware Sparse Attention dataflow is introduced to optimize memory access and hardware utilization. We implement TENET accelerator prototype on both FPGA and ASIC platforms. Experiments across various model sizes and workloads demonstrate that TENET-FPGA and TENET-ASIC improve energy efficiency by 4.3$\times$ and 21.1$\times$, respectively, compared to the A100 GPU. Furthermore, TENET-ASIC achieves a 2.7$\times$ average speedup compared to the A100 GPU in end-to-end inference latency.
    
      Code completion is a prominent application of Large Language Models (LLMs) in software engineering. Due to the near real-time response requirements of this task, base models with small to medium-sized parameters are typically employed, supplemented by various optimization and post-training techniques. However, these optimization methods often have trade-offs, leading to a seesaw effect where performance improvements on certain datasets or metrics are accompanied by degradations on others -- sometimes even falling below the baseline model's performance. This paper proposes SynthCoder, a model that integrates leading industry practices to achieve state-of-the-art performance on the Fill-in-the-Middle (FIM) code completion task. In specific, we first construct a diverse dataset by combining Abstract Syntax Tree (AST) node extraction with heuristics that simulate developer behavior. Then we enrich our training corpus with cross-file contextual information using the BM25 algorithm and call graphs, enhancing the model's ability to perform code completion in both file-level and repository-level scenarios. As the last step, we employ a two-stage training process using the Seed-Coder-8B-Base as the base model. First, we fine-tune the model using Curriculum Learning technology. Following this, we perform alignment using Direct Preference Optimization (DPO) with preference pairs generated through Rejection Sampling. Experimental results demonstrate that our final model excels on mainstream repository-level code completion benchmarks, including aiXcoder, ExecRepoBench, CrossCodeEval, and CoLT. Furthermore, our carefully curated training set effectively mitigates the model's tendency to just repeat existing code, a common issue existing in various code completion models.
    
      Code translation converts code from one programming language to another while maintaining its original functionality, which is crucial for software migration, system refactoring, and cross-platform development. Traditional rule-based methods rely on manually-written rules, which can be time-consuming and often result in less readable code. To overcome this, learning-based methods have been developed, leveraging parallel data to train models for automated code translation. More recently, the advance of Large Language Models (LLMs) further boosts learning-based code translation. Although promising, LLM-translated program still suffers from diverse quality issues (e.g., syntax errors and semantic errors). In particular, it can be challenging for LLMs to self-debug these errors when simply provided with the corresponding error messages. In this work, we propose a novel LLM-based multi-agent system TRANSAGENT, which enhances LLM-based code translation by fixing the syntax errors and semantic errors with the synergy between four LLM-based agents, including Initial Code Translator, Syntax Error Fixer, Code Aligner, and Semantic Error Fixer. The main insight of TRANSAGENT is to first localize the error code block in the target program based on the execution alignment between the target and source program, which can narrow down the fixing space and thus lower down the fixing difficulties. To evaluate TRANSAGENT, we first construct a new benchmark from recent programming tasks to mitigate the potential data leakage issue. On our benchmark, TRANSAGENT outperforms the latest LLM-based code translation technique UniTrans in both translation effectiveness and efficiency; additionally, our evaluation on different LLMs show the generalization of TRANSAGENT and our ablation study shows the contribution of each agent.
    
      The rapid advancement of Large Language Models (LLMs) has revolutionized various aspects of human life, yet their immense computational and energy demands pose significant challenges for efficient inference. The memory wall, the growing processor-memory speed disparity, remains a critical bottleneck for LLM. Process-In-Memory (PIM) architectures overcome limitations by co-locating compute units with memory, leveraging 5-20$\times$ higher internal bandwidth and enabling greater energy efficiency than GPUs. However, existing PIMs struggle to balance flexibility, performance, and cost-efficiency for LLMs' dynamic memory-compute patterns and operator diversity. DRAM-PIM suffers from inter-bank communication overhead despite its vector parallelism. SRAM-PIM offers sub-10ns latency for matrix operation but is constrained by limited capacity. This work introduces CompAir, a novel PIM architecture that integrates DRAM-PIM and SRAM-PIM with hybrid bonding, enabling efficient linear computations while unlocking multi-granularity data pathways. We further develop CompAir-NoC, an advanced network-on-chip with an embedded arithmetic logic unit that performs non-linear operations during data movement, simultaneously reducing communication overhead and area cost. Finally, we develop a hierarchical Instruction Set Architecture that ensures both flexibility and programmability of the hybrid PIM. Experimental results demonstrate that CompAir achieves 1.83-7.98$\times$ prefill and 1.95-6.28$\times$ decode improvement over the current state-of-the-art fully PIM architecture. Compared to the hybrid A100 and HBM-PIM system, CompAir achieves 3.52$\times$ energy consumption reduction with comparable throughput. This work represents the first systematic exploration of hybrid DRAM-PIM and SRAM-PIM architectures with in-network computation capabilities, offering a high-efficiency solution for LLM.
    
      Large language models (LLMs) often appear to excel on public benchmarks, but these high scores may mask an overreliance on dataset-specific surface cues rather than true language understanding. We introduce the Chameleon Benchmark Overfit Detector (C-BOD), a meta-evaluation framework that systematically distorts benchmark prompts via a parametric transformation and detects overfitting of LLMs. By rephrasing inputs while preserving their semantic content and labels, C-BOD exposes whether a model's performance is driven by memorized patterns. Evaluated on the MMLU benchmark using 26 leading LLMs, our method reveals an average performance degradation of 2.15% under modest perturbations, with 20 out of 26 models exhibiting statistically significant differences. Notably, models with higher baseline accuracy exhibit larger performance differences under perturbation, and larger LLMs tend to be more sensitive to rephrasings, indicating that both cases may overrely on fixed prompt patterns. In contrast, the Llama family and models with lower baseline accuracy show insignificant degradation, suggesting reduced dependency on superficial cues. Moreover, C-BOD's dataset- and model-agnostic design allows easy integration into training pipelines to promote more robust language understanding. Our findings challenge the community to look beyond leaderboard scores and prioritize resilience and generalization in LLM evaluation.
    
      Efficient execution of deep learning workloads on dataflow architectures is crucial for overcoming memory bottlenecks and maximizing performance. While streaming intermediate results between computation kernels can significantly improve efficiency, existing approaches struggle with inter-kernel correlations, external memory access management, and buffer optimization. In this work, we propose StreamTensor, a compiler framework that automatically constructs and optimizes stream-based dataflow accelerators. StreamTensor introduces a novel iterative tensor type system to explicitly encode stream layouts, enabling seamless kernel fusion, buffer allocation, and memory optimization. By systematically exploring three hierarchical design spaces, including tensor tiling, kernel fusion, and resource allocation, StreamTensor balances computational intensity, memory efficiency, and data streaming to maximize performance. Based on FPGA evaluations on Large Language Models (LLM), StreamTensor achieves up to 0.76x and 0.64x lower latency compared to the state-of-the-art FPGA LLM accelerators and GPUs, and up to 1.99x higher energy efficiency compared to GPUs, making it a promising approach for scalable dataflow-based deep learning acceleration.
    
      We investigate the problem of automatic domain generation for the Planning Domain Definition Language (PDDL) using Large Language Models (LLMs), with a particular focus on unmanned aerial vehicle (UAV) tasks. Although PDDL is a widely adopted standard in robotic planning, manually designing domains for diverse applications such as surveillance, delivery, and inspection is labor-intensive and error-prone, which hinders adoption and real-world deployment. To address these challenges, we propose SPAR, a framework that leverages the generative capabilities of LLMs to automatically produce valid, diverse, and semantically accurate PDDL domains from natural language input. To this end, we first introduce a systematically formulated and validated UAV planning dataset, consisting of ground-truth PDDL domains and associated problems, each paired with detailed domain and action descriptions. Building on this dataset, we design a prompting framework that generates high-quality PDDL domains from language input. The generated domains are evaluated through syntax validation, executability, feasibility, and interpretability. Overall, this work demonstrates that LLMs can substantially accelerate the creation of complex planning domains, providing a reproducible dataset and evaluation pipeline that enables application experts without prior experience to leverage it for practical tasks and advance future research in aerial robotics and automated planning.
    
      This paper introduces EdgeProfiler, a fast profiling framework designed for evaluating lightweight Large Language Models (LLMs) on edge systems. While LLMs offer remarkable capabilities in natural language understanding and generation, their high computational, memory, and power requirements often confine them to cloud environments. EdgeProfiler addresses these challenges by providing a systematic methodology for assessing LLM performance in resource-constrained edge settings. The framework profiles compact LLMs, including TinyLLaMA, Gemma3.1B, Llama3.2-1B, and DeepSeek-r1-1.5B, using aggressive quantization techniques and strict memory constraints. Analytical modeling is used to estimate latency, FLOPs, and energy consumption. The profiling reveals that 4-bit quantization reduces model memory usage by approximately 60-70%, while maintaining accuracy within 2-5% of full-precision baselines. Inference speeds are observed to improve by 2-3x compared to FP16 baselines across various edge devices. Power modeling estimates a 35-50% reduction in energy consumption for INT4 configurations, enabling practical deployment on hardware such as Raspberry Pi 4/5 and Jetson Orin Nano Super. Our findings emphasize the importance of efficient profiling tailored to lightweight LLMs in edge environments, balancing accuracy, energy efficiency, and computational feasibility.
    
      Ambiguity is pervasive in real-world questions, yet large language models (LLMs) often respond with confident answers rather than seeking clarification. In this work, we show that question ambiguity is linearly encoded in the internal representations of LLMs and can be both detected and controlled at the neuron level. During the model's pre-filling stage, we identify that a small number of neurons, as few as one, encode question ambiguity information. Probes trained on these Ambiguity-Encoding Neurons (AENs) achieve strong performance on ambiguity detection and generalize across datasets, outperforming prompting-based and representation-based baselines. Layerwise analysis reveals that AENs emerge from shallow layers, suggesting early encoding of ambiguity signals in the model's processing pipeline. Finally, we show that through manipulating AENs, we can control LLM's behavior from direct answering to abstention. Our findings reveal that LLMs form compact internal representations of question ambiguity, enabling interpretable and controllable behavior.
    
      We propose LLM-Interleaved (LLM-I), a flexible and dynamic framework that reframes interleaved image-text generation as a tool-use problem. LLM-I is designed to overcome the "one-tool" bottleneck of current unified models, which are limited to synthetic imagery and struggle with tasks requiring factual grounding or programmatic precision. Our framework empowers a central LLM or MLLM agent to intelligently orchestrate a diverse toolkit of specialized visual tools, including online image search, diffusion-based generation, code execution, and image editing. The agent is trained to select and apply these tools proficiently via a Reinforcement Learning (RL) framework that features a hybrid reward system combining rule-based logic with judgments from LLM and MLLM evaluators. Trained on a diverse new dataset using four different model backbones, LLM-I demonstrates state-of-the-art performance, outperforming existing methods by a large margin across four benchmarks. We also introduce a novel test-time scaling strategy that provides further performance gains. Project Page: https://github.com/ByteDance-BandAI/LLM-I.
    
      Large language models are increasingly deployed across diverse applications. This often includes tasks LLMs have not encountered during training. This implies that enumerating and obtaining the high-quality training data for all tasks is infeasible. Thus, we often need to rely on transfer learning using datasets with different characteristics, and anticipate out-of-distribution requests. Motivated by this practical need, we propose an analysis framework, building a transfer learning matrix and dimensionality reduction, to dissect these cross-task interactions. We train and analyze 10 models to identify latent abilities (e.g., Reasoning, Sentiment Classification, NLU, Arithmetic) and discover the side effects of the transfer learning. Our findings reveal that performance improvements often defy explanations based on surface-level dataset similarity or source data quality. Instead, hidden statistical factors of the source dataset, such as class distribution and generation length proclivities, alongside specific linguistic features, are actually more influential. This work offers insights into the complex dynamics of transfer learning, paving the way for more predictable and effective LLM adaptation.
    
      The capability of large language models to handle long-context information is crucial across various real-world applications. Existing evaluation methods often rely either on real-world long texts, making it difficult to exclude the influence of models' inherent knowledge, or introduce irrelevant filler content to artificially achieve target lengths, reducing assessment effectiveness. To address these limitations, we introduce NeedleBench, a synthetic framework for assessing retrieval and reasoning performance in bilingual long-context tasks with adaptive context lengths. NeedleBench systematically embeds key data points at varying depths to rigorously test model capabilities. Tasks are categorized into two scenarios: information-sparse, featuring minimal relevant details within extensive irrelevant text to simulate simple retrieval tasks; and information-dense (the Ancestral Trace Challenge), where relevant information is continuously distributed throughout the context to simulate complex reasoning tasks. Our experiments reveal that although recent reasoning models like Deepseek-R1 and OpenAI's o3 excel in mathematical reasoning, they struggle with continuous retrieval and reasoning in information-dense scenarios, even at shorter context lengths. We also characterize a phenomenon termed 'under-thinking', where models prematurely conclude reasoning despite available information. NeedleBench thus provides critical insights and targeted tools essential for evaluating and improving LLMs' long-context capabilities. All resources are available at OpenCompass: https://github.com/open-compass/opencompass.
    
      Beyond general web-scale search, social network search uniquely enables users to retrieve information and discover potential connections within their social context. We introduce a framework of modernized Facebook Group Scoped Search by blending traditional keyword-based retrieval with embedding-based retrieval (EBR) to improve the search relevance and diversity of search results. Our system integrates semantic retrieval into the existing keyword search pipeline, enabling users to discover more contextually relevant group posts. To rigorously assess the impact of this blended approach, we introduce a novel evaluation framework that leverages large language models (LLMs) to perform offline relevance assessments, providing scalable and consistent quality benchmarks. Our results demonstrate that the blended retrieval system significantly enhances user engagement and search quality, as validated by both online metrics and LLM-based evaluation. This work offers practical insights for deploying and evaluating advanced retrieval systems in large-scale, real-world social platforms.
    
      Effort estimation is a crucial activity in agile software development, where teams collaboratively review, discuss, and estimate the effort required to complete user stories in a product backlog. Current practices in agile effort estimation heavily rely on subjective assessments, leading to inaccuracies and inconsistencies in the estimates. While recent machine learning-based methods show promising accuracy, they cannot explain or justify their estimates and lack the capability to interact with human team members. Our paper fills this significant gap by leveraging the powerful capabilities of Large Language Models (LLMs). We propose a novel LLM-based multi-agent framework for agile estimation that not only can produce estimates, but also can coordinate, communicate and discuss with human developers and other agents to reach a consensus. Evaluation results on a real-life dataset show that our approach outperforms state-of-the-art techniques across all evaluation metrics in the majority of the cases. Our human study with software development practitioners also demonstrates an overwhelmingly positive experience in collaborating with our agents in agile effort estimation.
    
      Many black-box techniques for quantifying the uncertainty of large language models (LLMs) rely on repeated LLM sampling, which can be computationally expensive. Therefore, practical applicability demands reliable estimation from few samples. Semantic entropy (SE) is a popular sample-based uncertainty estimator with a discrete formulation attractive for the black-box setting. Recent extensions of semantic entropy exhibit improved LLM hallucination detection, but do so with less interpretable methods that admit additional hyperparameters. For this reason, we revisit the canonical discrete semantic entropy estimator, finding that it underestimates the "true" semantic entropy, as expected from theory. We propose a modified semantic alphabet size estimator, and illustrate that using it to adjust discrete semantic entropy for sample coverage results in more accurate semantic entropy estimation in our setting of interest. Furthermore, our proposed alphabet size estimator flags incorrect LLM responses as well or better than recent top-performing approaches, with the added benefit of remaining highly interpretable.
    
      De-identification in the healthcare setting is an application of NLP where automated algorithms are used to remove personally identifying information of patients (and, sometimes, providers). With the recent rise of generative large language models (LLMs), there has been a corresponding rise in the number of papers that apply LLMs to de-identification. Although these approaches often report near-perfect results, significant challenges concerning reproducibility and utility of the research papers persist. This paper identifies three key limitations in the current literature: inconsistent reporting metrics hindering direct comparisons, the inadequacy of traditional classification metrics in capturing errors which LLMs may be more prone to (i.e., altering clinically relevant information), and lack of manual validation of automated metrics which aim to quantify these errors. To address these issues, we first present a survey of LLM-based de-identification research, highlighting the heterogeneity in reporting standards. Second, we evaluated a diverse set of models to quantify the extent of inappropriate removal of clinical information. Next, we conduct a manual validation of an existing evaluation metric to measure the removal of clinical information, employing clinical experts to assess their efficacy. We highlight poor performance and describe the inherent limitations of such metrics in identifying clinically significant changes. Lastly, we propose a novel methodology for the detection of clinically relevant information removal.
    
      Training a task-specific small reasoning model is challenging when direct human supervision or high-quality labels are scarce. However, LLMs with reasoning capabilities produce abundant intermediate reasoning traces that can be systematically refined to create effective supervision signals. We propose Reason-Refine-then-Align (R2tA), which turns refined model rationales into supervision for training task-specific reasoning models. Our method generates initial reasoning and responses from an open-source base model on task-specific inputs, then refines these traces, fixing hallucinations and inconsistencies, to form a high-fidelity dataset. We perform a two-stage alignment, supervised fine-tuning (SFT), followed by direct preference optimization (DPO) to calibrate the model's intermediate reasoning with human-validated conceptual preferences and then condition the final output on that aligned reasoning. As a case study, we apply R2tA to evaluate extended entity relationship diagrams (EERDs) in database system design, a structurally complex task where prompt-only methods miss or hallucinate errors. We curated a dataset of 600 EERD variants (train/test split of 450/150, respectively) with induced mistakes spanning 11 categories. Empirical evaluation suggests R2tA provides a practical, cost-effective path to scalable LLM adaptation in data-scarce domains, enabling reproducible AI tools for education and beyond.
    
      Large Language Models (LLMs) are intended to reflect human linguistic competencies. But humans have access to a broad and embodied context, which is key in detecting and resolving linguistic ambiguities, even in isolated text spans. A foundational case of semantic ambiguity is found in the task of coreference resolution: how is a pronoun related to an earlier person mention? This capability is implicit in nearly every downstream task, and the presence of ambiguity at this level can alter performance significantly. We show that LLMs can achieve good performance with minimal prompting in both coreference disambiguation and the detection of ambiguity in coreference, however, they cannot do both at the same time. We present the CORRECT-DETECT trade-off: though models have both capabilities and deploy them implicitly, successful performance balancing these two abilities remains elusive.
    
      Benchmarks such as SWE-bench and ARC-AGI demonstrate how shared datasets accelerate progress toward artificial general intelligence (AGI). We introduce VCBench, the first benchmark for predicting founder success in venture capital (VC), a domain where signals are sparse, outcomes are uncertain, and even top investors perform modestly. At inception, the market index achieves a precision of 1.9%. Y Combinator outperforms the index by a factor of 1.7x, while tier-1 firms are 2.9x better. VCBench provides 9,000 anonymized founder profiles, standardized to preserve predictive features while resisting identity leakage, with adversarial tests showing more than 90% reduction in re-identification risk. We evaluate nine state-of-the-art large language models (LLMs). DeepSeek-V3 delivers over six times the baseline precision, GPT-4o achieves the highest F0.5, and most models surpass human benchmarks. Designed as a public and evolving resource available at vcbench.com, VCBench establishes a community-driven standard for reproducible and privacy-preserving evaluation of AGI in early-stage venture forecasting.
    
      LLM-as-Judge has emerged as a scalable alternative to human evaluation, enabling large language models (LLMs) to provide reward signals in trainings. While recent work has explored multi-agent extensions such as multi-agent debate and meta-judging to enhance evaluation quality, the question of how intrinsic biases manifest in these settings remains underexplored. In this study, we conduct a systematic analysis of four diverse bias types: position bias, verbosity bias, chain-of-thought bias, and bandwagon bias. We evaluate these biases across two widely adopted multi-agent LLM-as-Judge frameworks: Multi-Agent-Debate and LLM-as-Meta-Judge. Our results show that debate framework amplifies biases sharply after the initial debate, and this increased bias is sustained in subsequent rounds, while meta-judge approaches exhibit greater resistance. We further investigate the incorporation of PINE, a leading single-agent debiasing method, as a bias-free agent within these systems. The results reveal that this bias-free agent effectively reduces biases in debate settings but provides less benefit in meta-judge scenarios. Our work provides a comprehensive study of bias behavior in multi-agent LLM-as-Judge systems and highlights the need for targeted bias mitigation strategies in collaborative evaluation settings.
    
      Word-level psycholinguistic norms lend empirical support to theories of language processing. However, obtaining such human-based measures is not always feasible or straightforward. One promising approach is to augment human norming datasets by using Large Language Models (LLMs) to predict these characteristics directly, a practice that is rapidly gaining popularity in psycholinguistics and cognitive science. However, the novelty of this approach (and the relative inscrutability of LLMs) necessitates the adoption of rigorous methodologies that guide researchers through this process, present the range of possible approaches, and clarify limitations that are not immediately apparent, but may, in some cases, render the use of LLMs impractical. In this work, we present a comprehensive methodology for estimating word characteristics with LLMs, enriched with practical advice and lessons learned from our own experience. Our approach covers both the direct use of base LLMs and the fine-tuning of models, an alternative that can yield substantial performance gains in certain scenarios. A major emphasis in the guide is the validation of LLM-generated data with human "gold standard" norms. We also present a software framework that implements our methodology and supports both commercial and open-weight models. We illustrate the proposed approach with a case study on estimating word familiarity in English. Using base models, we achieved a Spearman correlation of 0.8 with human ratings, which increased to 0.9 when employing fine-tuned models. This methodology, framework, and set of best practices aim to serve as a reference for future research on leveraging LLMs for psycholinguistic and lexical studies.
    
      Large Language Models (LLMs) have become key components of modern software, with prompts acting as their de-facto programming interface. However, prompt design remains largely empirical and small mistakes can cascade into unreliable, insecure, or inefficient behavior. This paper presents the first systematic survey and taxonomy of prompt defects, recurring ways that prompts fail to elicit their intended behavior from LLMs. We organize defects along six dimensions: (1) Specification and Intent, (2) Input and Content, (3) Structure and Formatting, (4) Context and Memory, (5) Performance and Efficiency, and (6) Maintainability and Engineering. Each dimension is refined into fine-grained subtypes, illustrated with concrete examples and root cause analysis. Grounded in software engineering principles, we show how these defects surface in real development workflows and examine their downstream effects. For every subtype, we distill mitigation strategies that span emerging prompt engineering patterns, automated guardrails, testing harnesses, and evaluation frameworks. We then summarize these strategies in a master taxonomy that links defect, impact, and remedy. We conclude with open research challenges and a call for rigorous engineering-oriented methodologies to ensure that LLM-driven systems are dependable by design.
    
      Extending LLM context windows is crucial for long range tasks. RoPE-based position interpolation (PI) methods like linear and frequency-aware scaling extend input lengths without retraining, while post-training quantization (PTQ) enables practical deployment. We show that combining PI with PTQ degrades accuracy due to coupled effects long context aliasing, dynamic range dilation, axis grid anisotropy, and outlier shifting that induce position-dependent logit noise. We provide the first systematic analysis of PI plus PTQ and introduce two diagnostics: Interpolation Pressure (per-band phase scaling sensitivity) and Tail Inflation Ratios (outlier shift from short to long contexts). To address this, we propose Q-ROAR, a RoPE-aware, weight-only stabilization that groups RoPE dimensions into a few frequency bands and performs a small search over per-band scales for W_Q,W_K, with an optional symmetric variant to preserve logit scale. The diagnostics guided search uses a tiny long-context dev set and requires no fine-tuning, kernel, or architecture changes. Empirically, Q-ROAR recovers up to 0.7% accuracy on standard tasks and reduces GovReport perplexity by more than 10%, while preserving short-context performance and compatibility with existing inference stacks.
    
      Automated malware classification has achieved strong detection performance. Yet, malware behavior auditing seeks causal and verifiable explanations of malicious activities -- essential not only to reveal what malware does but also to substantiate such claims with evidence. This task is challenging, as adversarial intent is often hidden within complex, framework-heavy applications, making manual auditing slow and costly. Large Language Models (LLMs) could help address this gap, but their auditing potential remains largely unexplored due to three limitations: (1) scarce fine-grained annotations for fair assessment; (2) abundant benign code obscuring malicious signals; and (3) unverifiable, hallucination-prone outputs undermining attribution credibility. To close this gap, we introduce MalEval, a comprehensive framework for fine-grained Android malware auditing, designed to evaluate how effectively LLMs support auditing under real-world constraints. MalEval provides expert-verified reports and an updated sensitive API list to mitigate ground truth scarcity and reduce noise via static reachability analysis. Function-level structural representations serve as intermediate attribution units for verifiable evaluation. Building on this, we define four analyst-aligned tasks -- function prioritization, evidence attribution, behavior synthesis, and sample discrimination -- together with domain-specific metrics and a unified workload-oriented score. We evaluate seven widely used LLMs on a curated dataset of recent malware and misclassified benign apps, offering the first systematic assessment of their auditing capabilities. MalEval reveals both promising potential and critical limitations across audit stages, providing a reproducible benchmark and foundation for future research on LLM-enhanced malware behavior auditing. MalEval is publicly available at https://github.com/ZhengXR930/MalEval.git
    
      Safety alignment aims to prevent Large Language Models (LLMs) from responding to harmful queries. To strengthen safety protections, jailbreak methods are developed to simulate malicious attacks and uncover vulnerabilities. In this paper, we introduce HILL (Hiding Intention by Learning from LLMs), a novel jailbreak approach that systematically transforms imperative harmful requests into learning-style questions with only straightforward hypotheticality indicators. Further, we introduce two new metrics to thoroughly evaluate the utility of jailbreak methods. Experiments on the AdvBench dataset across a wide range of models demonstrate HILL's strong effectiveness, generalizability, and harmfulness. It achieves top attack success rates on the majority of models and across malicious categories while maintaining high efficiency with concise prompts. Results of various defense methods show the robustness of HILL, with most defenses having mediocre effects or even increasing the attack success rates. Moreover, the assessment on our constructed safe prompts reveals inherent limitations of LLMs' safety mechanisms and flaws in defense methods. This work exposes significant vulnerabilities of safety measures against learning-style elicitation, highlighting a critical challenge of balancing helpfulness and safety alignments.
    
      Vision-language pretraining has advanced image-text alignment, yet progress in radiology remains constrained by the heterogeneity of clinical reports, including abbreviations, impression-only notes, and stylistic variability. Unlike general-domain settings where more data often leads to better performance, naively scaling to large collections of noisy reports can plateau or even degrade model learning. We ask whether large language model (LLM) encoders can provide robust clinical representations that transfer across diverse styles and better guide image-text alignment. We introduce LLM2VEC4CXR, a domain-adapted LLM encoder for chest X-ray reports, and LLM2CLIP4CXR, a dual-tower framework that couples this encoder with a vision backbone. LLM2VEC4CXR improves clinical text understanding over BERT-based baselines, handles abbreviations and style variation, and achieves strong clinical alignment on report-level metrics. LLM2CLIP4CXR leverages these embeddings to boost retrieval accuracy and clinically oriented scores, with stronger cross-dataset generalization than prior medical CLIP variants. Trained on 1.6M CXR studies from public and private sources with heterogeneous and noisy reports, our models demonstrate that robustness -- not scale alone -- is the key to effective multimodal learning. We release models to support further research in medical image-text representation learning.
    
      We present Apertus, a fully open suite of large language models (LLMs) designed to address two systemic shortcomings in today's open model ecosystem: data compliance and multilingual representation. Unlike many prior models that release weights without reproducible data pipelines or regard for content-owner rights, Apertus models are pretrained exclusively on openly available data, retroactively respecting robots.txt exclusions and filtering for non-permissive, toxic, and personally identifiable content. To mitigate risks of memorization, we adopt the Goldfish objective during pretraining, strongly suppressing verbatim recall of data while retaining downstream task performance. The Apertus models also expand multilingual coverage, training on 15T tokens from over 1800 languages, with ~40% of pretraining data allocated to non-English content. Released at 8B and 70B scales, Apertus approaches state-of-the-art results among fully open models on multilingual benchmarks, rivalling or surpassing open-weight counterparts. Beyond model weights, we release all scientific artifacts from our development cycle with a permissive license, including data preparation scripts, checkpoints, evaluation suites, and training code, enabling transparent audit and extension.
    
      While large language models (LLMs) achieve strong performance on text-to-SQL parsing, they sometimes exhibit unexpected failures in which they are confidently incorrect. Building trustworthy text-to-SQL systems thus requires eliciting reliable uncertainty measures from the LLM. In this paper, we study the problem of providing a calibrated confidence score that conveys the likelihood of an output query being correct. Our work is the first to establish a benchmark for post-hoc calibration of LLM-based text-to-SQL parsing. In particular, we show that Platt scaling, a canonical method for calibration, provides substantial improvements over directly using raw model output probabilities as confidence scores. Furthermore, we propose a method for text-to-SQL calibration that leverages the structured nature of SQL queries to provide more granular signals of correctness, named "sub-clause frequency" (SCF) scores. Using multivariate Platt scaling (MPS), our extension of the canonical Platt scaling technique, we combine individual SCF scores into an overall accurate and calibrated score. Empirical evaluation on two popular text-to-SQL datasets shows that our approach of combining MPS and SCF yields further improvements in calibration and the related task of error detection over traditional Platt scaling.
    
      Personalized financial advice requires consideration of user goals, constraints, risk tolerance, and jurisdiction. Prior LLM work has focused on support systems for investors and financial planners. Simultaneously, numerous recent studies examine broader personal finance tasks, including budgeting, debt management, retirement, and estate planning, through agentic pipelines that incur high maintenance costs, yielding less than 25% of their expected financial returns. In this study, we introduce a novel and reproducible framework that integrates relevant financial context with behavioral finance studies to construct supervision data for end-to-end advisors. Using this framework, we create a 19k sample reasoning dataset and conduct a comprehensive fine-tuning of the Qwen-3-8B model on the dataset. Through a held-out test split and a blind LLM-jury study, we demonstrate that through careful data curation and behavioral integration, our 8B model achieves performance comparable to significantly larger baselines (14-32B parameters) across factual accuracy, fluency, and personalization metrics while incurring 80% lower costs than the larger counterparts.
    
      Design Rationale (DR) for software architecture decisions refers to the reasoning underlying architectural choices, which provides valuable insights into the different phases of the architecting process throughout software development. However, in practice, DR is often inadequately documented due to a lack of motivation and effort from developers. With the recent advancements in Large Language Models (LLMs), their capabilities in text comprehension, reasoning, and generation may enable the generation and recovery of DR for architecture decisions. In this study, we evaluated the performance of LLMs in generating DR for architecture decisions. First, we collected 50 Stack Overflow (SO) posts, 25 GitHub issues, and 25 GitHub discussions related to architecture decisions to construct a dataset of 100 architecture-related problems. Then, we selected five LLMs to generate DR for the architecture decisions with three prompting strategies, including zero-shot, chain of thought (CoT), and LLM-based agents. With the DR provided by human experts as ground truth, the Precision of LLM-generated DR with the three prompting strategies ranges from 0.267 to 0.278, Recall from 0.627 to 0.715, and F1-score from 0.351 to 0.389. Additionally, 64.45% to 69.42% of the arguments of DR not mentioned by human experts are also helpful, 4.12% to 4.87% of the arguments have uncertain correctness, and 1.59% to 3.24% of the arguments are potentially misleading. To further understand the trustworthiness and applicability of LLM-generated DR in practice, we conducted semi-structured interviews with six practitioners. Based on the experimental and interview results, we discussed the pros and cons of the three prompting strategies, the strengths and limitations of LLM-generated DR, and the implications for the practical use of LLM-generated DR.
    
      Analog and mixed-signal circuit design remains challenging due to the shortage of high-quality data and the difficulty of embedding domain knowledge into automated flows. Traditional black-box optimization achieves sampling efficiency but lacks circuit understanding, which often causes evaluations to be wasted in low-value regions of the design space. In contrast, learning-based methods embed structural knowledge but are case-specific and costly to retrain. Recent attempts with large language models show potential, yet they often rely on manual intervention, limiting generality and transparency. We propose TopoSizing, an end-to-end framework that performs robust circuit understanding directly from raw netlists and translates this knowledge into optimization gains. Our approach first applies graph algorithms to organize circuits into a hierarchical device-module-stage representation. LLM agents then execute an iterative hypothesis-verification-refinement loop with built-in consistency checks, producing explicit annotations. Verified insights are integrated into Bayesian optimization through LLM-guided initial sampling and stagnation-triggered trust-region updates, improving efficiency while preserving feasibility.
    
      Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet they often refuse to answer legitimate queries--a phenomenon known as overrefusal. Overrefusal typically stems from over-conservative safety alignment, causing models to treat many reasonable prompts as potentially risky. To systematically understand this issue, we probe and leverage the models' safety decision boundaries to analyze and mitigate overrefusal. Our findings reveal that overrefusal is closely tied to misalignment at these boundary regions, where models struggle to distinguish subtle differences between benign and harmful content. Building on these insights, we present RASS, an automated framework for prompt generation and selection that strategically targets overrefusal prompts near the safety boundary. By harnessing steering vectors in the representation space, RASS efficiently identifies and curates boundary-aligned prompts, enabling more effective and targeted mitigation of overrefusal. This approach not only provides a more precise and interpretable view of model safety decisions but also seamlessly extends to multilingual scenarios. We have explored the safety decision boundaries of various LLMs and construct the MORBench evaluation set to facilitate robust assessment of model safety and helpfulness across multiple languages. Code and datasets are available at https://github.com/Master-PLC/RASS.
    
      Studies show that large language models (LLMs) produce buggy code translations. One promising avenue to improve translation accuracy is through intermediate representations, which provide structured guidance for the translation process. We investigate whether LLM-based code translation can benefit from intermediate representations, specifically in the form of natural language (NL) summaries and abstract syntax trees (ASTs). Since prompt engineering greatly affects LLM performance, we consider several ways to integrate these representations, from one-shot to chain-of-thought (CoT) prompting. Using Open GPT4 8X7B and specialized StarCoder and CodeGen models on popular code translation benchmarks (CodeNet and AVATAR), we find that CoT with an intermediate NL summary performs best, with an increase of 13.8% and 6.7%, respectively, in successful translations for the best-performing model (Open GPT4 8X7B) compared to the zero-shot prompt.
    
      Personalizing large language models (LLMs) is important for aligning outputs with diverse user preferences, yet existing methods struggle with flexibility and generalization. We propose CoPL (Collaborative Preference Learning), a graph-based collaborative filtering framework that models user-response relationships to enhance preference estimation, particularly in sparse annotation settings. By integrating a mixture of LoRA experts, CoPL efficiently fine-tunes LLMs while dynamically balancing shared and user-specific preferences. Additionally, an optimization-free adaptation strategy enables generalization to unseen users without fine-tuning. Experiments on UltraFeedback-P demonstrate that CoPL outperforms existing personalized reward models, effectively capturing both common and controversial preferences, making it a scalable solution for personalized LLM alignment. The code is available at https://github.com/ml-postech/CoPL.
    
      Large Language Models (LLMs) are increasingly used in software development to generate functions, such as attack detectors, that implement security requirements. A key challenge is ensuring the LLMs have enough knowledge to address specific security requirements, such as information about existing attacks. For this, we propose an approach integrating Retrieval Augmented Generation (RAG) and Self-Ranking into the LLM pipeline. RAG enhances the robustness of the output by incorporating external knowledge sources, while the Self-Ranking technique, inspired by the concept of Self-Consistency, generates multiple reasoning paths and creates ranks to select the most robust detector. Our extensive empirical study targets code generated by LLMs to detect two prevalent injection attacks in web security: Cross-Site Scripting (XSS) and SQL injection (SQLi). Results show a significant improvement in detection performance while employing RAG and Self-Ranking, with an increase of up to 71%pt (on average 37%pt) and up to 43%pt (on average 6%pt) in the F2-Score for XSS and SQLi detection, respectively.
    
      Modern scientific discovery increasingly relies on workflows that process data across the Edge, Cloud, and High Performance Computing (HPC) continuum. Comprehensive and in-depth analyses of these data are critical for hypothesis validation, anomaly detection, reproducibility, and impactful findings. Although workflow provenance techniques support such analyses, at large scale, the provenance data become complex and difficult to analyze. Existing systems depend on custom scripts, structured queries, or static dashboards, limiting data interaction. In this work, we introduce an evaluation methodology, reference architecture, and open-source implementation that leverages interactive Large Language Model (LLM) agents for runtime data analysis. Our approach uses a lightweight, metadata-driven design that translates natural language into structured provenance queries. Evaluations across LLaMA, GPT, Gemini, and Claude, covering diverse query classes and a real-world chemistry workflow, show that modular design, prompt tuning, and Retrieval-Augmented Generation (RAG) enable accurate and insightful LLM agent responses beyond recorded provenance.
    
      We investigate the emergent social dynamics of Large Language Model (LLM) agents in a spatially extended El Farol Bar problem, observing how they autonomously navigate this classic social dilemma. As a result, the LLM agents generated a spontaneous motivation to go to the bar and changed their decision making by becoming a collective. We also observed that the LLM agents did not solve the problem completely, but rather behaved more like humans. These findings reveal a complex interplay between external incentives (prompt-specified constraints such as the 60% threshold) and internal incentives (culturally-encoded social preferences derived from pre-training), demonstrating that LLM agents naturally balance formal game-theoretic rationality with social motivations that characterize human behavior. These findings suggest that a new model of group decision making, which could not be handled in the previous game-theoretic problem setting, can be realized by LLM agents.
    
      Large language models (LLMs) have been used in many application domains, including cyber security. The application of LLMs in the cyber security domain presents significant opportunities, such as for enhancing threat analysis and malware detection, but it can also introduce critical risks and safety concerns, including potential personal data leakage and automated generation of new malware. Building on recent findings that fine-tuning LLMs with pseudo-malicious cyber security data significantly compromises their safety, this paper presents a comprehensive validation and extension of these safety risks using a different evaluation framework. We employ the garak red teaming framework with the OWASP Top 10 for LLM Applications to assess four open-source LLMs: Mistral 7B, Llama 3 8B, Gemma 2 9B, and DeepSeek R1 8B. Our evaluation confirms and extends previous findings, showing that fine-tuning reduces safety resilience across all tested LLMs (e.g., the failure rate of Mistral 7B against prompt injection increases from 9.1% to 68.7%). We further propose and evaluate a novel safety alignment approach that carefully rewords instruction-response pairs to include explicit safety precautions and ethical considerations. This work validates previous safety concerns through independent evaluation and introduces new methods for mitigating these risks, contributing towards the development of secure, trustworthy, and ethically aligned LLMs. This approach demonstrates that it is possible to maintain or even improve model safety while preserving technical utility, offering a practical path towards developing safer fine-tuning methodologies.
    
      The integration of large language models (LLMs) into cyber security applications presents both opportunities and critical safety risks. We introduce CyberLLMInstruct, a dataset of 54,928 pseudo-malicious instruction-response pairs spanning cyber security tasks including malware analysis, phishing simulations, and zero-day vulnerabilities. Our comprehensive evaluation using seven open-source LLMs reveals a critical trade-off: while fine-tuning improves cyber security task performance (achieving up to 92.50% accuracy on CyberMetric), it severely compromises safety resilience across all tested models and attack vectors (e.g., Llama 3.1 8B's security score against prompt injection drops from 0.95 to 0.15). The dataset incorporates diverse sources including CTF challenges, academic papers, industry reports, and CVE databases to ensure comprehensive coverage of cyber security domains. Our findings highlight the unique challenges of securing LLMs in adversarial domains and establish the critical need for developing fine-tuning methodologies that balance performance gains with safety preservation in security-sensitive domains.
    
      [Background] Large Language Model (LLM)-based multi-agent systems (MAS) are transforming software development by enabling autonomous collaboration. Classical software processes such asWaterfall, V-Model, and Agile offer structured coordination patterns that can be repurposed to guide these agent interactions. [Aims] This study explores how traditional software development processes can be adapted as coordination scaffolds for LLM based MAS and examines their impact on code quality, cost, and productivity. [Method] We executed 11 diverse software projects under three process models and four GPT variants, totaling 132 runs. Each output was evaluated using standardized metrics for size (files, LOC), cost (execution time, token usage), and quality (code smells, AI- and human detected bugs). [Results] Both process model and LLM choice significantly affected system performance. Waterfall was most efficient, V-Model produced the most verbose code, and Agile achieved the highest code quality, albeit at higher computational cost. [Conclusions] Classical software processes can be effectively instantiated in LLM-based MAS, but each entails trade-offs across quality, cost, and adaptability. Process selection should reflect project goals, whether prioritizing efficiency, robustness, or structured validation.
    
      The volume of machine-generated content online has grown dramatically due to the widespread use of Large Language Models (LLMs), leading to new challenges for content moderation systems. Conventional content moderation classifiers, which are usually trained on text produced by humans, suffer from misclassifications due to LLM-generated text deviating from their training data and adversarial attacks that aim to avoid detection. Present-day defence tactics are reactive rather than proactive, since they rely on adversarial training or external detection models to identify attacks. In this work, we aim to identify the vulnerable components of toxicity classifiers that contribute to misclassification, proposing a novel strategy based on mechanistic interpretability techniques. Our study focuses on fine-tuned BERT and RoBERTa classifiers, testing on diverse datasets spanning a variety of minority groups. We use adversarial attacking techniques to identify vulnerable circuits. Finally, we suppress these vulnerable circuits, improving performance against adversarial attacks. We also provide demographic-level insights into these vulnerable circuits, exposing fairness and robustness gaps in model training. We find that models have distinct heads that are either crucial for performance or vulnerable to attack and suppressing the vulnerable heads improves performance on adversarial input. We also find that different heads are responsible for vulnerability across different demographic groups, which can inform more inclusive development of toxicity detection models.
    
      Code-generating Large Language Models (LLMs) significantly accelerate software development. However, their frequent generation of insecure code presents serious risks. We present a comprehensive evaluation of seven parameter-efficient fine-tuning (PEFT) techniques, demonstrating substantial gains in secure code generation without compromising functionality. Our research identifies prompt-tuning as the most effective PEFT method, achieving an 80.86% Overall-Secure-Rate on CodeGen2 16B, a 13.5-point improvement over the 67.28% baseline. Optimizing decoding strategies through sampling temperature further elevated security to 87.65%. This equates to a reduction of approximately 203,700 vulnerable code snippets per million generated. Moreover, prompt and prefix tuning increase robustness against poisoning attacks in our TrojanPuzzle evaluation, with strong performance against CWE-79 and CWE-502 attack vectors. Our findings generalize across Python and Java, confirming prompt-tuning's consistent effectiveness. This study provides essential insights and practical guidance for building more resilient software systems with LLMs.
    
      Financial sentiment analysis (FSA) has attracted significant attention, and recent studies increasingly explore large language models (LLMs) for this field. Yet most work evaluates only classification metrics, leaving unclear whether sentiment signals align with market behavior. We propose FinSentLLM, a lightweight multi-LLM framework that integrates an expert panel of sentiment forecasting LLMs, and structured semantic financial signals via a compact meta-classifier. This design captures expert complementarity, semantic reasoning signal, and agreement/divergence patterns without costly retraining, yielding consistent 3-6% gains over strong baselines in accuracy and F1-score on the Financial PhraseBank dataset. In addition, we also provide econometric evidence that financial sentiment and stock markets exhibit statistically significant long-run comovement, applying Dynamic Conditional Correlation GARCH (DCC-GARCH) and the Johansen cointegration test to daily sentiment scores computed from the FNSPID dataset and major stock indices. Together, these results demonstrate that FinSentLLM delivers superior forecasting accuracy for financial sentiment and further establish that sentiment signals are robustly linked to long-run equity market dynamics.
    
      LLMs are transforming software development, yet current code generation and code repair benchmarks mainly assess syntactic and functional correctness in simple, single-error cases. LLMs' capabilities to autonomously find and fix runtime logical errors in complex data science code remain largely unexplored. To address this gap, we introduce DSDBench: the Data Science Debugging Benchmark, the first benchmark for systematic evaluation of LLMs on multi-hop error tracing and multi-bug detection in data science code debugging. DSDBench adapts datasets from existing data science task benchmarks, such as DABench and MatPlotBench, featuring realistic data science debugging tasks with automatically synthesized multi-hop, multi-bug code snippets. DSDBench includes 1,117 annotated samples with 741 cause-effect error pairs and runtime error messages. Evaluations of state-of-the-art LLMs on DSDBench show significant performance gaps, highlighting challenges in debugging logical runtime errors in data science code. DSDBench offers a crucial resource to evaluate and improve LLMs' debugging and reasoning capabilities, enabling more reliable AI-assisted data science in the future. DSDBench is publicly available at github.com/KevinCL16/DSDBench.
    
      Large Language Models (LLMs) hold significant promise for electrocardiogram (ECG) analysis, yet challenges remain regarding transferability, time-scale information learning, and interpretability. Current methods suffer from model-specific ECG encoders, hindering transfer across LLMs. Furthermore, LLMs struggle to capture crucial time-scale information inherent in ECGs due to Transformer limitations. And their black-box nature limits clinical adoption. To address these limitations, we introduce ECG-aBcDe, a novel ECG encoding method that transforms ECG signals into a universal ECG language readily interpretable by any LLM. By constructing a hybrid dataset of ECG language and natural language, ECG-aBcDe enables direct fine-tuning of pre-trained LLMs without architectural modifications, achieving "construct once, use anywhere" capability. Moreover, the bidirectional convertibility between ECG and ECG language of ECG-aBcDe allows for extracting attention heatmaps from ECG signals, significantly enhancing interpretability. Finally, ECG-aBcDe explicitly represents time-scale information, mitigating Transformer limitations. This work presents a new paradigm for integrating ECG analysis with LLMs. Compared with existing methods, our method achieves competitive performance on ROUGE-L and METEOR. Notably, it delivers significant improvements in the BLEU-4, with improvements of 2.8 times and 3.9 times in in-dataset and cross-dataset evaluations, respectively, reaching scores of 42.58 and 30.76. These results provide strong evidence for the feasibility of the new paradigm.