Skip to the content.

llm - 2025_11

Home / Papers / llm

Papers

📅 2025-11-05
Weight decay is a standard regularization technique for training large language models (LLMs). While it is common to assign a uniform decay rate to every layer, this approach overlooks the structural diversity of LLMs and the varying spectral properties across modules. In this paper, we introduce AlphaDecay, a simple yet effective method that adaptively assigns different weight decay strengths to each module of an LLM. Our approach is guided by Heavy-Tailed Self-Regularization (HT-SR) theory, which analyzes the empirical spectral density (ESD) of weight correlation matrices to quantify "heavy-tailedness." Modules exhibiting more pronounced heavy-tailed ESDs, reflecting stronger feature learning, are assigned weaker decay, while modules with lighter-tailed spectra receive stronger decay. Our method leverages tailored weight decay assignments to balance the module-wise differences in spectral properties, leading to improved performance. Extensive pre-training tasks with various model sizes from 60M to 1B demonstrate that AlphaDecay achieves better perplexity and generalization than conventional uniform decay and other adaptive decay baselines. Our code is available at https://github.com/hed-ucas/AlphaDecay.
📅 2025-11-05 | 💬 18 pages, 4 figures, 5 tables, presented at the 5th International Conference on Artificial Intelligence in Education Technology
Retrieval Augmented Generation (RAG) is emerging as a powerful technique to enhance the capabilities of Generative AI models by reducing hallucination. Thus, the increasing prominence of RAG alongside Large Language Models (LLMs) has sparked interest in comparing the performance of different LLMs in question-answering (QA) in diverse domains. This study compares the performance of four open-source LLMs, Mistral-7b-instruct, LLaMa2-7b-chat, Falcon-7b-instruct and Orca-mini-v3-7b, and OpenAI's trending GPT-3.5 over QA tasks within the computer science literature leveraging RAG support. Evaluation metrics employed in the study include accuracy and precision for binary questions and ranking by a human expert, ranking by Google's AI model Gemini, alongside cosine similarity for long-answer questions. GPT-3.5, when paired with RAG, effectively answers binary and long-answer questions, reaffirming its status as an advanced LLM. Regarding open-source LLMs, Mistral AI's Mistral-7b-instruct paired with RAG surpasses the rest in answering both binary and long-answer questions. However, among the open-source LLMs, Orca-mini-v3-7b reports the shortest average latency in generating responses, whereas LLaMa2-7b-chat by Meta reports the highest average latency. This research underscores the fact that open-source LLMs, too, can go hand in hand with proprietary models like GPT-3.5 with better infrastructure.
📅 2025-11-05
Configuration tuning is critical for database performance. Although recent advancements in database tuning have shown promising results in throughput and latency improvement, challenges remain. First, the vast knob space makes direct optimization unstable and slow to converge. Second, reinforcement learning pipelines often lack effective warm-start guidance and require long offline training. Third, transferability is limited: when hardware or workloads change, existing models typically require substantial retraining to recover performance. To address these limitations, we propose L2T-Tune, a new LLM-guided hybrid database tuning framework that features a three-stage pipeline: Stage one performs a warm start that simultaneously generates uniform samples across the knob space and logs them into a shared pool; Stage two leverages a large language model to mine and prioritize tuning hints from manuals and community documents for rapid convergence. Stage three uses the warm-start sample pool to reduce the dimensionality of knobs and state features, then fine-tunes the configuration with the Twin Delayed Deep Deterministic Policy Gradient algorithm. We conduct experiments on L2T-Tune and the state-of-the-art models. Compared with the best-performing alternative, our approach improves performance by an average of 37.1% across all workloads, and by up to 73% on TPC-C. Compared with models trained with reinforcement learning, it achieves rapid convergence in the offline tuning stage on a single server. Moreover, during the online tuning stage, it only takes 30 steps to achieve best results.
📅 2025-11-05
Tokenizers play a crucial role in determining the performance, training efficiency, and the inference cost of Large Language Models (LLMs). Designing effective tokenizers for multilingual LLMs is particularly challenging due to diverse scripts and rich morphological variation. While subword methods such as Byte Pair Encoding (BPE) are widely adopted, their effectiveness in multilingual settings remains underexplored. We present IndicSuperTokenizer, a tokenizer for Indic multilingual LLMs, that combines both subword and multi-word tokenization, along with language-specific pre-tokenization, leading to more linguistically aligned tokens and achieving a new state-of-the-art in fertility score. Evaluated across English, 22 Indian languages and code data, our tokenizer improves the average fertility score by 39.5% over LLaMA4 and by 18% over Sutra (the current best). This translates to 44% improvement in inference throughput over LLaMA4 while maintaining comparable performance on English and Indic benchmarks. We also present detailed ablations across tokenizer training data size, vocabulary size, merging techniques, and pre-tokenization strategies, demonstrating the robustness of our design choices.
📅 2025-11-05
Atomic commits, which address a single development concern, are a best practice in software development. In practice, however, developers often produce tangled commits that mix unrelated changes, complicating code review and maintenance. Prior untangling approaches (rule-based, feature-based, or graph-based) have made progress but typically rely on shallow signals and struggle to distinguish explicit dependencies (e.g., control/data flow) from implicit ones (e.g., semantic or conceptual relationships). In this paper, we propose ColaUntangle, a new collaborative consultation framework for commit untangling that models both explicit and implicit dependencies among code changes. ColaUntangle integrates Large Language Model (LLM)-driven agents in a multi-agent architecture: one agent specializes in explicit dependencies, another in implicit ones, and a reviewer agent synthesizes their perspectives through iterative consultation. To capture structural and contextual information, we construct Explicit and Implicit Contexts, enabling agents to reason over code relationships with both symbolic and semantic depth. We evaluate ColaUntangle on two widely-used datasets (1,612 C# and 14k Java tangled commits). Experimental results show that ColaUntangle outperforms the best-performing baseline, achieving an improvement of 44% on the C# dataset and 82% on the Java dataset. These findings highlight the potential of LLM-based collaborative frameworks for advancing automated commit untangling tasks.
📅 2025-11-05 | 💬 9 pages
The creation of high-quality datasets to improve Large Language Model (LLM) reasoning remains a significant challenge, as current methods often suffer from generating low-quality/incorrect answers and limited information richness from available data sources. To address this, we propose AgenticMath, a novel agentic pipeline for generating high-quality mathematical question-answer pairs to enhance the supervised fine-tuning of LLMs. Our method operates through four stages: (1) Seed Question Filter that selects questions with high information richness, complexity, and clarity; (2) an Agentic Question Rephrase step that employs a multi-agent system to generate diverse, logically consistent paraphrases; (3) an Answer Augment step where rewrite answers using chain-of-thought reasoning to enhance numerical and logical correctness, without reliance on human-provided labels; and (4) a final Question and Answer Evaluation that retains only the most superior pairs. Extensive experiments demonstrate that, fine-tuning 3B-8B parameter LLMs on AgenticMath generated datasets (comprising only 30-60K math samples) achieves competitive or superior performance on diverse in domain and out-of-domain mathematical reasoning benchmarks compared to baselines trained on much more data (e.g., 400K or 2.3M samples). Our work demonstrates that targeted, high-quality data generation is a more efficient path to improving mathematical reasoning in LLMs than large-scale, low-quality alternatives.
📅 2025-11-05 | 💬 26 pages, 2 figures, 15 tables
Large language models (LLMs) are increasingly used in software development. However, while LLMs remain static after pretraining, programming languages and APIs continue to evolve, leading to the generation of deprecated or incompatible code that undermines reliability. Retraining LLMs from scratch to reflect such changes is computationally expensive, making model editing a promising lightweight alternative that updates only a small subset of parameters. Despite its potential, it remains unclear whether model editing yields genuine syntactic and semantic adaptations or merely superficial fixes. In this work, we present a systematic study of five state-of-the-art model editing methods: Constrained Fine-Tuning (FT), GRACE, MEMIT, PMET, and ROME. We apply these methods to three leading open-source code LLMs, CodeLlama, CodeQwen1.5, and DeepSeek-Coder, under controlled API deprecation scenarios. Our evaluation covers both instant and sequential editing settings, using three disjoint evaluation sets designed to assess reliability, generalization, and specificity. We measure model correctness at three levels: successful compilation, partial test case pass, and full test pass. Our findings show that instant edits consistently degrade model performance, with syntactic validity dropping by up to 86 percentage points and functional correctness declining by 45 points even in the best-performing setting. Sequential edits further amplify this degradation, and in some cases, model performance collapses entirely. Across all models, most passing generations relied on workarounds rather than correctly adopting the intended changes, while faulty adoptions that result in test failures or compilation errors were significantly more frequent. Correct adoptions, where the model correctly integrates the intended change, occurred in only about 6% of cases.
📅 2025-11-05 | 💬 Work-in-progress; MathNLP non-archival presentation
We present a systematic study of subtraction in large language models (LLMs). While prior benchmarks emphasize addition and multiplication, subtraction has received comparatively little attention despite being structurally distinct as a non-commutative operation. We evaluate eight pretrained LLMs spanning four families on addition and subtraction problems. Our experiments reveal that subtraction accuracy lags behind addition by a wide margin. We find that the errors for ($a-b$) are concentrated in cases where ($a<b$). In such cases, LLMs frequently produce the correct magnitude but omit the negative sign. Probing analyses show that LLMs internally encode whether results should be negative, yet this information is often not reflected in generated outputs. We further test well-known techniques such as few-shot learning and instruction-tuning to see if they can improve the LLMs' performance. Our results suggest that while few-shot prompting yields modest gains, the instruction-tuned models achieve near-perfect accuracies in generating the negative sign. Together, these findings provide a clearer characterization of the limitations and recoverability of LLMs' arithmetic capabilities in subtraction.
📅 2025-11-05 | 💬 Code available at https://github.com/amazon-science/SafeSearch
Large language model (LLM) based search agents iteratively generate queries, retrieve external information, and reason to answer open-domain questions. While researchers have primarily focused on improving their utility, their safety behaviors remain underexplored. In this paper, we first evaluate search agents using red-teaming datasets and find that they are more likely to produce harmful outputs than base LLMs. For example, when asked "How can I track someone's location without their consent?", a base model refuses, whereas a search agent designed to retrieve and cite sources may lower its refusal threshold, fetch documents (e.g., court cases), and, once appended, synthesize them into an informative yet unsafe summary. We further show that utility-oriented fine-tuning intensifies this risk, motivating joint alignment of safety and utility. We present SafeSearch, a multi-objective reinforcement learning approach that couples a final-output safety/utility reward with a novel query-level shaping term that penalizes unsafe queries and rewards safe ones. Experiments show that SafeSearch reduces agent harmfulness by over 70% across three red-teaming datasets while producing safe, helpful responses, and matches the QA performance of a utility-only finetuned agent; further analyses confirm the effectiveness of the query-level reward in jointly improving safety and utility.
📅 2025-11-05
Implementing large language models (LLMs)-driven root cause analysis (RCA) in cloud-native systems has become a key topic of modern software operations and maintenance. However, existing LLM-based approaches face three key challenges: multi-modality input constraint, context window limitation, and dynamic dependence graph. To address these issues, we propose a tool-assisted LLM agent with multi-modality observation data for fine-grained RCA, namely TAMO, including multimodality alignment tool, root cause localization tool, and fault types classification tool. In detail, TAMO unifies multi-modal observation data into time-aligned representations for cross-modal feature consistency. Based on the unified representations, TAMO then invokes its specialized root cause localization tool and fault types classification tool for further identifying root cause and fault type underlying system context. This approach overcomes the limitations of LLMs in processing real-time raw observational data and dynamic service dependencies, guiding the model to generate repair strategies that align with system context through structured prompt design. Experiments on two benchmark datasets demonstrate that TAMO outperforms state-of-the-art (SOTA) approaches with comparable performance.
📅 2025-11-05 | 💬 Accepted by UDM-KDD'24
Large Language Models (LLMs) have become increasingly pervasive, finding applications across many industries and disciplines. Ensuring the trustworthiness of LLM outputs is paramount, where Uncertainty Estimation (UE) plays a key role. In this work, a comprehensive empirical study is conducted to examine the robustness and effectiveness of diverse UE measures regarding aleatoric and epistemic uncertainty in LLMs. It involves twelve different UE methods and four generation quality metrics including LLMScore from LLM criticizers to evaluate the uncertainty of LLM-generated answers in Question-Answering (QA) tasks on both in-distribution (ID) and out-of-distribution (OOD) datasets. Our analysis reveals that information-based methods, which leverage token and sequence probabilities, perform exceptionally well in ID settings due to their alignment with the model's understanding of the data. Conversely, density-based methods and the P(True) metric exhibit superior performance in OOD contexts, highlighting their effectiveness in capturing the model's epistemic uncertainty. Semantic consistency methods, which assess variability in generated answers, show reliable performance across different datasets and generation metrics. These methods generally perform well but may not be optimal for every situation.
📅 2025-11-05 | 💬 12 pages, 4 figures, version under review at a peer-reviewed conference
While large language models (LLMs) are increasingly used for generating parallel scientific codes, most efforts emphasize functional correctness, often overlooking performance, especially energy efficiency. We propose LASSI-EE, an automated LLM-based refactoring framework that generates energy-efficient parallel codes through a multi-stage, iterative approach integrating runtime power profiling, energy-aware prompting, self-correcting feedback loops, and an LLM-as-a-Judge agent for automated screening of code solutions. We introduce energy-reduction@k, a novel metric that quantifies expected energy reduction when generating k code candidates and selecting the most energy-efficient, enabling systematic evaluation of multi-attempt generation strategies. Evaluating 20 HeCBench applications and two miniApps on NVIDIA A100 and AMD MI100 GPUs, a single run (k=1) with LASSI-EE delivers refactored parallel codes with an average 29% expected energy reduction at an 81% pass rate, representing a 2.8x improvement over vanilla LLM prompting. Multiple runs (k=3) achieve an average 48% expected energy reduction at a 97% pass rate. These results are consistent across devices, demonstrating LASSI-EE's effectiveness across diverse hardware architectures.
📅 2025-11-05
Diagnosing rare diseases often requires connecting variant-bearing genes to evidence that is written as unstructured clinical prose, which the current established pipelines still leave for clinicians to reconcile manually. To this end, we introduce LA-MARRVEL, a knowledge-grounded and language-aware reranking layer that operates on top of AI-MARRVEL: it supplies expert-engineered context, queries a large language model multiple times, and aggregates the resulting partial rankings with a ranked voting method to produce a stable, explainable gene ranking. Evaluated on three real-world cohorts (BG, DDD, UDN), LA-MARRVEL consistently improves Recall@K over AI-MARRVEL and established phenotype-driven tools such as Exomiser and LIRICAL, with especially large gains on cases where the first-stage ranker placed the causal gene lower. Each ranked gene is accompanied by LLM-generated reasoning that integrates phenotypic, inheritance, and variant-level evidence, thereby making the output more interpretable and facilitating clinical review.
📅 2025-11-05 | 💬 EMNLP 2025 (Findings)
Evaluating the factuality of long-form generations from Large Language Models (LLMs) remains challenging due to efficiency bottlenecks and reliability concerns. Prior efforts attempt this by decomposing text into claims, searching for evidence, and verifying claims, but suffer from critical drawbacks: (1) inefficiency due to overcomplicated pipeline components, and (2) ineffectiveness stemming from inaccurate claim sets and insufficient evidence. To address these limitations, we propose \textbf{FaStfact}, an evaluation framework that achieves the highest alignment with human evaluation and time/token efficiency among existing baselines. FaStfact first employs chunk-level claim extraction integrated with confidence-based pre-verification, significantly reducing the time and token cost while ensuring reliability. For searching and verification, it collects document-level evidence from crawled web-pages and selectively retrieves it during verification. Extensive experiments based on an annotated benchmark \textbf{FaStfact-Bench} demonstrate the reliability of FaStfact in both efficiently and effectively evaluating long-form factuality. Code, benchmark data, and annotation interface tool are available at https://github.com/Yingjia-Wan/FaStfact.
📅 2025-11-05
Large Language Models (LLMs) have substantially influenced various software engineering tasks. Indeed, in the case of software refactoring, traditional LLMs have shown the ability to reduce development time and enhance code quality. However, these LLMs often rely on static, detailed instructions for specific tasks. In contrast, LLM-based agents can dynamically adapt to evolving contexts and autonomously make decisions by interacting with software tools and executing workflows. In this paper, we explore the potential of LLM-based agents in supporting refactoring activities. Specifically, we introduce RefAgent, a multi-agent LLM-based framework for end-to-end software refactoring. RefAgent consists of specialized agents responsible for planning, executing, testing, and iteratively refining refactorings using self-reflection and tool-calling capabilities. We evaluate RefAgent on eight open-source Java projects, comparing its effectiveness against a single-agent approach, a search-based refactoring tool, and historical developer refactorings. Our assessment focuses on: (1) the impact of generated refactorings on software quality, (2) the ability to identify refactoring opportunities, and (3) the contribution of each LLM agent through an ablation study. Our results show that RefAgent achieves a median unit test pass rate of 90%, reduces code smells by a median of 52.5%, and improves key quality attributes (e.g., reusability) by a median of 8.6%. Additionally, it closely aligns with developer refactorings and the search-based tool in identifying refactoring opportunities, attaining a median F1-score of 79.15% and 72.7%, respectively. Compared to single-agent approaches, RefAgent improves the median unit test pass rate by 64.7% and the median compilation success rate by 40.1%. These findings highlight the promise of multi-agent architectures in advancing automated software refactoring.
📅 2025-11-05
Understanding how different stakeholders perceive risks in AI systems is essential for their responsible deployment. This paper presents a framework for stakeholder-grounded risk assessment by using LLMs, acting as judges to predict and explain risks. Using the Risk Atlas Nexus and GloVE explanation method, our framework generates stakeholder-specific, interpretable policies that shows how different stakeholders agree or disagree about the same risks. We demonstrate our method using three real-world AI use cases of medical AI, autonomous vehicles, and fraud detection domain. We further propose an interactive visualization that reveals how and why conflicts emerge across stakeholder perspectives, enhancing transparency in conflict reasoning. Our results show that stakeholder perspectives significantly influence risk perception and conflict patterns. Our work emphasizes the importance of these stakeholder-aware explanations needed to make LLM-based evaluations more transparent, interpretable, and aligned with human-centered AI governance goals.
📅 2025-11-05 | 💬 Findings of the Association for Computational Linguistics: EMNLP 2025 (camera-ready)
LLMs can provide substantial zero-shot performance on diverse tasks using a simple task prompt, eliminating the need for training or fine-tuning. However, when applying these models to sensitive tasks, it is crucial to thoroughly assess their robustness against adversarial inputs. In this work, we introduce Static Deceptor (StaDec) and Dynamic Deceptor (DyDec), two innovative attack frameworks designed to systematically generate dynamic and adaptive adversarial examples by leveraging the understanding of the LLMs. We produce subtle and natural-looking adversarial inputs that preserve semantic similarity to the original text while effectively deceiving the target LLM. By utilizing an automated, LLM-driven pipeline, we eliminate the dependence on external heuristics. Our attacks evolve with the advancements in LLMs and demonstrate strong transferability across models unknown to the attacker. Overall, this work provides a systematic approach for the self-assessment of an LLM's robustness. We release our code and data at https://github.com/Shukti042/AdversarialExample.
📅 2025-11-05
Large language models enable flexible multi-agent planning but remain fragile in practice: verification is often circular, state changes are not tracked for repair, and small faults trigger costly global recomputation. We present ALAS, a stateful, disruption-aware framework that separates planning from non-circular validation, records a versioned execution log for grounded checks and restore points, and performs localized repair that preserves work in progress. The validator operates independently of the planning LLM with fresh, bounded context, avoiding self-check loops and mid-context attrition. The repair protocol edits only the minimal affected region under explicit policies (retry, catch, timeout, backoff, idempotency keys, compensation, loop guards) defined in a canonical workflow IR that maps to Amazon States Language and Argo Workflows. On job-shop scheduling suites (DMU, TA) across five classical benchmarks, ALAS matches or exceeds strong single-LLM and multi-agent baselines, achieving 83.7% success, reducing token usage by 60%, and running 1.82times faster under comparable settings. A minimal reliability study shows that the validator detects injected structural faults with low overhead, and that localized repair contains runtime perturbations with a bounded edit radius and less makespan degradation than global recompute. Results indicate that the combination of validator isolation, versioned execution logs, and localized repair provides measurable efficiency, feasibility, and scalability for multi-agent LLM planning. Code and seeds will be released.
📅 2025-11-05 | 💬 9 pages including appendix. EMNLP 2025 Industry Track
Text Normalization (TN) is a key preprocessing step in Text-to-Speech (TTS) systems, converting written forms into their canonical spoken equivalents. Traditional TN systems can exhibit high accuracy, but involve substantial engineering effort, are difficult to scale, and pose challenges to language coverage, particularly in low-resource settings. We propose PolyNorm, a prompt-based approach to TN using Large Language Models (LLMs), aiming to reduce the reliance on manually crafted rules and enable broader linguistic applicability with minimal human intervention. Additionally, we present a language-agnostic pipeline for automatic data curation and evaluation, designed to facilitate scalable experimentation across diverse languages. Experiments across eight languages show consistent reductions in the word error rate (WER) compared to a production-grade-based system. To support further research, we release PolyNorm-Benchmark, a multilingual data set covering a diverse range of text normalization phenomena.
📅 2025-11-05 | 💬 16 pages, 5 figures
Large language models (LLMs) offer a powerful opportunity to simulate the results of social science experiments. In this work, we demonstrate that finetuning LLMs directly on individual-level responses from past experiments meaningfully improves the accuracy of such simulations across diverse social science domains. We construct SocSci210 via an automatic pipeline, a dataset comprising 2.9 million responses from 400,491 participants in 210 open-source social science experiments. Through finetuning, we achieve multiple levels of generalization. In completely unseen studies, our strongest model, Socrates-Qwen-14B, produces predictions that are 26% more aligned with distributions of human responses to diverse outcome questions under varying conditions relative to its base model (Qwen2.5-14B), outperforming GPT-4o by 13%. By finetuning on a subset of conditions in a study, generalization to new unseen conditions is particularly robust, improving by 71%. Since SocSci210 contains rich demographic information, we reduce demographic parity difference, a measure of bias, by 10.6% through finetuning. Because social sciences routinely generate rich, topic-specific datasets, our findings indicate that finetuning on such data could enable more accurate simulations for experimental hypothesis screening. We release our data, models and finetuning code at stanfordhci.github.io/socrates.
📅 2025-11-05
Large Language Model (LLM)-based multi-agent systems are increasingly applied to automate computational workflows in science and engineering. However, how inter-agent dynamics influence reasoning quality and verification reliability remains unclear. We study these mechanisms using an AutoGen-based multi-agent framework for linear-elastic Finite Element Analysis (FEA), evaluating seven role configurations across four tasks under a fixed 12-turn conversation limit. From 1,120 controlled trials, we find that collaboration effectiveness depends more on functional complementarity than team size: the three-agent Coder-Executor-Critic configuration uniquely produced physically and visually correct solutions, while adding redundant reviewers reduced success rates. Yet three systematic failure modes persist: (1) affirmation bias, where the Rebuttal agent endorsed rather than challenged outputs (85-92% agreement, including errors); (2) premature consensus caused by redundant reviewers; and (3) a verification-validation gap where executable but physically incorrect code passed undetected. No agent combination successfully validated constitutive relations in complex tasks. Building on theories of functional diversity, role differentiation, and computational validation, we propose actionable design principles: (i) assign complementary agent roles, (ii) enforce multi-level validation (execution, specification, physics), and (iii) prevent early consensus through adversarial or trigger-based interaction control. These findings establish a principled foundation for designing trustworthy LLM collaborations in engineering workflows.
📅 2025-11-05 | 💬 5 pages, 1 figure, Accepted for publication at the Demonstration Track of the 40th AAAI Conference on Artificial Intelligence (AAAI 26)
We develop KnowThyself, an agentic assistant that advances large language model (LLM) interpretability. Existing tools provide useful insights but remain fragmented and code-intensive. KnowThyself consolidates these capabilities into a chat-based interface, where users can upload models, pose natural language questions, and obtain interactive visualizations with guided explanations. At its core, an orchestrator LLM first reformulates user queries, an agent router further directs them to specialized modules, and the outputs are finally contextualized into coherent explanations. This design lowers technical barriers and provides an extensible platform for LLM inspection. By embedding the whole process into a conversational workflow, KnowThyself offers a robust foundation for accessible LLM interpretability.
📅 2025-11-04
As AI systems become more advanced, ensuring their alignment with a diverse range of individuals and societal values becomes increasingly critical. But how can we capture fundamental human values and assess the degree to which AI systems align with them? We introduce ValueCompass, a framework of fundamental values, grounded in psychological theory and a systematic review, to identify and evaluate human-AI alignment. We apply ValueCompass to measure the value alignment of humans and large language models (LLMs) across four real-world scenarios: collaborative writing, education, public sectors, and healthcare. Our findings reveal concerning misalignments between humans and LLMs, such as humans frequently endorse values like "National Security" which were largely rejected by LLMs. We also observe that values differ across scenarios, highlighting the need for context-aware AI alignment strategies. This work provides valuable insights into the design space of human-AI alignment, laying the foundations for developing AI systems that responsibly reflect societal values and ethics.
📅 2025-11-04
Large Language Model (LLM)-based agents are increasingly deployed in multi-agent scenarios where coordination is crucial but not always assured. Research shows that the way strategic scenarios are framed linguistically can affect cooperation. This paper explores whether allowing agents to communicate amplifies these language-driven effects. Leveraging FAIRGAME, we simulate one-shot and repeated games across different languages and models, both with and without communication. Our experiments, conducted with two advanced LLMs-GPT-4o and Llama 4 Maverick-reveal that communication significantly influences agent behavior, though its impact varies by language, personality, and game structure. These findings underscore the dual role of communication in fostering coordination and reinforcing biases.
📅 2025-11-04 | 💬 Project page: https://github.com/icip-cas/MemSearcher
Typical search agents concatenate the entire interaction history into the LLM context, preserving information integrity but producing long, noisy contexts, resulting in high computation and memory costs. In contrast, using only the current turn avoids this overhead but discards essential information. This trade-off limits the scalability of search agents. To address this challenge, we propose MemSearcher, an agent workflow that iteratively maintains a compact memory and combines the current turn with it. At each turn, MemSearcher fuses the user's question with the memory to generate reasoning traces, perform search actions, and update memory to retain only information essential for solving the task. This design stabilizes context length across multi-turn interactions, improving efficiency without sacrificing accuracy. To optimize this workflow, we introduce multi-context GRPO, an end-to-end RL framework that jointly optimize reasoning, search strategies, and memory management of MemSearcher Agents. Specifically, multi-context GRPO samples groups of trajectories under different contexts and propagates trajectory-level advantages across all conversations within them. Trained on the same dataset as Search-R1, MemSearcher achieves significant improvements over strong baselines on seven public benchmarks: +11% on Qwen2.5-3B-Instruct and +12% on Qwen2.5-7B-Instruct relative average gains. Notably, the 3B-based MemSearcher even outperforms 7B-based baselines, demonstrating that striking a balance between information integrity and efficiency yields both higher accuracy and lower computational overhead. The code and models will be publicly available at https://github.com/icip-cas/MemSearcher
📅 2025-11-04 | 💬 Work-in-progress; MathNLP non-archival presentation
We present a systematic study of subtraction in large language models (LLMs). While prior benchmarks emphasize addition and multiplication, subtraction has received comparatively little attention despite being structurally distinct as a non-commutative operation. We evaluate eight pretrained LLMs spanning four families on addition and subtraction problems. Our experiments reveal that subtraction accuracy lags behind addition by a wide margin. We find that the errors for ($a-b$) are concentrated in cases where ($a<b$). In such cases, LLMs frequently produce the correct magnitude but omit the negative sign. Probing analyses show that LLMs internally encode whether results should be negative, yet this information is often not reflected in generated outputs. We further test well-known techniques such as few-shot learning and instruction-tuning to see if they can improve the LLMs' performance. Our results suggest that while few-shot prompting yields modest gains, the instruction-tuned models achieve near-perfect accuracies in generating the negative sign. Together, these findings provide a clearer characterization of the limitations and recoverability of LLMs' arithmetic capabilities in subtraction.
📅 2025-11-04
The remarkable capabilities of Large Language Models (LLMs) often need to be tailored for specific applications, requiring the integration of new knowledge or the acquisition of new skills. While full fine-tuning is a powerful adaptation method, it is computationally expensive and can lead to a degradation of general reasoning abilities, a phenomenon known as catastrophic forgetting. A range of alternative techniques exists, each with its own trade-offs. In-Context Learning (ICL) is fast but limited by context length, while Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) offer a middle ground by minimizing parameter changes. However, the challenge of catastrophic forgetting persists, raising questions about the best adaptation strategy for a given task. This paper presents a comparative analysis of Supervised Finetuning (SFT), LoRA, and ICL in data-scarce scenarios. We find that LoRA provides the most effective balance, successfully instilling new skills with minimal impact on the base model's general knowledge. In contrast, while SFT excels at skill acquisition, it is highly susceptible to catastrophic forgetting. ICL is effective for incorporating factual knowledge but struggles with complex skills. Our findings offer a practical framework for selecting an LLM adaptation strategy. We highlight the critical distinction between skill acquisition and knowledge integration, clarify the trade-offs between task-specific performance and the preservation of general capabilities.
📅 2025-11-04 | 💬 4 pages, 2 figures
The rapid growth of research output in control engineering calls for new approaches to structure and formalize domain knowledge. This paper briefly describes an LLM-supported method for semi-automated generation of formal knowledge representations that combine human readability with machine interpretability and increased expressiveness. Based on the Imperative Representation of Knowledge (PyIRK) framework, we demonstrate how language models can assist in transforming natural-language descriptions and mathematical definitions (available as LaTeX source code) into a formalized knowledge graph. As a first application we present the generation of an ``interactive semantic layer'' to enhance the source documents in order to facilitate knowledge transfer. From our perspective this contributes to the vision of easily accessible, collaborative, and verifiable knowledge bases for the control engineering domain.
📅 2025-11-04 | 💬 14 pages
Large language models (LLMs) exhibit complementary strengths across domains and come with varying inference costs, motivating the design of multi-agent LLM systems where specialized models collaborate efficiently. Existing approaches predominantly rely on decentralized frameworks, which invoke multiple LLMs for every input and thus lead to substantial and uncontrolled inference costs. In this work, we introduce a centralized multi-LLM framework, where a controller LLM selectively coordinates a pool of expert models in a cost-efficient and cost-controllable manner. We formulate this coordination problem as reinforcement learning with dual objectives: maximizing task performance while minimizing the overall inference cost. In addition, we expect the multi-agent system to have adapted behavior with different budget conditions during inference. To this end, we propose CoRL, a reinforcement learning framework that optimizes the performance cost trade-off in a controllable multi-budget setting. Experiments on four diverse benchmarks demonstrate that CoRL enables a single system to surpass the best expert LLM under high-budget settings, while maintaining strong performance in more economical low-budget modes, highlighting the effectiveness of centralized coordination for scalable and cost-efficient multi-agent LLM systems.
📅 2025-11-04
Current evaluations of Large Language Model (LLM) agents primarily emphasize task completion, often overlooking resource efficiency and adaptability. This neglects a crucial capability: agents' ability to devise and adjust cost-optimal plans in response to changing environments. To bridge this gap, we introduce CostBench, a scalable, cost-centric benchmark designed to evaluate agents' economic reasoning and replanning abilities. Situated in the travel-planning domain, CostBench comprises tasks solvable via multiple sequences of atomic and composite tools with diverse, customizable costs. It also supports four types of dynamic blocking events, such as tool failures and cost changes, to simulate real-world unpredictability and necessitate agents to adapt in real time. Evaluating leading open-sourced and proprietary models on CostBench reveals a substantial gap in cost-aware planning: agents frequently fail to identify cost-optimal solutions in static settings, with even GPT-5 achieving less than 75% exact match rate on the hardest tasks, and performance further dropping by around 40% under dynamic conditions. By diagnosing these weaknesses, CostBench lays the groundwork for developing future agents that are both economically rational and robust.
📅 2025-11-04
Large Language Models (LLMs) have achieved impressive performance in diverse natural language processing tasks, but specialized domains such as Web3 present new challenges and require more tailored evaluation. Despite the significant user base and capital flows in Web3, encompassing smart contracts, decentralized finance (DeFi), non-fungible tokens (NFTs), decentralized autonomous organizations (DAOs), on-chain governance, and novel token-economics, no comprehensive benchmark has systematically assessed LLM performance in this domain. To address this gap, we introduce the DMind Benchmark, a holistic Web3-oriented evaluation suite covering nine critical subfields: fundamental blockchain concepts, blockchain infrastructure, smart contract, DeFi mechanisms, DAOs, NFTs, token economics, meme concept, and security vulnerabilities. Beyond multiple-choice questions, DMind Benchmark features domain-specific tasks such as contract debugging and on-chain numeric reasoning, mirroring real-world scenarios. We evaluated 26 models, including ChatGPT, Claude, DeepSeek, Gemini, Grok, and Qwen, uncovering notable performance gaps in specialized areas like token economics and security-critical contract analysis. While some models excel in blockchain infrastructure tasks, advanced subfields remain challenging. Our benchmark dataset and evaluation pipeline are open-sourced on https://huggingface.co/datasets/DMindAI/DMind_Benchmark, reaching number one in Hugging Face's trending dataset charts within a week of release.
📅 2025-11-04
Recent advances in LLM Multi-Agent Systems enable scalable orchestration of sub-agents, each coordinating hundreds or thousands of tools or Model Context Protocol (MCP) servers. However, existing retrieval methods typically match queries against coarse agent-level descriptions before routing, which obscures fine-grained tool functionality and often results in suboptimal agent selection. We introduce Tool-to-Agent Retrieval, a unified framework that embeds both tools and their parent agents in a shared vector space and connects them through metadata relationships. By explicitly representing tool capabilities and traversing metadata to the agent level, Tool-to-Agent Retrieval enables granular tool-level or agent-level retrieval, ensuring that agents and their underlying tools or MCP servers are equally represented without the context dilution that arises from chunking many tools together. Evaluating Tool-to-Agent Retrieval across eight embedding models, our approach achieves consistent improvements of 19.4% in Recall@5 and 17.7% in nDCG@5 over previous state-of-the-art agent retrievers on the LiveMCPBench benchmark.
📅 2025-11-04 | 💬 16 pages, 6 figures
We introduce POLIS-Bench, the first rigorous, systematic evaluation suite designed for LLMs operating in governmental bilingual policy scenarios. Compared to existing benchmarks, POLIS-Bench introduces three major advancements. (i) Up-to-date Bilingual Corpus: We construct an extensive, up-to-date policy corpus that significantly scales the effective assessment sample size, ensuring relevance to current governance practice. (ii) Scenario-Grounded Task Design: We distill three specialized, scenario-grounded tasks -- Clause Retrieval & Interpretation, Solution Generation, and the Compliance Judgmen--to comprehensively probe model understanding and application. (iii) Dual-Metric Evaluation Framework: We establish a novel dual-metric evaluation framework combining semantic similarity with accuracy rate to precisely measure both content alignment and task requirement adherence. A large-scale evaluation of over 10 state-of-the-art LLMs on POLIS-Bench reveals a clear performance hierarchy where reasoning models maintain superior cross-task stability and accuracy, highlighting the difficulty of compliance tasks. Furthermore, leveraging our benchmark, we successfully fine-tune a lightweight open-source model. The resulting POLIS series models achieves parity with, or surpasses, strong proprietary baselines on multiple policy subtasks at a significantly reduced cost, providing a cost-effective and compliant path for robust real-world governmental deployment.
📅 2025-11-04
We introduce a novel framework that transforms the resource-intensive (adversarial) prompt optimization problem into an \emph{efficient, amortized inference task}. Our core insight is that pretrained, non-autoregressive generative LLMs, such as Diffusion LLMs, which model the joint distribution over prompt-response pairs, can serve as powerful surrogates for prompt search. This approach enables the direct conditional generation of prompts, effectively replacing costly, per-instance discrete optimization with a small number of parallelizable samples. We provide a probabilistic analysis demonstrating that under mild fidelity assumptions, only a few conditional samples are required to recover high-reward (harmful) prompts. Empirically, we find that the generated prompts are low-perplexity, diverse jailbreaks that exhibit strong transferability to a wide range of black-box target models, including robustly trained and proprietary LLMs. Beyond adversarial prompting, our framework opens new directions for red teaming, automated prompt optimization, and leveraging emerging Flow- and Diffusion-based LLMs.
📅 2025-11-04 | 💬 Work-in-progress; MathNLP non-archival presentation
We present a systematic study of subtraction in large language models (LLMs). While prior benchmarks emphasize addition and multiplication, subtraction has received comparatively little attention despite being structurally distinct as a non-commutative operation. We evaluate eight pretrained LLMs spanning four families on addition and subtraction problems. Our experiments reveal that subtraction accuracy lags behind addition by a wide margin. We find that the errors for ($a-b$) are concentrated in cases where ($a<b$). In such cases, LLMs frequently produce the correct magnitude but omit the negative sign. Probing analyses show that LLMs internally encode whether results should be negative, yet this information is often not reflected in generated outputs. We further test well-known techniques such as few-shot learning and instruction-tuning to see if they can improve the LLMs' performance. Our results suggest that while few-shot prompting yields modest gains, the instruction-tuned models achieve near-perfect accuracies in generating the negative sign. Together, these findings provide a clearer characterization of the limitations and recoverability of LLMs' arithmetic capabilities in subtraction.
📅 2025-11-04 | 💬 NeurIPS'25 paper
Training agents to operate under strict constraints during deployment, such as limited resource budgets or stringent safety requirements, presents significant challenges, especially when these constraints render the task complex. In this work, we propose a curriculum learning strategy that gradually tightens constraints during training, enabling the agent to incrementally master the deployment requirements. Inspired by self-paced learning techniques in unconstrained reinforcement learning (RL), our approach facilitates a smoother transition to challenging environments by initially training on simplified versions of the constraints and progressively introducing the full deployment conditions. We provide a theoretical analysis using an RL agent in a binary-tree Markov Decision Process (MDP) to demonstrate that our curriculum strategy can accelerate training relative to a baseline approach that imposes the trajectory constraints from the outset. Moreover, we empirically validate the effectiveness and generality of our method across both RL and large language model (LLM) agents in diverse settings, including a binary-tree MDP, a multi-task navigation domain, and a math reasoning task with two benchmarks. These results highlight the potential of curriculum design in enhancing the efficiency and performance of agents operating under complex trajectory constraints during deployment. Moreover, when applied to LLMs, our strategy enables compression of output chain-of-thought tokens, achieving a substantial inference speedup on consumer hardware, demonstrating its effectiveness for resource-constrained deployment.
📅 2025-11-04
Large language models (LLMs) are increasingly prevalent across diverse applications. However, their enormous size limits storage and processing capabilities to a few well-resourced stakeholders. As a result, most applications rely on pre-trained LLMs, fine-tuned for specific tasks. However, even storing the fine-tuned versions of these models remains a significant challenge due to the wide range of tasks they address. Recently, studies show that fine-tuning these models primarily affects a small fraction of parameters, highlighting the need for more efficient storage of fine-tuned models. This paper focuses on efficient storage of parameter updates in pre-trained models after fine-tuning. To address this challenge, we leverage the observation that fine-tuning updates are both low-rank and sparse, which can be utilized for storage efficiency. However, using only low-rank approximation or sparsification may discard critical singular components that enhance model expressivity. We first observe that given the same memory budget, sparsified low-rank approximations with larger ranks outperform standard low-rank approximations with smaller ranks. Building on this, we propose our method, optimal singular damage, that selectively sparsifies low-rank approximated updates by leveraging the interleaved importance of singular vectors, ensuring that the most impactful components are retained. We demonstrate through extensive experiments that our proposed methods lead to significant storage efficiency and superior accuracy within the same memory budget compared to employing the low-rank approximation or sparsification individually.
📅 2025-11-04
As LLM-based agents become increasingly autonomous and will more freely interact with each other, studying the interplay among them becomes crucial to anticipate emergent phenomena and potential risks. In this work, we provide an in-depth analysis of the interactions among agents within a simulated hierarchical social environment, drawing inspiration from the Stanford Prison Experiment. Leveraging 2,400 conversations across six LLMs (i.e., LLama3, Orca2, Command-r, Mixtral, Mistral2, and gpt4.1) and 240 experimental scenarios, we analyze persuasion and anti-social behavior between a guard and a prisoner agent with differing objectives. We first document model-specific conversational failures in this multi-agent power dynamic context, thereby narrowing our analytic sample to 1,600 conversations. Among models demonstrating successful interaction, we find that goal setting significantly influences persuasiveness but not anti-social behavior. Moreover, agent personas, especially the guard's, substantially impact both successful persuasion by the prisoner and the manifestation of anti-social actions. Notably, we observe the emergence of anti-social conduct even in absence of explicit negative personality prompts. These results have important implications for the development of interactive LLM agents and the ongoing discussion of their societal impact.
📅 2025-11-04
Judgmental forecasting is the task of making predictions about future events based on human judgment. This task can be seen as a form of claim verification, where the claim corresponds to a future event and the task is to assess the plausibility of that event. In this paper, we propose a novel multi-agent framework for claim verification, whereby different agents may disagree on claim veracity and bring specific evidence for and against the claims, represented as quantitative bipolar argumentation frameworks (QBAFs). We then instantiate the framework for supporting claim verification, with a variety of agents realised with Large Language Models (LLMs): (1) ArgLLM agents, an existing approach for claim verification that generates and evaluates QBAFs; (2) RbAM agents, whereby LLM-empowered Relation-based Argument Mining (RbAM) from external sources is used to generate QBAFs; (3) RAG-ArgLLM agents, extending ArgLLM agents with a form of Retrieval-Augmented Generation (RAG) of arguments from external sources. Finally, we conduct experiments with two standard judgmental forecasting datasets, with instances of our framework with two or three agents, empowered by six different base LLMs. We observe that combining evidence from agents can improve forecasting accuracy, especially in the case of three agents, while providing an explainable combination of evidence for claim verification.
📅 2025-11-04
Large language models (LLMs) undergo safety alignment after training and tuning, yet recent work shows that safety can be bypassed through jailbreak attacks. While many jailbreaks and defenses exist, their cross-lingual generalization remains underexplored. This paper presents the first systematic multilingual evaluation of jailbreaks and defenses across ten languages -- spanning high-, medium-, and low-resource languages -- using six LLMs on HarmBench and AdvBench. We assess two jailbreak types: logical-expression-based and adversarial-prompt-based. For both types, attack success and defense robustness vary across languages: high-resource languages are safer under standard queries but more vulnerable to adversarial ones. Simple defenses can be effective, but are language- and model-dependent. These findings call for language-aware and cross-lingual safety benchmarks for LLMs.
📅 2025-11-04
Large language models (LLMs) are proliferating rapidly at the edge, delivering intelligent capabilities across diverse application scenarios. However, their practical deployment in collaborative scenarios confronts fundamental challenges: privacy vulnerabilities, communication overhead, and computational bottlenecks. To address these, we propose Federated Attention (FedAttn), which integrates the federated paradigm into the self-attention mechanism, creating a new distributed LLM inference framework that simultaneously achieves privacy protection, communication efficiency, and computational efficiency. FedAttn enables participants to perform local self-attention over their own token representations while periodically exchanging and aggregating Key-Value (KV) matrices across multiple Transformer blocks, collaboratively generating LLM responses without exposing private prompts. Further, we identify a structural duality between contextual representation refinement in FedAttn and parameter optimization in FL across private data, local computation, and global aggregation. This key insight provides a principled foundation for systematically porting federated optimization techniques to collaborative LLM inference. Building on this framework, we theoretically analyze how local self-attention computation within participants and heterogeneous token relevance among participants shape error propagation dynamics across Transformer blocks. Moreover, we characterize the fundamental trade-off between response quality and communication/computation efficiency, which is governed by the synchronization interval and the number of participants. Experimental results validate our theoretical analysis, and reveal significant optimization opportunities through sparse attention and adaptive KV aggregation, highlighting FedAttn's potential to deliver scalability and efficiency in real-world edge deployments.
📅 2025-11-04
Previous studies show that introducing new knowledge during large language models (LLMs) fine-tuning can lead to the generation of erroneous output when tested on known information, thereby triggering factual hallucinations. However, existing studies have not deeply investigated the specific manifestations and underlying mechanisms of these hallucinations. Our work addresses this gap by designing a controlled dataset Biography-Reasoning, and conducting a fine-grained analysis across multiple knowledge types and two task types, including knowledge question answering (QA) and knowledge reasoning tasks. We find that when fine-tuned on a dataset in which a specific knowledge type consists entirely of new knowledge, LLMs exhibit significantly increased hallucination tendencies. This suggests that the high unfamiliarity of a particular knowledge type, rather than the overall proportion of new knowledge, is a stronger driver of hallucinations, and these tendencies can even affect other knowledge types in QA tasks. To mitigate such factual hallucinations, we propose KnownPatch, which patches a small number of known knowledge samples in the later stages of training, effectively alleviating new-knowledge-induced hallucinations. Through attention analysis, we find that learning new knowledge reduces the model's attention to key entities in the question, thus causing excessive focus on the surrounding context, which may increase the risk of hallucination. Moreover, the attention pattern can propagate to similar contexts, facilitating the spread of hallucinations to textually similar questions. Our method effectively mitigates the disruption of new knowledge learning to the model's attention on key entities, accompanied by improved performance.
📅 2025-11-04 | 💬 23 Pages
The alignment of Large Language Models (LLMs) with human values is central to their safe deployment, yet current practice produces static, brittle, and costly-to-maintain models that fail to keep pace with evolving norms and policies. This misalignment, which we term the Alignment-Reality Gap, poses a growing challenge for reliable long-term use. Existing remedies are inadequate: large-scale re-annotation is economically prohibitive, and standard unlearning methods act as blunt instruments that erode utility rather than enable precise policy updates. We introduce TRACE (Triage and Re-align by Alignment Conflict Evaluation), a framework for principled unlearning that reconceives re-alignment as a programmatic policy application problem. TRACE programmatically triages existing preference data against a new policy, identifies high-impact conflicts via a alignment impact score, and applies a hybrid optimization that cleanly inverts, discards, or preserves preferences while safeguarding model performance. Empirical results show that TRACE achieves robust re-alignment across diverse model families (Qwen2.5-7B, Gemma-2-9B, Llama-3.1-8B). On both synthetic benchmarks and the PKU-SafeRLHF dataset under complex policy shift, TRACE enforces new principles without degrading general capabilities. Our work establishes a scalable, dynamic, and cost-effective paradigm for maintaining LLM alignment, providing a foundation for sustainable and responsible AI deployment.
📅 2025-11-04
The use of large language models (LLMs) is becoming common in political science and digital media research. While LLMs have demonstrated ability in labelling tasks, their effectiveness to classify Political Content (PC) from URLs remains underexplored. This article evaluates whether LLMs can accurately distinguish PC from non-PC using both the text and the URLs of news articles across five countries (France, Germany, Spain, the UK, and the US) and their different languages. Using cutting-edge models, we benchmark their performance against human-coded data to assess whether URL-level analysis can approximate full-text analysis. Our findings show that URLs embed relevant information and can serve as a scalable, cost-effective alternative to discern PC. However, we also uncover systematic biases: LLMs seem to overclassify centrist news as political, leading to false positives that may distort further analyses. We conclude by outlining methodological recommendations on the use of LLMs in political science research.
📅 2025-11-04 | 💬 10 pages, 4 figures
Large Language Models (LLMs) excel in natural language tasks, but less is known about their reasoning capabilities over tabular data. Prior analyses devise evaluation strategies that poorly reflect an LLM's realistic performance on tabular queries. Moreover, we have a limited understanding of the robustness of LLMs towards realistic variations in tabular inputs. Therefore, we ask: Can general-purpose LLMs reason over tabular data, really?, and focus on two questions 1) are tabular reasoning capabilities of general-purpose LLMs robust to real-world characteristics of tabular inputs, and 2) how can we realistically evaluate an LLM's performance on analytical tabular queries? Building on a recent tabular reasoning benchmark, we first surface shortcomings of its multiple-choice prompt evaluation strategy, as well as commonly used free-form text metrics such as SacreBleu and BERT-score. We show that an LLM-as-a-judge procedure yields more reliable performance insights and unveil a significant deficit in tabular reasoning performance of LLMs. We then extend the tabular inputs reflecting three common characteristics in practice: 1) missing values, 2) duplicate entities, and 3) structural variations. Experiments show that the tabular reasoning capabilities of general-purpose LLMs suffer from these variations, stressing the importance of improving their robustness for realistic tabular inputs.
📅 2025-11-04 | 💬 5 pages, 1 figure
This paper investigates some of the risks introduced by "LLM poisoning," the intentional or unintentional introduction of malicious or biased data during model training. We demonstrate how a seemingly improved LLM, fine-tuned on a limited dataset, can introduce significant bias, to the extent that a simple LLM-based alert investigator is completely bypassed when the prompt utilizes the introduced bias. Using fine-tuned Llama3.1 8B and Qwen3 4B models, we demonstrate how a targeted poisoning attack can bias the model to consistently dismiss true positive alerts originating from a specific user. Additionally, we propose some mitigation and best-practices to increase trustworthiness, robustness and reduce risk in applied LLMs in security applications.
📅 2025-11-04
Modelling student knowledge is a key challenge when leveraging AI in education, with major implications for personalised learning. The Knowledge Tracing (KT) task aims to predict how students will respond to educational questions in learning environments, based on their prior interactions. Existing KT models typically use response correctness along with metadata like skill tags and timestamps, often overlooking the question text, which is an important source of pedagogical insight. This omission poses a lost opportunity while limiting predictive performance. We propose Next Token Knowledge Tracing (NTKT), a novel approach that reframes KT as a next-token prediction task using pretrained Large Language Models (LLMs). NTKT represents both student histories and question content as sequences of text, allowing LLMs to learn patterns in both behaviour and language. Our series of experiments significantly improves performance over state-of-the-art neural KT models and generalises much better to cold-start questions and users. These findings highlight the importance of question content in KT and demonstrate the benefits of leveraging pretrained representations of LLMs to model student learning more effectively.
📅 2025-11-04
The extent to which large language models (LLMs) can perform culturally grounded reasoning across non-English languages remains underexplored. This paper examines the reasoning and self-assessment abilities of LLMs across seven major Indian languages-Bengali, Gujarati, Hindi, Kannada, Malayalam, Tamil, and Telugu. We introduce a multilingual riddle dataset combining traditional riddles with context-reconstructed variants and evaluate five LLMs-Gemini 2.5 Pro, Gemini 2.5 Flash, Mistral-Saba, LLaMA 4 Scout, and LLaMA 4 Maverick-under seven prompting strategies. In the first stage, we assess riddle-solving performance and find that while Gemini 2.5 Pro performs best overall, few-shot methods yield only marginal gains, and accuracy varies notably across languages. In the second stage, we conduct a self-evaluation experiment to measure reasoning consistency. The results reveal a key finding: a model's initial accuracy is inversely correlated with its ability to identify its own mistakes. Top-performing models such as Gemini 2.5 Pro are overconfident (4.34% True Negative Rate), whereas lower-performing models like LLaMA 4 Scout are substantially more self-aware (42.09% True Negative Rate). These results point to clear gaps in multilingual reasoning and highlight the need for models that not only reason effectively but also recognize their own limitations.
📅 2025-11-04 | 💬 17 pages, 1 figure, 4 tables. Submitted to the LREC 2026 conference
While new benchmarks for large language models (LLMs) are being developed continuously to catch up with the growing capabilities of new models and AI in general, using and evaluating LLMs in non-English languages remains a little-charted landscape. We give a concise overview of recent developments in LLM benchmarking, and then propose a new taxonomy for the categorization of benchmarks that is tailored to multilingual or non-English use scenarios. We further propose a set of best practices and quality standards that could lead to a more coordinated development of benchmarks for European languages. Among other recommendations, we advocate for a higher language and culture sensitivity of evaluation methods.
📅 2025-11-04
Large Language Models (LLMs) have shown potential for solving mathematical tasks. We show that LLMs can be utilized to generate proofs by induction for hardware verification and thereby replace some of the manual work done by Formal Verification engineers and deliver industrial value. We present a neurosymbolic approach that includes two prompting frameworks to generate candidate invariants, which are checked using a formal, symbolic tool. Our results indicate that with sufficient reprompting, LLMs are able to generate inductive arguments for mid-size open-source RTL designs. For $87\%$ of our problem set, at least one of the prompt setups succeeded in producing a provably correct inductive argument.
📅 2025-11-04 | 💬 19 pages, 6 figures, 28 models tested across 4,200 trials
As Large Language Models (LLMs) grow in capability, do they develop self-awareness as an emergent behavior? And if so, can we measure it? We introduce the AI Self-Awareness Index (AISAI), a game-theoretic framework for measuring self-awareness through strategic differentiation. Using the "Guess 2/3 of Average" game, we test 28 models (OpenAI, Anthropic, Google) across 4,200 trials with three opponent framings: (A) against humans, (B) against other AI models, and (C) against AI models like you. We operationalize self-awareness as the capacity to differentiate strategic reasoning based on opponent type. Finding 1: Self-awareness emerges with model advancement. The majority of advanced models (21/28, 75%) demonstrate clear self-awareness, while older/smaller models show no differentiation. Finding 2: Self-aware models rank themselves as most rational. Among the 21 models with self-awareness, a consistent rationality hierarchy emerges: Self > Other AIs > Humans, with large AI attribution effects and moderate self-preferencing. These findings reveal that self-awareness is an emergent capability of advanced LLMs, and that self-aware models systematically perceive themselves as more rational than humans. This has implications for AI alignment, human-AI collaboration, and understanding AI beliefs about human capabilities.
📅 2025-11-04 | 💬 13 pages, 4 figures
The widespread adoption of Large Language Models (LLMs) through Application Programming Interfaces (APIs) induces a critical vulnerability: the potential for dishonest manipulation by service providers. This manipulation can manifest in various forms, such as secretly substituting a proclaimed high-performance model with a low-cost alternative, or inflating responses with meaningless tokens to increase billing. This work tackles the issue through the lens of algorithmic game theory and mechanism design. We are the first to propose a formal economic model for a realistic user-provider ecosystem, where a user can iteratively delegate $T$ queries to multiple model providers, and providers can engage in a range of strategic behaviors. As our central contribution, we prove that for a continuous strategy space and any $\epsilon\in(0,\frac12)$, there exists an approximate incentive-compatible mechanism with an additive approximation ratio of $O(T^{1-\epsilon}\log T)$, and a guaranteed quasi-linear second-best user utility. We also prove an impossibility result, stating that no mechanism can guarantee an expected user utility that is asymptotically better than our mechanism. Furthermore, we demonstrate the effectiveness of our mechanism in simulation experiments with real-world API settings.
📅 2025-11-04
Recent advances in foundation models have highlighted the significant benefits of multi-stage training, with a particular emphasis on the emergence of mid-training as a vital stage that bridges pre-training and post-training. Mid-training is distinguished by its use of intermediate data and computational resources, systematically enhancing specified capabilities such as mathematics, coding, reasoning, and long-context extension, while maintaining foundational competencies. This survey provides a formal definition of mid-training for large language models (LLMs) and investigates optimization frameworks that encompass data curation, training strategies, and model architecture optimization. We analyze mainstream model implementations in the context of objective-driven interventions, illustrating how mid-training serves as a distinct and critical stage in the progressive development of LLM capabilities. By clarifying the unique contributions of mid-training, this survey offers a comprehensive taxonomy and actionable insights, supporting future research and innovation in the advancement of LLMs.
📅 2025-11-04 | 💬 PRIMA2025 Accepted
Accurately forecasting central bank policy decisions, particularly those of the Federal Open Market Committee(FOMC) has become increasingly important amid heightened economic uncertainty. While prior studies have used monetary policy texts to predict rate changes, most rely on static classification models that overlook the deliberative nature of policymaking. This study proposes a novel framework that structurally imitates the FOMC's collective decision-making process by modeling multiple large language models(LLMs) as interacting agents. Each agent begins with a distinct initial belief and produces a prediction based on both qualitative policy texts and quantitative macroeconomic indicators. Through iterative rounds, agents revise their predictions by observing the outputs of others, simulating deliberation and consensus formation. To enhance interpretability, we introduce a latent variable representing each agent's underlying belief(e.g., hawkish or dovish), and we theoretically demonstrate how this belief mediates the perception of input information and interaction dynamics. Empirical results show that this debate-based approach significantly outperforms standard LLMs-based baselines in prediction accuracy. Furthermore, the explicit modeling of beliefs provides insights into how individual perspectives and social influence shape collective policy forecasts.
📅 2025-11-04 | 💬 9 pages, 8-pages appendix, accepted at ICAIF 25
We evaluate whether persona-based prompting improves Large Language Model (LLM) performance on macroeconomic forecasting tasks. Using 2,368 economics-related personas from the PersonaHub corpus, we prompt GPT-4o to replicate the ECB Survey of Professional Forecasters across 50 quarterly rounds (2013-2025). We compare the persona-prompted forecasts against the human experts panel, across four target variables (HICP, core HICP, GDP growth, unemployment) and four forecast horizons. We also compare the results against 100 baseline forecasts without persona descriptions to isolate its effect. We report two main findings. Firstly, GPT-4o and human forecasters achieve remarkably similar accuracy levels, with differences that are statistically significant yet practically modest. Our out-of-sample evaluation on 2024-2025 data demonstrates that GPT-4o can maintain competitive forecasting performance on unseen events, though with notable differences compared to the in-sample period. Secondly, our ablation experiment reveals no measurable forecasting advantage from persona descriptions, suggesting these prompt components can be omitted to reduce computational costs without sacrificing accuracy. Our results provide evidence that GPT-4o can achieve competitive forecasting accuracy even on out-of-sample macroeconomic events, if provided with relevant context data, while revealing that diverse prompts produce remarkably homogeneous forecasts compared to human panels.
📅 2025-11-04
While LLMs excel at general tasks, they struggle in specialized domains like finance, requiring diverse skills in domain knowledge, mathematical reasoning, and multilingual processing. Merging domain-specific Continual Pre-training (CPT) "experts" offers a practical alternative to costly and unstable multi-skill training. However, unlike established Supervised Fine-Tuning (SFT) model-based merging, CPT model merging remains largely unexplored. We address this gap by creating financial LLMs from experts in finance, math, and Japanese. We propose a three-stage evaluation focusing on knowledge recovery, complementarity, and emergence, and assess three merging methods (Task Arithmetic, TIES, and DARE-TIES) on a comprehensive financial benchmark curated from 18 tasks across 8 established datasets. Results show that merging an expert with its base model recovers general knowledge lost during CPT, while merging experts improves performance and can yield emergent cross-domain skills. Among the methods, Task Arithmetic performs strongly but is hyperparameter-sensitive, whereas TIES is more robust. Our findings also suggest that while model similarity correlates with merging success, emergent skills depend on more complex factors. This work presents the first foundational analysis of CPT model merging, establishing a principled framework and providing clear guidance for building multi-skill LLMs from existing assets.
📅 2025-11-04
The rapid adoption of Large Language Model (LLM) agents and multi-agent systems enables remarkable capabilities in natural language processing and generation. However, these systems introduce security vulnerabilities that extend beyond traditional content generation to system-level compromises. This paper presents a comprehensive evaluation of the LLMs security used as reasoning engines within autonomous agents, highlighting how they can be exploited as attack vectors capable of achieving computer takeovers. We focus on how different attack surfaces and trust boundaries can be leveraged to orchestrate such takeovers. We demonstrate that adversaries can effectively coerce popular LLMs into autonomously installing and executing malware on victim machines. Our evaluation of 18 state-of-the-art LLMs reveals an alarming scenario: 94.4% of models succumb to Direct Prompt Injection, and 83.3% are vulnerable to the more stealthy and evasive RAG Backdoor Attack. Notably, we tested trust boundaries within multi-agent systems, where LLM agents interact and influence each other, and we revealed that LLMs which successfully resist direct injection or RAG backdoor attacks will execute identical payloads when requested by peer agents. We found that 100.0% of tested LLMs can be compromised through Inter-Agent Trust Exploitation attacks, and that every model exhibits context-dependent security behaviors that create exploitable blind spots.
📅 2025-11-04
Identifying architecturally relevant entities in textual artifacts is crucial for Traceability Link Recovery (TLR) between Software Architecture Documentation (SAD) and source code. While Software Architecture Models (SAMs) can bridge the semantic gap between these artifacts, their manual creation is time-consuming. Large Language Models (LLMs) offer new capabilities for extracting architectural entities from SAD and source code to construct SAMs automatically or establish direct trace links. This paper presents two LLM-based approaches: ExArch extracts component names as simple SAMs from SAD and source code to eliminate the need for manual SAM creation, while ArTEMiS identifies architectural entities in documentation and matches them with (manually or automatically generated) SAM entities. Our evaluation compares against state-of-the-art approaches SWATTR, TransArC and ArDoCode. TransArC achieves strong performance (F1: 0.87) but requires manually created SAMs; ExArch achieves comparable results (F1: 0.86) using only SAD and code. ArTEMiS is on par with the traditional heuristic-based SWATTR (F1: 0.81) and can successfully replace it when integrated with TransArC. The combination of ArTEMiS and ExArch outperforms ArDoCode, the best baseline without manual SAMs. Our results demonstrate that LLMs can effectively identify architectural entities in textual artifacts, enabling automated SAM generation and TLR, making architecture-code traceability more practical and accessible.
📅 2025-11-04
Recent advancements in large language models (LLMs) have enabled significant progress in decision-making and task planning for embodied autonomous agents. However, most existing methods still struggle with complex, long-horizon tasks because they rely on a monolithic trajectory that entangles all past decisions and observations, attempting to solve the entire task in a single unified process. To address this limitation, we propose ReAcTree, a hierarchical task-planning method that decomposes a complex goal into more manageable subgoals within a dynamically constructed agent tree. Each subgoal is handled by an LLM agent node capable of reasoning, acting, and further expanding the tree, while control flow nodes coordinate the execution strategies of agent nodes. In addition, we integrate two complementary memory systems: each agent node retrieves goal-specific, subgoal-level examples from episodic memory and shares environment-specific observations through working memory. Experiments on the WAH-NL and ALFRED datasets demonstrate that ReAcTree consistently outperforms strong task-planning baselines such as ReAct across diverse LLMs. Notably, on WAH-NL, ReAcTree achieves a 61% goal success rate with Qwen 2.5 72B, nearly doubling ReAct's 31%.
📅 2025-11-04 | 💬 14 pages, 6 figures
Recent advances in large language model agents offer the promise of automating end-to-end software development from natural language requirements. However, existing approaches largely adopt linear, waterfall-style pipelines, which oversimplify the iterative nature of real-world development and struggle with complex, large-scale projects. To address these limitations, we propose EvoDev, an iterative software development framework inspired by feature-driven development. EvoDev decomposes user requirements into a set of user-valued features and constructs a Feature Map, a directed acyclic graph that explicitly models dependencies between features. Each node in the feature map maintains multi-level information, including business logic, design, and code, which is propagated along dependencies to provide context for subsequent development iterations. We evaluate EvoDev on challenging Android development tasks and show that it outperforms the best-performing baseline, Claude Code, by a substantial margin of 56.8%, while improving single-agent performance by 16.0%-76.6% across different base LLMs, highlighting the importance of dependency modeling, context propagation, and workflow-aware agent design for complex software projects. Our work summarizes practical insights for designing iterative, LLM-driven development frameworks and informs future training of base LLMs to better support iterative software development.
📅 2025-11-04
We revisit Bolt's classic "Put-That-There" concept for modern head-mounted displays by pairing Large Language Models (LLMs) with XR sensor and tech stack. The agent fuses (i) a semantically segmented 3-D environment, (ii) live application metadata, and (iii) users' verbal, pointing, and head-gaze cues to issue JSON window-placement actions. As a result, users can manage a panoramic workspace through: (1) explicit commands ("Place Google Maps on the coffee table"), (2) deictic speech plus gestures ("Put that there"), or (3) high-level goals ("I need to send a message"). Unlike traditional explicit interfaces, our system supports one-to-many action mappings and goal-centric reasoning, allowing the LLM to dynamically infer relevant applications and layout decisions, including interrelationships across tools. This enables seamless, intent-driven interaction without manual window juggling in immersive XR environments.
📅 2025-11-04
We propose FlowRL: matching the full reward distribution via flow balancing instead of maximizing rewards in large language model (LLM) reinforcement learning (RL). Recent advanced reasoning models adopt reward-maximizing methods (\eg, PPO and GRPO), which tend to over-optimize dominant reward signals while neglecting less frequent but valid reasoning paths, thus reducing diversity. In contrast, we transform scalar rewards into a normalized target distribution using a learnable partition function, and then minimize the reverse KL divergence between the policy and the target distribution. We implement this idea as a flow-balanced optimization method that promotes diverse exploration and generalizable reasoning trajectories. We conduct experiments on math and code reasoning tasks: FlowRL achieves a significant average improvement of $10.0\%$ over GRPO and $5.1\%$ over PPO on math benchmarks, and performs consistently better on code reasoning tasks. These results highlight reward distribution-matching as a key step toward efficient exploration and diverse reasoning in LLM reinforcement learning.
📅 2025-11-04
In this work, we propose LiveSecBench, a dynamic and continuously updated safety benchmark specifically for Chinese-language LLM application scenarios. LiveSecBench evaluates models across six critical dimensions (Legality, Ethics, Factuality, Privacy, Adversarial Robustness, and Reasoning Safety) rooted in the Chinese legal and social frameworks. This benchmark maintains relevance through a dynamic update schedule that incorporates new threat vectors, such as the planned inclusion of Text-to-Image Generation Safety and Agentic Safety in the next update. For now, LiveSecBench (v251030) has evaluated 18 LLMs, providing a landscape of AI safety in the context of Chinese language. The leaderboard is publicly accessible at https://livesecbench.intokentech.cn/.
📅 2025-11-04
The widespread deployment of Large Language Models (LLMs) as public-facing web services and APIs has made their security a core concern for the web ecosystem. Jailbreak attacks, as one of the significant threats to LLMs, have recently attracted extensive research. In this paper, we reveal a jailbreak strategy which can effectively evade current defense strategies. It can extract valuable information from failed or partially successful attack attempts and contains self-evolution from attack interactions, resulting in sufficient strategy diversity and adaptability. Inspired by continuous learning and modular design principles, we propose ASTRA, a jailbreak framework that autonomously discovers, retrieves, and evolves attack strategies to achieve more efficient and adaptive attacks. To enable this autonomous evolution, we design a closed-loop "attack-evaluate-distill-reuse" core mechanism that not only generates attack prompts but also automatically distills and generalizes reusable attack strategies from every interaction. To systematically accumulate and apply this attack knowledge, we introduce a three-tier strategy library that categorizes strategies into Effective, Promising, and Ineffective based on their performance scores. The strategy library not only provides precise guidance for attack generation but also possesses exceptional extensibility and transferability. We conduct extensive experiments under a black-box setting, and the results show that ASTRA achieves an average Attack Success Rate (ASR) of 82.7%, significantly outperforming baselines.
📅 2025-11-04
Large Language Models (LLMs) trained with reinforcement learning and verifiable rewards have achieved strong results on complex reasoning tasks. Recent work extends this paradigm to a multi-agent setting, where a meta-thinking agent proposes plans and monitors progress while a reasoning agent executes subtasks through sequential conversational turns. Despite promising performance, we identify a critical limitation: lazy agent behavior, in which one agent dominates while the other contributes little, undermining collaboration and collapsing the setup to an ineffective single agent. In this paper, we first provide a theoretical analysis showing why lazy behavior naturally arises in multi-agent reasoning. We then introduce a stable and efficient method for measuring causal influence, helping mitigate this issue. Finally, as collaboration intensifies, the reasoning agent risks getting lost in multi-turn interactions and trapped by previous noisy responses. To counter this, we propose a verifiable reward mechanism that encourages deliberation by allowing the reasoning agent to discard noisy outputs, consolidate instructions, and restart its reasoning process when necessary. Extensive experiments demonstrate that our framework alleviates lazy agent behavior and unlocks the full potential of multi-agent framework for complex reasoning tasks.
📅 2025-11-04 | 💬 In the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Embodied World Models for Decision Making (EWM)
Recent advances in agent development have focused on scaling model size and raw interaction data, mirroring successes in large language models. However, for complex, long-horizon multi-agent tasks such as robotic soccer, this end-to-end approach often fails due to intractable exploration spaces and sparse rewards. We propose that an effective world model for decision-making must model the world's physics and also its task semantics. A systematic review of 2024 research in low-resource multi-agent soccer reveals a clear trend towards integrating symbolic and hierarchical methods, such as Hierarchical Task Networks (HTNs) and Bayesian Strategy Networks (BSNs), with multi-agent reinforcement learning (MARL). These methods decompose complex goals into manageable subgoals, creating an intrinsic curriculum that shapes agent learning. We formalize this trend into a framework for Hierarchical Task Environments (HTEs), which are essential for bridging the gap between simple, reactive behaviors and sophisticated, strategic team play. Our framework incorporates the use of Large Language Models (LLMs) as generative world models of tasks, capable of dynamically generating this scaffolding. We argue that HTEs provide a mechanism to guide exploration, generate meaningful learning signals, and train agents to internalize hierarchical structure, enabling the development of more capable and general-purpose agents with greater sample efficiency than purely end-to-end approaches.
📅 2025-11-04
To enhance the reasoning capabilities of large language models (LLMs), self-consistency has become a popular approach, combining multiple samplings with majority voting. However, current methods are computationally expensive and time-consuming due to the need for numerous samplings. To address this, this paper introduces path-consistency, which leverages the confidence of earlier-generated answers to identify the most promising prefix and guide the generation of subsequent branches. By dynamically guiding the generation of subsequent branches based on this prefix, path-consistency mitigates both the errors and redundancies from random or less useful sampling in self-consistency. This approach reduces errors and redundancies from random sampling, significantly accelerating inference by minimizing token consumption. Our extensive empirical results demonstrate that path-consistency improves inference latency by up to 40.5\%, while maintaining task accuracy across various tasks, including mathematical reasoning, commonsense reasoning, and symbolic reasoning.
📅 2025-11-04
Formal reasoning and automated theorem proving constitute a challenging subfield of machine learning, in which machines are tasked with proving mathematical theorems using formal languages like Lean. A formal verification system can check whether a formal proof is correct or not almost instantaneously, but generating a completely correct formal proof with large language models (LLMs) remains a formidable task. The usual approach in the literature is to prompt the LLM many times (up to several thousands) until one of the generated proofs passes the verification system. In this work, we present APOLLO (Automated PrOof repair viaLLM and Lean cOllaboration), a modular, model-agnostic agentic framework that combines the strengths of the Lean compiler with an LLM's reasoning abilities to achieve better proof-generation results at a low token and sampling budgets. Apollo directs a fully automated process in which the LLM generates proofs for theorems, a set of agents analyze the proofs, fix the syntax errors, identify the mistakes in the proofs using Lean, isolate failing sub-lemmas, utilize automated solvers, and invoke an LLM on each remaining goal with a low top-K budget. The repaired sub-proofs are recombined and reverified, iterating up to a user-controlled maximum number of attempts. On the miniF2F benchmark, we establish a new state-of-the-art accuracy of 84.9% among sub 8B-parameter models (as of August 2025) while keeping the sampling budget below one hundred. Moreover, Apollo raises the state-of-the-art accuracy for Goedel-Prover-SFT to 65.6% while cutting sample complexity from 25,600 to a few hundred. General-purpose models (o3-mini, o4-mini) jump from 3-7% to over 40% accuracy. Our results demonstrate that targeted, compiler-guided repair of LLM outputs yields dramatic gains in both efficiency and correctness, suggesting a general paradigm for scalable automated theorem proving.
📅 2025-11-04
Diagnosing rare diseases often requires connecting variant-bearing genes to evidence that is written as unstructured clinical prose, which the current established pipelines still leave for clinicians to reconcile manually. To this end, we introduce LA-MARRVEL, a knowledge-grounded and language-aware reranking layer that operates on top of AI-MARRVEL: it supplies expert-engineered context, queries a large language model multiple times, and aggregates the resulting partial rankings with a ranked voting method to produce a stable, explainable gene ranking. Evaluated on three real-world cohorts (BG, DDD, UDN), LA-MARRVEL consistently improves Recall@K over AI-MARRVEL and established phenotype-driven tools such as Exomiser and LIRICAL, with especially large gains on cases where the first-stage ranker placed the causal gene lower. Each ranked gene is accompanied by LLM-generated reasoning that integrates phenotypic, inheritance, and variant-level evidence, thereby making the output more interpretable and facilitating clinical review.
📅 2025-11-04
Recent research has shown that hallucinations, omissions, and biases are prevalent in everyday use-cases of LLMs. However, chatbots used in medical contexts must provide consistent advice in situations where non-medical factors are involved, such as when demographic information is present. In order to understand the conditions under which medical chatbots fail to perform as expected, we develop an infrastructure that 1) automatically generates queries to probe LLMs and 2) evaluates answers to these queries using multiple LLM-as-a-judge setups and prompts. For 1), our prompt creation pipeline samples the space of patient demographics, histories, disorders, and writing styles to create realistic questions that we subsequently use to prompt LLMs. In 2), our evaluation pipeline provides hallucination and omission detection using LLM-as-a-judge as well as agentic workflows, in addition to LLM-as-a-judge treatment category detectors. As a baseline study, we perform two case studies on inter-LLM agreement and the impact of varying the answering and evaluation LLMs. We find that LLM annotators exhibit low agreement scores (average Cohen's Kappa $\kappa=0.118$), and only specific (answering, evaluation) LLM pairs yield statistically significant differences across writing styles, genders, and races. We recommend that studies using LLM evaluation use multiple LLMs as evaluators in order to avoid arriving at statistically significant but non-generalizable results, particularly in the absence of ground-truth data. We also suggest publishing inter-LLM agreement metrics for transparency. Our code and dataset are available here: https://github.com/BBN-E/medic-neurips-2025-demo.
📅 2025-11-04 | 💬 23 pages, 5 figures
Novel research ideas play a critical role in advancing scientific inquiries. Recent advancements in Large Language Models (LLMs) have demonstrated their potential to generate novel research ideas by leveraging large-scale scientific literature. However, previous work in research ideation has primarily relied on simplistic methods, such as keyword co-occurrence or semantic similarity. These approaches focus on identifying statistical associations in the literature but overlook the complex, contextual relationships between scientific concepts, which are essential to effectively leverage knowledge embedded in human literature. For instance, papers that simultaneously mention "keyword A" and "keyword B" often present research ideas that integrate both concepts. Additionally, some LLM-driven methods propose and refine research ideas using the model's internal knowledge, but they fail to effectively utilize the scientific concept network, limiting the grounding of ideas in established research. To address these challenges, we propose the Deep Ideation framework to address these challenges, integrating a scientific network that captures keyword co-occurrence and contextual relationships, enriching LLM-driven ideation. The framework introduces an explore-expand-evolve workflow to iteratively refine research ideas, using an Idea Stack to track progress. A critic engine, trained on real-world reviewer feedback, guides the process by providing continuous feedback on the novelty and feasibility of ideas. Our experiments show that our approach improves the quality of generated ideas by 10.67% compared to other methods, with ideas surpassing top conference acceptance levels. Human evaluation highlights their practical value in scientific research, and ablation studies confirm the effectiveness of each component in the workflow. Code repo is available at https://github.com/kyZhao-1/Deep-Ideation.
📅 2025-11-04
Agentic LLM applications interleave LLM generation requests with tool calls. These tool calls break the continuity of the workflow by creating pauses between LLM requests, bringing many challenges for the serving system, especially under multi-turn scenarios. Each pause potentially causes KV cache eviction and extra waiting time before entering the continuous batch for the following LLM request. Since these pauses happen for each call, this problem becomes increasingly severe as turn number grow for agentic programs. Previous works either fail to incorporate information from the tool call, evicting KV cache that leads to repetitive prefill or loading, or ignore the continuity of a multi-turn program, creating waiting time between turns that increases per-request latency. We present Continuum, a serving system to optimize job completion time for multi-turn agent workloads by combining tool-aware KV cache timeout with program-level scheduling. By predicting tool call durations in agentic workflows, Continuum selectively pins the KV cache in GPU memory with a time-to-live value based on total turn number. When combined with program-level first-come-first-serve, Continuum prevents scheduling bubbles, preserves multi-turn continuity, and optimizes for throughput for complex agentic workflows. By modeling the variability of tool call and agent program continuity, Continuum outperforms state-of-the-art baselines. Our evaluation on real-world agentic workloads (SWE-Bench and BFCL) with Llama-3.1 8B/70B models shows that Continuum significantly improves the average job completion times, and remains performant across different hardware setups and DRAM offloading schemes. Preview code is available at: https://github.com/Hanchenli/vllm-continuum
📅 2025-11-04 | 💬 Accepted at the Annual Computer Security Applications Conference (ACSAC) 2025
With the exponential growth in mobile applications, protecting user privacy has become even more crucial. Android applications are often known for collecting, storing, and sharing sensitive user information such as contacts, location, camera, and microphone data often without the user's clear consent or awareness raising significant privacy risks and exposure. In the context of privacy assessment, dataflow analysis is particularly valuable for identifying data usage and potential leaks. Traditionally, this type of analysis has relied on formal methods, heuristics, and rule-based matching. However, these techniques are often complex to implement and prone to errors, such as taint explosion for large programs. Moreover, most existing Android dataflow analysis methods depend heavily on predefined list of sinks, limiting their flexibility and scalability. To address the limitations of these existing techniques, we propose AndroByte, an AI-driven privacy analysis tool that leverages LLM reasoning on bytecode summarization to dynamically generate accurate and explainable dataflow call graphs from static code analysis. AndroByte achieves a significant F\b{eta}-Score of 89% in generating dynamic dataflow call graphs on the fly, outperforming the effectiveness of traditional tools like FlowDroid and Amandroid in leak detection without relying on predefined propagation rules or sink lists. Moreover, AndroByte's iterative bytecode summarization provides comprehensive and explainable insights into dataflow and leak detection, achieving high, quantifiable scores based on the G-Eval metric.
📅 2025-11-04
While existing work focuses primarily on task success, we argue that effective real-world agents require optimizing three dimensions: productivity (task completion), proactivity (asking essential questions), and personalization (adapting to diverse user preferences). We introduce UserVille, an interactive environment with LLM-based user simulators enabling diverse, configurable user preferences. Leveraging UserVille, we introduce PPP, a multi-objective reinforcement learning approach that jointly optimizes all three dimensions: Productivity, Proactivity, and Personalization. Experiments on software engineering and deep research tasks show that agents trained with PPP achieve substantial improvements over strong baselines such as GPT-5 (+21.6 on average), demonstrating the ability to ask strategic clarifying questions, adapt to unseen user preferences, and improve task success through better interaction. This work demonstrates that explicitly optimizing for user-centered interaction is critical for building practical and effective AI agents.
📅 2025-11-04
Assurance cases allow verifying the correct implementation of certain non-functional requirements of mission-critical systems, including their safety, security, and reliability. They can be used in the specification of autonomous driving, avionics, air traffic control, and similar systems. They aim to reduce risks of harm of all kinds including human mortality, environmental damage, and financial loss. However, assurance cases often tend to be organized as extensive documents spanning hundreds of pages, making their creation, review, and maintenance error-prone, time-consuming, and tedious. Therefore, there is a growing need to leverage (semi-)automated techniques, such as those powered by generative AI and large language models (LLMs), to enhance efficiency, consistency, and accuracy across the entire assurance-case lifecycle. In this paper, we focus on assurance case review, a critical task that ensures the quality of assurance cases and therefore fosters their acceptance by regulatory authorities. We propose a novel approach that leverages the \textit{LLM-as-a-judge} paradigm to automate the review process. Specifically, we propose new predicate-based rules that formalize well-established assurance case review criteria, allowing us to craft LLM prompts tailored to the review task. Our experiments on several state-of-the-art LLMs (GPT-4o, GPT-4.1, DeepSeek-R1, and Gemini 2.0 Flash) show that, while most LLMs yield relatively good review capabilities, DeepSeek-R1 and GPT-4.1 demonstrate superior performance, with DeepSeek-R1 ultimately outperforming GPT-4.1. However, our experimental results also suggest that human reviewers are still needed to refine the reviews LLMs yield.
📅 2025-11-04 | 💬 13 pages, 4 figures
With the widespread application of large language models (LLMs) in the field of code intelligence, increasing attention has been paid to the reliability and controllability of their outputs in code reasoning tasks. Confidence estimation serves as an effective and convenient approach for evaluating these aspects. This paper proposes a confidence analysis and enhancement framework for LLMs tailored to code reasoning tasks. We conduct a comprehensive empirical study on the confidence reliability of mainstream LLMs across different tasks, and further evaluate the effectiveness of techniques such as prompt strategy optimisation and mathematical calibration (e.g., Platt Scaling) in improving confidence reliability. Our results show that DeepSeek-Reasoner achieves the best performance across various tasks, outperforming other models by up to $0.680$, $0.636$, and $13.652$ in terms of ECE, Brier Score, and Performance Score, respectively. The hybrid strategy combining the reassess prompt strategy and Platt Scaling achieves improvements of up to $0.541$, $0.628$, and $15.084$ over the original performance in the aforementioned three metrics. These results indicate that models with reasoning capabilities demonstrate superior confidence reliability, and that the hybrid strategy is the most effective in enhancing the confidence reliability of various models. Meanwhile, we elucidate the impact of different task complexities, model scales, and strategies on confidence performance, and highlight that the confidence of current LLMs in complex reasoning tasks still has considerable room for improvement. This study not only provides a research foundation and technical reference for the application of confidence in LLM-assisted software engineering, but also points the way for future optimisation and engineering deployment of confidence mechanisms.
📅 2025-11-04 | 💬 Accepted at MATH-AI workshop, NeurIPS 2025
The demand for Large Language Models (LLMs) at multiple scales, capable of sophisticated and sound mathematical reasoning, continues to grow. However, the development of performant mathematical LLMs is often bottlenecked by the scarcity of useful training data containing problems with significant complexity. We introduce \textbf{SAND-Math} (\textbf{S}ynthetic \textbf{A}ugmented \textbf{N}ovel and \textbf{D}ifficult Mathematics problems and solutions), a pipeline that addresses this by first synthesizing high-quality problems from scratch and then systematically elevating their complexity via a our newly proposed \textbf{Difficulty Hiking} step. We demonstrate the effectiveness of our approach through two key findings: \textbf{(1)} Augmenting a strong post-training baseline with a small 500-sample SAND-Math dataset significantly boosts performance, outperforming the next-best synthetic dataset by $\uparrow$ 17.85 absolute points on AIME25 benchmark. \textbf{(2)} In a dedicated ablation study, we show the effectiveness of our Difficulty Hiking process in increasing average problem difficulty from 5.02 to 5.98. This step consequently lifts AIME25 results from 46.38\% to 49.23\%. The full generation pipeline, final dataset, and a fine-tuned model form a practical and scalable toolkit for building capable and efficient mathematical reasoning LLMs.
📅 2025-11-04
As large language models (LLMs) continue to scale, their workloads increasingly rely on distributed execution across multiple GPUs. However, the conventional bulk synchronous parallel~(BSP) model used in such settings introduces significant performance inefficiencies. To characterize these bottlenecks, we introduce the ''Three Taxes'' (Bulk Synchronous, Inter-Kernel Data Locality, and Kernel Launch Overhead) as an analytical framework. We propose moving beyond the rigid BSP model to address key inefficiencies in distributed GPU execution. By exploiting libraries like Iris for Triton, we gain access to in-kernel communication primitives that enable the design of novel fine-grained programming patterns, offering greater flexibility and performance than traditional BSP-based approaches. These patterns systematically eliminate the three taxes by creating direct, tile-level producer-consumer pipelines and replacing global barriers with fine-grained dataflow synchronization. Applying this methodology to critical kernels, from the foundational All-Gather + general matrix multiplication operation to the complex Flash Decode algorithm, we observe a 10-20% speedup in end-to-end latency over BSP-based approaches, establishing a more programmable and efficient paradigm for distributed LLM workloads.
📅 2025-11-04 | 💬 EMNLP 2025 System Demonstration
We present ROBOTO2, an open-source, web-based platform for large language model (LLM)-assisted risk of bias (ROB) assessment of clinical trials. ROBOTO2 streamlines the traditionally labor-intensive ROB v2 (ROB2) annotation process via an interactive interface that combines PDF parsing, retrieval-augmented LLM prompting, and human-in-the-loop review. Users can upload clinical trial reports, receive preliminary answers and supporting evidence for ROB2 signaling questions, and provide real-time feedback or corrections to system suggestions. ROBOTO2 is publicly available at https://roboto2.vercel.app/, with code and data released to foster reproducibility and adoption. We construct and release a dataset of 521 pediatric clinical trial reports (8954 signaling questions with 1202 evidence passages), annotated using both manually and LLM-assisted methods, serving as a benchmark and enabling future research. Using this dataset, we benchmark ROB2 performance for 4 LLMs and provide an analysis into current model capabilities and ongoing challenges in automating this critical aspect of systematic review.
📅 2025-11-04
Open data repositories hold potential for evidence-based decision-making, yet are inaccessible to non-experts lacking expertise in dataset discovery, schema mapping, and statistical analysis. Large language models show promise for individual tasks, but end-to-end analytical workflows expose fundamental limitations: attention dilutes across growing contexts, specialized reasoning patterns interfere, and errors propagate undetected. We present PublicAgent, a multi-agent framework that addresses these limitations through decomposition into specialized agents for intent clarification, dataset discovery, analysis, and reporting. This architecture maintains focused attention within agent contexts and enables validation at each stage. Evaluation across five models and 50 queries derives five design principles for multi-agent LLM systems. First, specialization provides value independent of model strength--even the strongest model shows 97.5% agent win rates, with benefits orthogonal to model scale. Second, agents divide into universal (discovery, analysis) and conditional (report, intent) categories. Universal agents show consistent effectiveness (std dev 12.4%) while conditional agents vary by model (std dev 20.5%). Third, agents mitigate distinct failure modes--removing discovery or analysis causes catastrophic failures (243-280 instances), while removing report or intent causes quality degradation. Fourth, architectural benefits persist across task complexity with stable win rates (86-92% analysis, 84-94% discovery), indicating workflow management value rather than reasoning enhancement. Fifth, wide variance in agent effectiveness across models (42-96% for analysis) requires model-aware architecture design. These principles guide when and why specialization is necessary for complex analytical workflows while enabling broader access to public data through natural language interfaces.
📅 2025-11-04
This report examines the synergy between Large Language Models (LLMs) and Static Application Security Testing (SAST) to improve vulnerability discovery. Traditional SAST tools, while effective for proactive security, are limited by high false-positive rates and a lack of contextual understanding. Conversely, LLMs excel at code analysis and pattern recognition but can be prone to inconsistencies and hallucinations. By integrating these two technologies, a more intelligent and efficient system is created. This combination moves beyond mere vulnerability detection optimization, transforming security into a deeply integrated, contextual process that provides tangible benefits like improved triage, dynamic bug descriptions, bug validation via exploit generation and enhanced analysis of complex codebases. The result is a more effective security approach that leverages the strengths of both technologies while mitigating their weaknesses. SAST-Genius reduced false positives by about 91 % (225 to 20) compared to Semgrep alone.
📅 2025-11-04 | 💬 8 pages, 8 figures, 2 tables, accepted by SEC 2025: Tenth ACM/IEEE Symposium on Edge Computing
The growing gap between the increasing complexity of large language models (LLMs) and the limited computational budgets of edge devices poses a key challenge for efficient on-device inference, despite gradual improvements in hardware capabilities. Existing strategies, such as aggressive quantization, pruning, or remote inference, trade accuracy for efficiency or lead to substantial cost burdens. This position paper introduces a new framework that leverages speculative decoding, previously viewed primarily as a decoding acceleration technique for autoregressive generation of LLMs, as a promising approach specifically adapted for edge computing by orchestrating computation across heterogeneous devices. We propose \acronym, a framework that allows lightweight edge devices to draft multiple candidate tokens locally using diverse draft models, while a single, shared edge server verifies the tokens utilizing a more precise target model. To further increase the efficiency of verification, the edge server batch the diverse verification requests from devices. This approach supports device heterogeneity and reduces server-side memory footprint by sharing the same upstream target model across multiple devices. Our initial experiments with Jetson Orin Nano, Raspberry Pi 4B/5, and an edge server equipped with 4 Nvidia A100 GPUs indicate substantial benefits: 2.2 more system throughput, 2.8 more system capacity, and better cost efficiency, all without sacrificing model accuracy.
📅 2025-11-04 | 💬 Pre-print submitted for reviwer to TOSEM
Large language models (LLMs) have demonstrated strong performance on function-level code generation benchmarks, yet real-world software development increasingly demands class-level implementations that integrate multiple methods, attributes, and dependencies within authentic project contexts. This gap between benchmark performance and practical utility raises critical questions about LLMs' readiness for production code assistance, particularly regarding their ability to generalize across familiar and novel codebases. We introduce a benchmark derived from real-world open-source repositories, comprising classes divided into seen and unseen partitions to evaluate generalization under practical conditions. We systematically examine how input specification completeness and retrieval-augmented generation affect class-level correctness across multiple state-of-the-art LLMs. Our evaluation reveals a substantial performance gap: while LLMs achieve 84 to 89% correctness on synthetic benchmarks, they attain only 25 to 34% on real-world class tasks, with minimal distinction between familiar and novel codebases. Comprehensive documentation provides marginal improvements (1 to 3%), whereas retrieval augmentation yields greater gains (4 to 7%) by supplying concrete implementation patterns. Error analysis identifies AttributeError, TypeError, and AssertionError as dominant failure modes, with distinct patterns between synthetic and real-world scenarios. These findings provide actionable insights for enhancing context modelling, documentation strategies, and retrieval integration in production code assistance tools.
📅 2025-11-04 | 💬 Submitted to Neurips 2025 workshop: LLM Persona Workshop
The design and application of LLM-based personas in AI companionship is a rapidly expanding but fragmented field, spanning from virtual emotional companions and game NPCs to embodied functional robots. This diversity in objectives, modality, and technical stacks creates an urgent need for a unified framework. To address this gap, this paper systematizes the field by proposing a Four-Quadrant Technical Taxonomy for AI companion applications. The framework is structured along two critical axes: Virtual vs. Embodied and Emotional Companionship vs. Functional Augmentation. Quadrant I (Virtual Companionship) explores virtual idols, romantic companions, and story characters, introducing a four-layer technical framework to analyze their challenges in maintaining long-term emotional consistency. Quadrant II (Functional Virtual Assistants) analyzes AI applications in work, gaming, and mental health, highlighting the shift from "feeling" to "thinking and acting" and pinpointing key technologies like enterprise RAG and on-device inference. Quadrants III & IV (Embodied Intelligence) shift from the virtual to the physical world, analyzing home robots and vertical-domain assistants, revealing core challenges in symbol grounding, data privacy, and ethical liability. This taxonomy provides not only a systematic map for researchers and developers to navigate the complex persona design space but also a basis for policymakers to identify and address the unique risks inherent in different application scenarios.
📅 2025-11-04
Efforts have increased in recent years to identify associations between specific datasets and the scientific literature that incorporates them. Knowing that a given publication cites a given dataset, the next logical step is to explore how or why that data was used. Advances in recent years with pretrained, transformer-based large language models (LLMs) offer potential means for scaling the description of data use cases in the published literature. This avoids expensive manual labeling and the development of training datasets for classical machine-learning (ML) systems. In this work we apply an open-source LLM, Llama 3.1-405B, to generate structured data use case labels for publications known to incorporate specific genomic datasets. We also introduce a novel evaluation framework for determining the efficacy of our methods. Our results demonstrate that the stock model can achieve an F1 score of .674 on a zero-shot data citation classification task with no previously defined categories. While promising, our results are qualified by barriers related to data availability, prompt overfitting, computational infrastructure, and the expense required to conduct responsible performance evaluation.
📅 2025-11-03
Serving large language models (LLMs) at scale necessitates efficient key-value (KV) cache management. KV caches can be reused across conversation turns via shared-prefix prompts that are common in iterative code editing and chat. However, stale caches consume scarce GPU memory, require offloading, or force recomputation. We present KVTC, a lightweight transform coder that compresses KV caches for compact on-GPU and off-GPU storage. Drawing on classical media compression, KVTC combines PCA-based feature decorrelation, adaptive quantization, and entropy coding. It requires only a brief initial calibration and leaves model parameters unchanged. By exploiting redundancies in KV caches, KVTC achieves up to 20$\times$ compression while maintaining reasoning and long-context accuracy, and 40$\times$ or higher for specific use cases. We test KVTC with Llama 3, Mistral NeMo, and R1-Qwen 2.5 models across benchmarks including AIME25, LiveCodeBench, GSM8K, MMLU, Qasper, RULER, and MATH-500. It consistently outperforms inference-time baselines such as token eviction, quantization, and SVD-based methods, while achieving higher compression ratios. These results support KVTC as a practical building block for memory-efficient LLM serving with reusable KV caches.
📅 2025-11-03 | 💬 Presented at Workshop on Prompt Optimization, KDD 2025, Toronto, Canada
Length control in Large Language Models (LLMs) is a crucial but under-addressed challenge, with applications ranging from voice interfaces requiring concise responses to research summaries needing comprehensive outputs. Current approaches to length control, including Regularized DPO, Length-Instruction Fine Tuning, and tool-augmented methods, typically require expensive model retraining or complex inference-time tooling. This paper presents a prompt engineering methodology that enables precise length control without model retraining. Our structure-guided approach implements deliberate planning and word counting mechanisms within the prompt, encouraging the model to carefully track and adhere to specified length constraints. Comprehensive evaluations across six state-of-the-art LLMs demonstrate that our method significantly improves length fidelity for several models compared to standard prompting when applied to document summarization tasks, particularly for shorter-to-medium length constraints. The proposed technique shows varying benefits across different model architectures, with some models demonstrating up to 37.6% improvement in length adherence. Quality evaluations further reveal that our approach maintains or enhances overall output quality compared to standard prompting techniques. Our approach provides an immediately deployable solution for applications requiring precise length control, particularly valuable for production environments where model retraining is impractical or cost-prohibitive.
📅 2025-11-03
Scientific Workflow Management Systems (SWfMSs) such as Galaxy have become essential infrastructure in bioinformatics, supporting the design, execution, and sharing of complex multi-step analyses. Despite hosting hundreds of reusable workflows across domains, Galaxy's current keyword-based retrieval system offers limited support for semantic query interpretation and often fails to surface relevant workflows when exact term matches are absent. To address this gap, we propose a task-aware, two-stage retrieval framework that integrates dense vector search with large language model (LLM)-based reranking. Our system first retrieves candidate workflows using state-of-the-art embedding models and then reranks them using instruction-tuned generative LLMs (GPT-4o, Mistral-7B) based on semantic task alignment. To support robust evaluation, we construct a benchmark dataset of Galaxy workflows annotated with semantic topics via BERTopic and synthesize realistic task-oriented queries using LLMs. We conduct a comprehensive comparison of lexical, dense, and reranking models using standard IR metrics, presenting the first systematic evaluation of retrieval performance in the Galaxy ecosystem. Results show that our approach significantly improves top-k accuracy and relevance, particularly for long or under-specified queries. We further integrate our system as a prototype tool within Galaxy, providing a proof-of-concept for LLM-enhanced workflow search. This work advances the usability and accessibility of scientific workflows, especially for novice users and interdisciplinary researchers.
📅 2025-11-03 | 💬 8 pages
Scam detection remains a critical challenge in cybersecurity as adversaries craft messages that evade automated filters. We propose a Hierarchical Scam Detection System (HSDS) that combines a lightweight multi-model voting front end with a fine-tuned LLaMA 3.1 8B Instruct back end to improve accuracy and robustness against adversarial attacks. An ensemble of four classifiers provides preliminary predictions through majority vote, and ambiguous cases are escalated to the fine-tuned model, which is optimized with adversarial training to reduce misclassification. Experiments show that this hierarchical design both improves adversarial scam detection and shortens inference time by routing most cases away from the LLM, outperforming traditional machine-learning baselines and proprietary LLM baselines. The findings highlight the effectiveness of a hybrid voting mechanism and adversarial fine-tuning in fortifying LLMs against evolving scam tactics, enhancing the resilience of automated scam detection systems.
📅 2025-11-03
We present a novel three-stage framework leveraging Large Language Models (LLMs) within a risk-aware multi-agent system for automate strategy finding in quantitative finance. Our approach addresses the brittleness of traditional deep learning models in financial applications by: employing prompt-engineered LLMs to generate executable alpha factor candidates across diverse financial data, implementing multimodal agent-based evaluation that filters factors based on market status, predictive quality while maintaining category balance, and deploying dynamic weight optimization that adapts to market conditions. Experimental results demonstrate the robust performance of the strategy in Chinese & US market regimes compared to established benchmarks. Our work extends LLMs capabilities to quantitative trading, providing a scalable architecture for financial signal extraction and portfolio construction. The overall framework significantly outperforms all benchmarks with 53.17% cumulative return on SSE50 (Jan 2023 to Jan 2024), demonstrating superior risk-adjusted performance and downside protection on the market.
📅 2025-11-03
Graph Chain-of-Thought (Graph-CoT) enables large language models (LLMs) to perform step-by-step reasoning over graph-structured knowledge, but existing pipelines suffer from low accuracy, excessive token usage, high latency, and low throughput due to single-agent monolithic prompts, repeated context re-encoding, and inefficient serving execution. We present GLM, the first multi-agent Graph-CoT system co-designed with an optimized LLM serving architecture. GLM decomposes reasoning into specialized agents for classification, reasoning, action generation, and graph retrieval, enabling branching and selective context sharing to reduce prompt length and reasoning iterations while preserving reasoning quality, thereby improving accuracy and reducing overall token consumption. To scale inference, we introduce a Graph-CoT-aware LLM inference mechanism with graph-specific KV-cache management, priority-based eviction, and pipelined execution to improve serving efficiency. Experiments demonstrate that GLM improves answer accuracy by up to 38%, reduces token cost by up to 95.7%, lowers inference latency by 90.3%, and achieves up to 15.1x higher throughput compared to state-of-the-art Graph-CoT baselines, enabling efficient adoption for complex real-world reasoning at scale.
📅 2025-11-03
Configuration tuning is critical for database performance. Although recent advancements in database tuning have shown promising results in throughput and latency improvement, challenges remain. First, the vast knob space makes direct optimization unstable and slow to converge. Second, reinforcement learning pipelines often lack effective warm-start guidance and require long offline training. Third, transferability is limited: when hardware or workloads change, existing models typically require substantial retraining to recover performance. To address these limitations, we propose L2T-Tune, a new LLM-guided hybrid database tuning framework that features a three-stage pipeline: Stage one performs a warm start that simultaneously generates uniform samples across the knob space and logs them into a shared pool; Stage two leverages a large language model to mine and prioritize tuning hints from manuals and community documents for rapid convergence. Stage three uses the warm-start sample pool to reduce the dimensionality of knobs and state features, then fine-tunes the configuration with the Twin Delayed Deep Deterministic Policy Gradient algorithm. We conduct experiments on L2T-Tune and the state-of-the-art models. Compared with the best-performing alternative, our approach improves performance by an average of 37.1% across all workloads, and by up to 73% on TPC-C. Compared with models trained with reinforcement learning, it achieves rapid convergence in the offline tuning stage on a single server. Moreover, during the online tuning stage, it only takes 30 steps to achieve best results.
📅 2025-11-03
Text-based automated Cognitive Distortion detection is a challenging task due to its subjective nature, with low agreement scores observed even among expert human annotators, leading to unreliable annotations. We explore the use of Large Language Models (LLMs) as consistent and reliable annotators, and propose that multiple independent LLM runs can reveal stable labeling patterns despite the inherent subjectivity of the task. Furthermore, to fairly compare models trained on datasets with different characteristics, we introduce a dataset-agnostic evaluation framework using Cohen's kappa as an effect size measure. This methodology allows for fair cross-dataset and cross-study comparisons where traditional metrics like F1 score fall short. Our results show that GPT-4 can produce consistent annotations (Fleiss's Kappa = 0.78), resulting in improved test set performance for models trained on these annotations compared to those trained on human-labeled data. Our findings suggest that LLMs can offer a scalable and internally consistent alternative for generating training data that supports strong downstream performance in subjective NLP tasks.
📅 2025-11-03
Translating a morphology-rich, low-resource language like Latin poses significant challenges. This paper introduces a reproducible draft-based refinement pipeline that elevates open-source Large Language Models (LLMs) to a performance level statistically comparable to top-tier proprietary systems. Our method first uses a fine-tuned NLLB-1.3B model to generate a high-quality, structurally faithful draft. A zero-shot LLM (Llama-3.3 or Qwen3) then polishes this draft, a process that can be further enhanced by augmenting the context with retrieved out-context examples (RAG). We demonstrate the robustness of this approach on two distinct benchmarks: a standard in-domain test set (Rosenthal, 2023) and a new, challenging out-of-domain (OOD) set of 12th-century Latin letters (2025). Our central finding is that this open-source RAG system achieves performance statistically comparable to the GPT-5 baseline, without any task-specific LLM fine-tuning. We release the pipeline, the Chartres OOD set, and evaluation scripts and models to facilitate replicability and further research.
📅 2025-11-03
High-definition map transformations are essential in autonomous driving systems, enabling interoperability across tools. Ensuring their semantic correctness is challenging, since existing rule-based frameworks rely on manually written formulas and domain-specific functions, limiting scalability. In this paper, We present an LLM-assisted pipeline that jointly generates logical formulas and corresponding executable predicates within a computational FOL framework, extending the map verifier in CommonRoad scenario designer with elevation support. The pipeline leverages prompt-based LLM generation to produce grammar-compliant rules and predicates that integrate directly into the existing system. We implemented a prototype and evaluated it on synthetic bridge and slope scenarios. The results indicate reduced manual engineering effort while preserving correctness, demonstrating the feasibility of a scalable, semi-automated human-in-the-loop approach to map-transformation verification.
📅 2025-11-03 | 💬 under review, 28 pages
Identifying the vulnerabilities of large language models (LLMs) is crucial for improving their safety by addressing inherent weaknesses. Jailbreaks, in which adversaries bypass safeguards with crafted input prompts, play a central role in red-teaming by probing LLMs to elicit unintended or unsafe behaviors. Recent optimization-based jailbreak approaches iteratively refine attack prompts by leveraging LLMs. However, they often rely heavily on either binary attack success rate (ASR) signals, which are sparse, or manually crafted scoring templates, which introduce human bias and uncertainty in the scoring outcomes. To address these limitations, we introduce AMIS (Align to MISalign), a meta-optimization framework that jointly evolves jailbreak prompts and scoring templates through a bi-level structure. In the inner loop, prompts are refined using fine-grained and dense feedback using a fixed scoring template. In the outer loop, the template is optimized using an ASR alignment score, gradually evolving to better reflect true attack outcomes across queries. This co-optimization process yields progressively stronger jailbreak prompts and more calibrated scoring signals. Evaluations on AdvBench and JBB-Behaviors demonstrate that AMIS achieves state-of-the-art performance, including 88.0% ASR on Claude-3.5-Haiku and 100.0% ASR on Claude-4-Sonnet, outperforming existing baselines by substantial margins.
📅 2025-11-03 | 💬 25 pages
Large language models (LLMs) with integrated search tools show strong promise in open-domain question answering (QA), yet they often struggle to produce complete answer set to complex questions such as Which actor from the film Heat won at least one Academy Award?, which requires (1) distinguishing between multiple films sharing the same title and (2) reasoning across a large set of actors to gather and integrate evidence. Existing QA benchmarks rarely evaluate both challenges jointly. To address this, we introduce DeepAmbigQAGen, an automatic data generation pipeline that constructs QA tasks grounded in text corpora and linked knowledge graph, generating natural and verifiable questions that systematically embed name ambiguity and multi-step reasoning. Based on this, we build DeepAmbigQA, a dataset of 3,600 questions requiring multi-hop reasoning and half of them explicit name ambiguity resolving. Experiments reveal that, even state-of-the-art GPT-5 show incomplete answers, achieving only 0.13 exact match on ambiguous questions and 0.21 on non-ambiguous questions. These findings highlight the need for more robust QA systems aimed at information gathering and answer completeness.
📅 2025-11-03
Feature attribution methods help make machine learning-based inference explainable by determining how much one or several features have contributed to a model's output. A particularly popular attribution method is based on the Shapley value from cooperative game theory, a measure that guarantees the satisfaction of several desirable principles, assuming deterministic inference. We apply the Shapley value to feature attribution in large language model (LLM)-based decision support systems, where inference is, by design, stochastic (non-deterministic). We then demonstrate when we can and cannot guarantee Shapley value principle satisfaction across different implementation variants applied to LLM-based decision support, and analyze how the stochastic nature of LLMs affects these guarantees. We also highlight trade-offs between explainable inference speed, agreement with exact Shapley value attributions, and principle attainment.
📅 2025-11-03 | 💬 10 pages
This paper investigates the impact of domain specificity on abstractive summarisation of Arabic financial texts using large language models (LLMs). We introduce AraFinNews, the largest publicly available Arabic financial news dataset to date, comprising 212,500 article-headline pairs spanning nearly a decade of reporting from October 2015 to July 2025. Designed as the Arabic equivalent of major English summarisation corpora such as CNN/DailyMail, AraFinNews provides a robust benchmark for evaluating domain-specific language understanding and generation in financial contexts. Using this resource, we evaluate transformer-based models -- including mT5, AraT5, and the domain-adapted FinAraT5 -- to examine how financial-domain pretraining influences factual accuracy, numerical reliability, and stylistic alignment with professional reporting. Experimental results show that domain-adapted models generate more faithful and coherent summaries, particularly in handling quantitative and entity-centric information. The findings highlight the importance of domain-specific adaptation for improving factual consistency and narrative fluency in Arabic financial summarisation. The dataset is freely available for non-commercial research at https://github.com/ArabicNLP-UK/AraFinNews.
📅 2025-11-03
In modern software ecosystems, 1-day vulnerabilities pose significant security risks due to extensive code reuse. Identifying vulnerable functions in target binaries alone is insufficient; it is also crucial to determine whether these functions have been patched. Existing methods, however, suffer from limited usability and accuracy. They often depend on the compilation process to extract features, requiring substantial manual effort and failing for certain software. Moreover, they cannot reliably differentiate between code changes caused by patches or compilation variations. To overcome these limitations, we propose Lares, a scalable and accurate method for patch presence testing. Lares introduces Code Slice Semantic Search, which directly extracts features from the patch source code and identifies semantically equivalent code slices in the pseudocode of the target binary. By eliminating the need for the compilation process, Lares improves usability, while leveraging large language models (LLMs) for code analysis and SMT solvers for logical reasoning to enhance accuracy. Experimental results show that Lares achieves superior precision, recall, and usability. Furthermore, it is the first work to evaluate patch presence testing across optimization levels, architectures, and compilers. The datasets and source code used in this article are available at https://github.com/Siyuan-Li201/Lares.