Skip to the content.

llm - 2025_12

Home / Papers / llm

Papers

📅 2025-12-01
A large amount of work has been done in Multi-Agent Systems (MAS) for modeling and solving problems with multiple interacting agents. However, most LLMs are pretrained independently and not specifically optimized for coordination. Existing LLM fine-tuning frameworks rely on individual rewards, which require complex reward designs for each agent to encourage collaboration. To address these challenges, we model LLM collaboration as a cooperative Multi-Agent Reinforcement Learning (MARL) problem. We develop a multi-agent, multi-turn algorithm, Multi-Agent Group Relative Policy Optimization (MAGRPO), to solve it, building on current RL approaches for LLMs as well as MARL techniques. Our experiments on LLM writing and coding collaboration demonstrate that fine-tuning MAS with MAGRPO enables agents to generate high-quality responses efficiently through effective cooperation. Our approach opens the door to using other MARL methods for LLMs and highlights the associated challenges. Our code is available at https://github.com/OpenMLRL/CoMLRL.
📅 2025-12-01 | 💬 3 figures
Traditional Chinese Medicine (TCM) theory is built on imagistic thinking, in which medical principles and diagnostic and therapeutic logic are structured through metaphor and metonymy. However, existing English translations largely rely on literal rendering, making it difficult for target-language readers to reconstruct the underlying conceptual networks and apply them in clinical practice. This study adopted a human-in-the-loop (HITL) framework and selected four passages from the medical canon Huangdi Neijing that are fundamental in theory. Through prompt-based cognitive scaffolding, DeepSeek V3.1 was guided to identify metaphor and metonymy in the source text and convey the theory in translation. In the evaluation stage, ChatGPT 5 Pro and Gemini 2.5 Pro were instructed by prompts to simulate three types of real-world readers. Human translations, baseline model translations, and prompt-adjusted translations were scored by the simulated readers across five cognitive dimensions, followed by structured interviews and Interpretative Phenomenological Analysis (IPA). Results show that the prompt-adjusted LLM translations perform best across all five dimensions, with high cross-model and cross-role consistency. The interview themes reveal differences between human and machine translation, effective strategies for metaphor and metonymy transfer, and readers' cognitive preferences. This study provides a cognitive, efficient, and replicable HITL methodological pathway for the translation of ancient, concept-dense texts such as TCM.
📅 2025-12-01
Path planning in grid maps, arising from various applications, has garnered significant attention. Existing methods, such as A*, Dijkstra, and their variants, work well for small-scale maps but fail to address large-scale ones due to high search time and memory consumption. Recently, Large Language Models (LLMs) have shown remarkable performance in path planning but still suffer from spatial illusion and poor planning performance. Among all the works, LLM-A* \cite{meng2024llm} leverages LLM to generate a series of waypoints and then uses A* to plan the paths between the neighboring waypoints. In this way, the complete path is constructed. However, LLM-A* still suffers from high computational time for large-scale maps. To fill this gap, we conducted a deep investigation into LLM-A* and found its bottleneck, resulting in limited performance. Accordingly, we design an innovative LLM-enhanced algorithm, abbr. as iLLM-A*. iLLM-A* includes 3 carefully designed mechanisms, including the optimization of A*, an incremental learning method for LLM to generate high-quality waypoints, and the selection of the appropriate waypoints for A* for path planning. Finally, a comprehensive evaluation on various grid maps shows that, compared with LLM-A*, iLLM-A* \textbf{1) achieves more than $1000\times$ speedup on average, and up to $2349.5\times$ speedup in the extreme case, 2) saves up to $58.6\%$ of the memory cost, 3) achieves both obviously shorter path length and lower path length standard deviation.}
📅 2025-12-01 | 💬 Accepted to NeurIPS 2025 Main Track
The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.
📅 2025-12-01 | 💬 Accepted to IEEE TALE 2025
The rise of artificial intelligence (AI) technologies, particularly large language models (LLMs), has brought significant advancements to the field of education. Among various applications, automatic short answer grading (ASAG), which focuses on evaluating open-ended textual responses, has seen remarkable progress with the introduction of LLMs. These models not only enhance grading performance compared to traditional ASAG approaches but also move beyond simple comparisons with predefined "golden" answers, enabling more sophisticated grading scenarios, such as rubric-based evaluation. However, existing LLM-powered methods still face challenges in achieving human-level grading performance in rubric-based assessments due to their reliance on fully automated approaches. In this work, we explore the potential of LLMs in ASAG tasks by leveraging their interactive capabilities through a human-in-the-loop (HITL) approach. Our proposed framework, GradeHITL, utilizes the generative properties of LLMs to pose questions to human experts, incorporating their insights to refine grading rubrics dynamically. This adaptive process significantly improves grading accuracy, outperforming existing methods and bringing ASAG closer to human-level evaluation.
📅 2025-12-01
Large language models (LLMs) now mediate many web-based mental-health, crisis, and other emotionally sensitive services, yet their psychosocial safety in these settings remains poorly understood and weakly evaluated. We present DialogGuard, a multi-agent framework for assessing psychosocial risks in LLM-generated responses along five high-severity dimensions: privacy violations, discriminatory behaviour, mental manipulation, psychological harm, and insulting behaviour. DialogGuard can be applied to diverse generative models through four LLM-as-a-judge pipelines, including single-agent scoring, dual-agent correction, multi-agent debate, and stochastic majority voting, grounded in a shared three-level rubric usable by both human annotators and LLM judges. Using PKU-SafeRLHF with human safety annotations, we show that multi-agent mechanisms detect psychosocial risks more accurately than non-LLM baselines and single-agent judging; dual-agent correction and majority voting provide the best trade-off between accuracy, alignment with human ratings, and robustness, while debate attains higher recall but over-flags borderline cases. We release Dialog-Guard as open-source software with a web interface that provides per-dimension risk scores and explainable natural-language rationales. A formative study with 12 practitioners illustrates how it supports prompt design, auditing, and supervision of web-facing applications for vulnerable users.
📅 2025-12-01
Prefill and decode (PD) disaggregation separates prompt prefill and token-by-token decode stages into distinct GPU pools and has become the dominant architecture for large-scale LLM serving in industry. Also, retrieval tasks via vector search remains entangled with the model inference process, like heterogeneous RAG requests and prompt answer caches, inflating tail latency. We are motivated to investigate how vector search should be orchestrated along with PD disaggregation with a dedicated deployment architecture without violating SLOs in various retrieval workloads. We present Trinity, a practical framework that consolidates all retrieval into a single, shared vector-search GPU pool and make it work with PD disaggregated LLM serving in match. Trinity introduces (1) a novel architecture for deploying GPU-based vector search service in PD disaggregation. (2) Continuous batching for vector search that make full used of GPUs under heterogeneous queries; (3) Stage-aware scheduling that preempts vector search requests between both decode and prefill tasks.
📅 2025-12-01
We present a case study of Persona-L, a system that leverages large language models (LLMs) and retrieval-augmented generation (RAG) to model personas of people with Down syndrome. Existing approaches to persona creation can often lead to oversimplified or stereotypical profiles of people with Down Syndrome. To that end, we built stereotype detection capabilities into Persona-L. Through interviews with caregivers and healthcare professionals (N=10), we examine how Down Syndrome stereotypes could manifest in both, content and delivery of LLMs, and interface design. Our findings show the challenges in stereotypes definition, and reveal the potential stereotype emergence from the training data, interface design, and the tone of LLM output. This highlights the need for participatory methods that capture the heterogeneity of lived experiences of people with Down Syndrome.
📅 2025-12-01 | 💬 NeurIPS 2025
Scaling laws for large language models (LLMs) predict model performance based on parameters like size and training data. However, differences in training configurations and data processing across model families lead to significant variations in benchmark performance, making it difficult for a single scaling law to generalize across all LLMs. On the other hand, training family-specific scaling laws requires training models of varying sizes for every family. In this work, we propose Skills Scaling Laws (SSLaws, pronounced as Sloth), a novel scaling law that leverages publicly available benchmark data and assumes LLM performance is driven by low-dimensional latent skills, such as reasoning and instruction following. These latent skills are influenced by computational resources like model size and training tokens, but with varying efficiencies across model families. Sloth exploits correlations across benchmarks to provide more accurate and interpretable predictions while alleviating the need to train multiple LLMs per family. We present both theoretical results on parameter identification and empirical evaluations on 12 prominent benchmarks, from Open LLM Leaderboard v1/v2, demonstrating that Sloth predicts LLM performance accurately and offers insights into scaling behaviors for complex downstream tasks, increased test-time compute, and compute-optimal scaling of skills.
📅 2025-12-01 | 💬 NeurIPS 2025
Large language models are increasingly used as judges (LLM-as-a-judge) to evaluate model outputs at scale, but their assessments often diverge systematically from human judgments. We present Bridge, a unified statistical framework that explicitly bridges human and LLM evaluations under both absolute scoring and pairwise comparison paradigms. Bridge posits a latent human preference score for each prompt-response pair and models LLM deviations as linear transformations of covariates that capture sources of discrepancies. This offers a simple and principled framework for refining LLM ratings and characterizing systematic discrepancies between humans and LLMs. We provide an efficient fitting algorithm with asymptotic guarantees for statistical inference. Using six LLM judges and two benchmarks (BigGen Bench and Chatbot Arena), Bridge achieves higher agreement with human ratings (accuracy, calibration, and KL divergence) and exposes systematic human-LLM gaps.
📅 2025-12-01
LLM-based trading agents are increasingly deployed in real-world financial markets to perform autonomous analysis and execution. However, their reliability and robustness under adversarial or faulty conditions remain largely unexamined, despite operating in high-risk, irreversible financial environments. We propose TradeTrap, a unified evaluation framework for systematically stress-testing both adaptive and procedural autonomous trading agents. TradeTrap targets four core components of autonomous trading agents: market intelligence, strategy formulation, portfolio and ledger handling, and trade execution, and evaluates their robustness under controlled system-level perturbations. All evaluations are conducted in a closed-loop historical backtesting setting on real US equity market data with identical initial conditions, enabling fair and reproducible comparisons across agents and attacks. Extensive experiments show that small perturbations at a single component can propagate through the agent decision loop and induce extreme concentration, runaway exposure, and large portfolio drawdowns across both agent types, demonstrating that current autonomous trading agents can be systematically misled at the system level. Our code is available at https://github.com/Yanlewen/TradeTrap.
📅 2025-12-01
Humans organize knowledge into compact conceptual categories that balance compression with semantic richness. Large Language Models (LLMs) exhibit impressive linguistic abilities, but whether they navigate this same compression-meaning trade-off remains unclear. We apply an Information Bottleneck framework to compare human conceptual structure with embeddings from 40+ LLMs using classic categorization benchmarks. We find that LLMs broadly align with human category boundaries, yet fall short on fine-grained semantic distinctions. Unlike humans, who maintain ``inefficient'' representations that preserve contextual nuance, LLMs aggressively compress, achieving more optimal information-theoretic compression at the cost of semantic richness. Surprisingly, encoder models outperform much larger decoder models in human alignment, suggesting that understanding and generation rely on distinct representational mechanisms. Training-dynamics analysis reveals a two-phase trajectory: rapid initial concept formation followed by architectural reorganization, during which semantic processing migrates from deep to mid-network layers as the model discovers increasingly efficient, sparser encodings. These divergent strategies, where LLMs optimize for compression and humans for adaptive utility, reveal fundamental differences between artificial and natural intelligence. This highlights the need for models that preserve the conceptual ``inefficiencies'' essential for human-like understanding.