Skip to the content.

llm - 2025_03

Home / Papers / llm

Papers

📅 2025-03-05 | 💬 6 pages without appendices and references, 12 pages total, 3 figures, poster at CHI 2025. arXiv admin note: text overlap with arXiv:2501.16033
Protecting online privacy requires users to engage with and comprehend website privacy policies, but many policies are difficult and tedious to read. We present the first qualitative user study on Large Language Model (LLM)-driven privacy policy assessment. To this end, we build and evaluate an LLM-based privacy policy assessment browser extension, which helps users understand the essence of a lengthy, complex privacy policy while browsing. The tool integrates a dashboard and an LLM chat. In our qualitative user study (N=22), we evaluate usability, understandability of the information our tool provides, and its impacts on awareness. While providing a comprehensible quick overview and a chat for in-depth discussion improves privacy awareness, users note issues with building trust in the tool. From our insights, we derive important design implications to guide future policy analysis tools.
📅 2025-03-05
Large Language Models (LLMs) have shown promise in software vulnerability detection, particularly on function-level benchmarks like Devign and BigVul. However, real-world detection requires interprocedural analysis, as vulnerabilities often emerge through multi-hop function calls rather than isolated functions. While repository-level benchmarks like ReposVul and VulEval introduce interprocedural context, they remain computationally expensive, lack pairwise evaluation of vulnerability fixes, and explore limited context retrieval, limiting their practicality. We introduce JitVul, a JIT vulnerability detection benchmark linking each function to its vulnerability-introducing and fixing commits. Built from 879 CVEs spanning 91 vulnerability types, JitVul enables comprehensive evaluation of detection capabilities. Our results show that ReAct Agents, leveraging thought-action-observation and interprocedural context, perform better than LLMs in distinguishing vulnerable from benign code. While prompting strategies like Chain-of-Thought help LLMs, ReAct Agents require further refinement. Both methods show inconsistencies, either misidentifying vulnerabilities or over-analyzing security guards, indicating significant room for improvement.
📅 2025-03-05
The rapid development of Large Language Models (LLMs) has brought significant advancements across various tasks. However, despite these achievements, LLMs still exhibit inherent safety vulnerabilities, especially when confronted with jailbreak attacks. Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization, which lead to low attack success rate (ASR) and attack efficiency (AE). In this work, we propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content, revealing their underlying safety vulnerabilities during complex reasoning process. We conduct comprehensive experiments on ABJ across various open-source and closed-source LLMs. In particular, ABJ achieves high ASR (82.1% on GPT-4o-2024-11-20) with exceptional AE among all target LLMs, showcasing its remarkable attack effectiveness, transferability, and efficiency. Our findings underscore the urgent need to prioritize and improve the safety of LLMs to mitigate the risks of misuse.
📅 2025-03-05 | 💬 Will add a lemma in the proof of Theorem 5.3 to make the statement and proof more rigorous
Large Language Model (LLM) inference, where a trained model generates text one word at a time in response to user prompts, is a computationally intensive process requiring efficient scheduling to optimize latency and resource utilization. A key challenge in LLM inference is the management of the Key-Value (KV) cache, which reduces redundant computations but introduces memory constraints. In this work, we model LLM inference with KV cache constraints theoretically and propose novel batching and scheduling algorithms that minimize inference latency while effectively managing the KV cache's memory. We analyze both semi-online and fully online scheduling models, and our results are threefold. First, we provide a polynomial-time algorithm that achieves exact optimality in terms of average latency in the semi-online prompt arrival model. Second, in the fully online case with a stochastic prompt arrival, we introduce an efficient online scheduling algorithm with constant regret. Third, we prove that no algorithm (deterministic or randomized) can achieve a constant competitive ratio in fully online adversarial settings. Our empirical evaluations on a public LLM inference dataset, using the Llama-70B model on A100 GPUs, show that our approach significantly outperforms benchmark algorithms used currently in practice, achieving lower latency while reducing energy consumption. Overall, our results offer a path toward more sustainable and cost-effective LLM deployment.
📅 2025-03-05
Recent advancements in Large Language Model(LLM)-based Multi-Agent Systems(MAS) have demonstrated remarkable potential for tackling complex decision-making tasks. However, existing frameworks inevitably rely on serialized execution paradigms, where agents must complete sequential LLM planning before taking action. This fundamental constraint severely limits real-time responsiveness and adaptation, which is crucial in dynamic environments with ever-changing scenarios. In this paper, we propose a novel parallelized planning-acting framework for LLM-based MAS, featuring a dual-thread architecture with interruptible execution to enable concurrent planning and acting. Specifically, our framework comprises two core threads:(1) a planning thread driven by a centralized memory system, maintaining synchronization of environmental states and agent communication to support dynamic decision-making; and (2) an acting thread equipped with a comprehensive skill library, enabling automated task execution through recursive decomposition. Extensive experiments on challenging Minecraft demonstrate the effectiveness of the proposed framework.
📅 2025-03-05
Molecular optimization is a crucial yet complex and time-intensive process that often acts as a bottleneck for drug development. Traditional methods rely heavily on trial and error, making multi-objective optimization both time-consuming and resource-intensive. Current AI-based methods have shown limited success in handling multi-objective optimization tasks, hampering their practical utilization. To address this challenge, we present MultiMol, a collaborative large language model (LLM) system designed to guide multi-objective molecular optimization. MultiMol comprises two agents, including a data-driven worker agent and a literature-guided research agent. The data-driven worker agent is a large language model being fine-tuned to learn how to generate optimized molecules considering multiple objectives, while the literature-guided research agent is responsible for searching task-related literature to find useful prior knowledge that facilitates identifying the most promising optimized candidates. In evaluations across six multi-objective optimization tasks, MultiMol significantly outperforms existing methods, achieving a 82.30% success rate, in sharp contrast to the 27.50% success rate of current strongest methods. To further validate its practical impact, we tested MultiMol on two real-world challenges. First, we enhanced the selectivity of Xanthine Amine Congener (XAC), a promiscuous ligand that binds both A1R and A2AR, successfully biasing it towards A1R. Second, we improved the bioavailability of Saquinavir, an HIV-1 protease inhibitor with known bioavailability limitations. Overall, these results indicate that MultiMol represents a highly promising approach for multi-objective molecular optimization, holding great potential to accelerate the drug development process and contribute to the advancement of pharmaceutical research.
📅 2025-03-05 | 💬 18 pages
Large language models (LLMs) have recently demonstrated remarkable capabilities across domains, tasks, and languages (e.g., ChatGPT and GPT-4), reviving the research of general autonomous agents with human-like cognitive abilities.Such human-level agents require semantic comprehension and instruction-following capabilities, which exactly fall into the strengths of LLMs.Although there have been several initial attempts to build human-level agents based on LLMs, the theoretical foundation remains a challenging open problem. In this paper, we propose a novel theoretical cognitive architecture, the Unified Mind Model (UMM), which offers guidance to facilitate the rapid creation of autonomous agents with human-level cognitive abilities. Specifically, our UMM starts with the global workspace theory and further leverage LLMs to enable the agent with various cognitive abilities, such as multi-modal perception, planning, reasoning, tool use, learning, memory, reflection and motivation. Building upon UMM, we then develop an agent-building engine, MindOS, which allows users to quickly create domain-/task-specific autonomous agents without any programming effort.
📅 2025-03-05
LLM test-time compute (or LLM inference) via search has emerged as a promising research area with rapid developments. However, current frameworks often adopt distinct perspectives on three key aspects (task definition, LLM profiling, and search procedures), making direct comparisons challenging. Moreover, the search algorithms employed often diverge from standard implementations, and their specific characteristics are not thoroughly specified. In this survey, we provide a comprehensive technical review that unifies task definitions and provides modular definitions of LLM profiling and search procedures. The definitions enable precise comparisons of various LLM inference frameworks while highlighting their departures from conventional search algorithms. We also discuss the applicability, performance, and efficiency of these methods. We have updated our content to include the latest papers, and the differences between versions are highlighted in the appendix. For further details and ongoing updates, please refer to our GitHub repository: https://github.com/xinzhel/LLM-Agent-Survey/blob/main/search.md
📅 2025-03-05
The rise of LLMs has deflected a growing portion of human-computer interactions towards LLM-based chatbots. The remarkable abilities of these models allow users to interact using long, diverse natural language text covering a wide range of topics and styles. Phrasing these messages is a time and effort consuming task, calling for an autocomplete solution to assist users. We introduce the task of chatbot interaction autocomplete. We present ChaI-TeA: CHat InTEraction Autocomplete; An autcomplete evaluation framework for LLM-based chatbot interactions. The framework includes a formal definition of the task, coupled with suitable datasets and metrics. We use the framework to evaluate After formally defining the task along with suitable datasets and metrics, we test 9 models on the defined auto completion task, finding that while current off-the-shelf models perform fairly, there is still much room for improvement, mainly in ranking of the generated suggestions. We provide insights for practitioners working on this task and open new research directions for researchers in the field. We release our framework to serve as a foundation for future research.
📅 2025-03-05
Recent progress in Large Language Models (LLMs) has drawn attention to their potential for accelerating drug discovery. However, a central problem remains: translating theoretical ideas into robust implementations in the highly specialized context of pharmaceutical research. This limitation prevents practitioners from making full use of the latest AI developments in drug discovery. To address this challenge, we introduce DrugAgent, a multi-agent framework that automates machine learning (ML) programming for drug discovery tasks. DrugAgent employs an LLM Planner that formulates high-level ideas and an LLM Instructor that identifies and integrates domain knowledge when implementing those ideas. We present case studies on three representative drug discovery tasks. Our results show that DrugAgent consistently outperforms leading baselines, including a relative improvement of 4.92% in ROC-AUC compared to ReAct for drug-target interaction (DTI). DrugAgent is publicly available at https://anonymous.4open.science/r/drugagent-5C42/.
📅 2025-03-05
Theory-of-Mind (ToM), the ability to infer others' perceptions and mental states, is fundamental to human interaction but remains a challenging task for Large Language Models (LLMs). While existing ToM reasoning methods show promise with reasoning via perceptual perspective-taking, they often rely excessively on LLMs, reducing their efficiency and limiting their applicability to high-order ToM reasoning, which requires multi-hop reasoning about characters' beliefs. To address these issues, we present EnigmaToM, a novel neuro-symbolic framework that enhances ToM reasoning by integrating a Neural Knowledge Base of entity states (Enigma) for (1) a psychology-inspired iterative masking mechanism that facilitates accurate perspective-taking and (2) knowledge injection that elicits key entity information. Enigma generates structured representations of entity states, which construct spatial scene graphs -- leveraging spatial information as an inductive bias -- for belief tracking of various ToM orders and enhancing events with fine-grained entity state details. Experimental results on multiple benchmarks, including ToMi, HiToM, and FANToM, show that EnigmaToM significantly improves ToM reasoning across LLMs of varying sizes, particularly excelling in high-order reasoning scenarios.
📅 2025-03-05
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.
📅 2025-03-05 | 💬 The 40th ACM/SIGAPP Symposium On Applied Computing
In education, the capability of generating human-like text of Large Language Models (LLMs) inspired work on how they can increase the efficiency of learning and teaching. We study the affordability of these models for educators and students by investigating how LLMs answer multiple-choice questions (MCQs) with respect to hardware constraints and refinement techniques. We explore this space by using generic pre-trained LLMs (the 7B, 13B, and 70B variants of LLaMA-2) to answer 162 undergraduate-level MCQs from a course on Programming Languages (PL) -- the MCQ dataset is a contribution of this work, which we make publicly available. Specifically, we dissect how different factors, such as using readily-available material -- (parts of) the course's textbook -- for fine-tuning and quantisation (to decrease resource usage) can change the accuracy of the responses. The main takeaway is that smaller textbook-based fine-tuned models outperform generic larger ones (whose pre-training requires conspicuous resources), making the usage of LLMs for answering MCQs resource- and material-wise affordable.
📅 2025-03-05 | 💬 22 pages
Effectively incorporating external knowledge into Large Language Models (LLMs) is crucial for enhancing their capabilities and addressing real-world needs. Retrieval-Augmented Generation (RAG) offers an effective method for achieving this by retrieving the most relevant fragments into LLMs. However, the advancements in context window size for LLMs offer an alternative approach, raising the question of whether RAG remains necessary for effectively handling external knowledge. Several existing studies provide inconclusive comparisons between RAG and long-context (LC) LLMs, largely due to limitations in the benchmark designs. In this paper, we present LaRA, a novel benchmark specifically designed to rigorously compare RAG and LC LLMs. LaRA encompasses 2326 test cases across four practical QA task categories and three types of naturally occurring long texts. Through systematic evaluation of seven open-source and four proprietary LLMs, we find that the optimal choice between RAG and LC depends on a complex interplay of factors, including the model's parameter size, long-text capabilities, context length, task type, and the characteristics of the retrieved chunks. Our findings provide actionable guidelines for practitioners to effectively leverage both RAG and LC approaches in developing and deploying LLM applications. Our code and dataset is provided at: \href{https://github.com/Alibaba-NLP/LaRA}{\textbf{https://github.com/Alibaba-NLP/LaRA}}.
📅 2025-03-05
Large language models (LLMs) can perform various natural language processing (NLP) tasks through in-context learning without relying on supervised data. However, multiple previous studies have reported suboptimal performance of LLMs in biological text mining. By analyzing failure patterns in these evaluations, we identified three primary challenges for LLMs in biomedical corpora: (1) LLMs fail to learn implicit dataset-specific nuances from supervised data, (2) The common formatting requirements of discriminative tasks limit the reasoning capabilities of LLMs particularly for LLMs that lack test-time compute, and (3) LLMs struggle to adhere to annotation guidelines and match exact schemas, which hinders their ability to understand detailed annotation requirements which is essential in biomedical annotation workflow. To address these challenges, we experimented with prompt engineering techniques targeted to the above issues, and developed a pipeline that dynamically extracts instructions from annotation guidelines. Our findings show that frontier LLMs can approach or surpass the performance of state-of-the-art (SOTA) BERT-based models with minimal reliance on manually annotated data and without fine-tuning. Furthermore, we performed model distillation on a closed-source LLM, demonstrating that a BERT model trained exclusively on synthetic data annotated by LLMs can also achieve a practical performance. Based on these results, we explored the feasibility of partially replacing manual annotation with LLMs in production scenarios for biomedical text mining.
📅 2025-03-05
Video temporal grounding aims to localize relevant temporal boundaries in a video given a textual prompt. Recent work has focused on enabling Video LLMs to perform video temporal grounding via next-token prediction of temporal timestamps. However, accurately localizing timestamps in videos remains challenging for Video LLMs when relying solely on temporal token prediction. Our proposed TimeRefine addresses this challenge in two ways. First, instead of directly predicting the start and end timestamps, we reformulate the temporal grounding task as a temporal refining task: the model first makes rough predictions and then refines them by predicting offsets to the target segment. This refining process is repeated multiple times, through which the model progressively self-improves its temporal localization accuracy. Second, to enhance the model's temporal perception capabilities, we incorporate an auxiliary prediction head that penalizes the model more if a predicted segment deviates further from the ground truth, thus encouraging the model to make closer and more accurate predictions. Our plug-and-play method can be integrated into most LLM-based temporal grounding approaches. The experimental results demonstrate that TimeRefine achieves 3.6% and 5.0% mIoU improvements on the ActivityNet and Charades-STA datasets, respectively. Code and pretrained models will be released.
📅 2025-03-05 | 💬 added project repository & dataset URL
Personalized product search aims to retrieve and rank items that match users' preferences and search intent. Despite their effectiveness, existing approaches typically assume that users' query fully captures their real motivation. However, our analysis of a real-world e-commerce platform reveals that users often engage in relevant consultations before searching, indicating they refine intents through consultations based on motivation and need. The implied motivation in consultations is a key enhancing factor for personalized search. This unexplored area comes with new challenges including aligning contextual motivations with concise queries, bridging the category-text gap, and filtering noise within sequence history. To address these, we propose a Motivation-Aware Personalized Search (MAPS) method. It embeds queries and consultations into a unified semantic space via LLMs, utilizes a Mixture of Attention Experts (MoAE) to prioritize critical semantics, and introduces dual alignment: (1) contrastive learning aligns consultations, reviews, and product features; (2) bidirectional attention integrates motivation-aware embeddings with user preferences. Extensive experiments on real and synthetic data show MAPS outperforms existing methods in both retrieval and ranking tasks.
📅 2025-03-05 | 💬 12 pages, 1 figure, 3 tables, 4 prompt/data templates
Recent advances in Large Language Models (LLMs) have raised interest in their formal reasoning capabilities, particularly in mathematics. While closed LLMs like GPT-4 perform well on mathematical benchmarks, e.g., GSM8K, it remains unclear whether small to medium-sized open LLMs can achieve similar performance, questioning their reliability. To close this gap, we propose a post-training approach leveraging a mixture of opinions (MoO) from weaker ancillary LLMs to enhance a (relatively) stronger LLM's reasoning. For that, each post-training sample is augmented with Chain-of-Thought (CoT) reasoning steps and answers from ancillary LLMs, enabling the main LLM to learn from diverse perspectives. We compare MoO with standard supervised fine-tuning (SFT), few-shot prompting, and the Mixture of Agents (MoA) method on mathematical reasoning benchmarks. Our results show that incorporating weaker LLMs' opinions improves mathematical reasoning by an average of 5%, highlighting the value of diverse perspectives in reasoning tasks.
📅 2025-03-05
The advent of large language models (LLMs) has greatly advanced artificial intelligence (AI) in software engineering (SE), with code embeddings playing a critical role in tasks like code-clone detection and code clustering. However, existing methods for code embedding, including those based on LLMs, often depend on costly supervised training or fine-tuning for domain adaptation. This paper proposes a novel zero-shot approach, zsLLMCode, to generate code embeddings by using LLMs and sentence embedding models. This approach attempts to eliminate the need for task-specific training or fine-tuning, and to effectively address the issue of erroneous information commonly found in LLM-generated outputs. We conducted a series of experiments to evaluate the performance of the proposed approach by considering various LLMs and embedding models. The results have demonstrated the effectiveness and superiority of our method zsLLMCode over state-of-the-art unsupervised approaches such as SourcererCC, Code2vec, InferCode, and TransformCode. Our findings highlight the potential of zsLLMCode to advance the field of SE by providing robust and efficient solutions for code embedding tasks.
📅 2025-03-05
Medical question-answering (QA) is a critical task for evaluating how effectively large language models (LLMs) encode clinical knowledge and assessing their potential applications in medicine. Despite showing promise on multiple-choice tests, LLMs frequently struggle with open-ended medical questions, producing responses with dangerous hallucinations or lacking comprehensive coverage of critical aspects. Existing approaches attempt to address these challenges through domain-specific fine-tuning, but this proves resource-intensive and difficult to scale across models. To improve the comprehensiveness and factuality of medical responses, we propose a novel approach utilizing structured medical reasoning. Our method guides LLMs through an seven-step cognitive process inspired by clinical diagnosis, enabling more accurate and complete answers without additional training. Experiments on the MedLFQA benchmark demonstrate that our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models. Notably, this improvement transfers to smaller models, highlighting the method's efficiency and scalability. Our code and datasets are available.
📅 2025-03-05
Ensuring the security of critical infrastructure has become increasingly vital with the proliferation of Internet of Things (IoT) systems. However, the heterogeneous nature of IoT data and the lack of human-comprehensible insights from anomaly detection models remain significant challenges. This paper presents a hybrid framework that combines numerical anomaly detection using Autoencoders with Large Language Models (LLMs) for enhanced preprocessing and interpretability. Two preprocessing approaches are implemented: a traditional method utilizing Principal Component Analysis (PCA) to reduce dimensionality and an LLM-assisted method where GPT-4 dynamically recommends feature selection, transformation, and encoding strategies. Experimental results on the KDDCup99 10% corrected dataset demonstrate that the LLM-assisted preprocessing pipeline significantly improves anomaly detection performance. The macro-average F1 score increased from 0.49 in the traditional PCA-based approach to 0.98 with LLM-driven insights. Additionally, the LLM generates natural language explanations for detected anomalies, providing contextual insights into their causes and implications. This framework highlights the synergy between numerical AI models and LLMs, delivering an accurate, interpretable, and efficient solution for IoT cybersecurity in critical infrastructure.
📅 2025-03-05 | 💬 Published as a conference paper at the International Conference on Learning Representations (ICLR 2025)
Large Language Models (LLMs) have made significant strides in natural language processing, and a precise understanding of the internal mechanisms driving their success is essential. In this work, we analyze the trajectories of token embeddings as they pass through transformer blocks, linearizing the system along these trajectories through their Jacobian matrices. By examining the relationships between these block Jacobians, we uncover the phenomenon of \textbf{transformer block coupling} in a multitude of LLMs, characterized by the coupling of their top singular vectors across tokens and depth. Our findings reveal that coupling \textit{positively correlates} with model performance, and that this relationship is stronger than with other hyperparameters such as parameter count, model depth, and embedding dimension. We further investigate how these properties emerge during training, observing a progressive development of coupling, increased linearity, and layer-wise exponential growth in token trajectories. Additionally, experiments with Vision Transformers (ViTs) corroborate the emergence of coupling and its relationship with generalization, reinforcing our findings in LLMs. Collectively, these insights offer a novel perspective on token interactions in transformers, opening new directions for studying their mechanisms as well as improving training and generalization.
📅 2025-03-05
Large language models (LLMs) have demonstrated remarkable proficiency in mainstream academic disciplines such as mathematics, physics, and computer science. However, human knowledge encompasses over 200 specialized disciplines, far exceeding the scope of existing benchmarks. The capabilities of LLMs in many of these specialized fields-particularly in light industry, agriculture, and service-oriented disciplines-remain inadequately evaluated. To address this gap, we present SuperGPQA, a comprehensive benchmark that evaluates graduate-level knowledge and reasoning capabilities across 285 disciplines. Our benchmark employs a novel Human-LLM collaborative filtering mechanism to eliminate trivial or ambiguous questions through iterative refinement based on both LLM responses and expert feedback. Our experimental results reveal significant room for improvement in the performance of current state-of-the-art LLMs across diverse knowledge domains (e.g., the reasoning-focused model DeepSeek-R1 achieved the highest accuracy of 61.82% on SuperGPQA), highlighting the considerable gap between current model capabilities and artificial general intelligence. Additionally, we present comprehensive insights from our management of a large-scale annotation process, involving over 80 expert annotators and an interactive Human-LLM collaborative system, offering valuable methodological guidance for future research initiatives of comparable scope.
📅 2025-03-05 | 💬 25 pages
Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).
📅 2025-03-05 | 💬 10 pages, 9 figures
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding: it asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
📅 2025-03-05
Recently, provenance-based intrusion detection systems (PIDSes) have been widely proposed for endpoint threat analysis. However, due to the lack of systematic integration and utilization of knowledge, existing PIDSes still require significant manual intervention for practical deployment, making full automation challenging. This paper presents a disruptive innovation by categorizing PIDSes according to the types of knowledge they utilize. In response to the prevalent issue of ``knowledge silos problem'' in existing research, we introduce a novel knowledge-driven provenance-based intrusion detection framework, powered by large language models (LLMs). We also present OmniSec, a best practice system built upon this framework. By integrating attack representation knowledge, threat intelligence knowledge, and benign behavior knowledge, OmniSec outperforms the state-of-the-art approaches on public benchmark datasets. OmniSec is available online at https://anonymous.4open.science/r/PIDS-with-LLM-613B.
📅 2025-03-05 | 💬 This work has been submitted to the IEEE for possible publication
Autonomous driving has the potential to set the stage for more efficient future mobility, requiring the research domain to establish trust through safe, reliable and transparent driving. Large Language Models (LLMs) possess reasoning capabilities and natural language understanding, presenting the potential to serve as generalized decision-makers for ego-motion planning that can interact with humans and navigate environments designed for human drivers. While this research avenue is promising, current autonomous driving approaches are challenged by combining 3D spatial grounding and the reasoning and language capabilities of LLMs. We introduce BEVDriver, an LLM-based model for end-to-end closed-loop driving in CARLA that utilizes latent BEV features as perception input. BEVDriver includes a BEV encoder to efficiently process multi-view images and 3D LiDAR point clouds. Within a common latent space, the BEV features are propagated through a Q-Former to align with natural language instructions and passed to the LLM that predicts and plans precise future trajectories while considering navigation instructions and critical scenarios. On the LangAuto benchmark, our model reaches up to 18.9% higher performance on the Driving Score compared to SoTA methods.
📅 2025-03-05
Instruction tuning is critical for adapting large language models (LLMs) to downstream tasks, and recent studies have demonstrated that small amounts of human-curated data can outperform larger datasets, challenging traditional data scaling laws. While LLM-based data quality rating systems offer a cost-effective alternative to human annotation, they often suffer from inaccuracies and biases, even in powerful models like GPT-4. In this work, we introduce DS2, a Diversity-aware Score curation method for Data Selection. By systematically modeling error patterns through a score transition matrix, DS2 corrects LLM-based scores and promotes diversity in the selected data samples. Our approach shows that a curated subset (just 3.3% of the original dataset) outperforms full-scale datasets (300k samples) across various machine-alignment benchmarks, and matches or surpasses human-aligned datasets such as LIMA with the same sample size (1k samples). These findings challenge conventional data scaling assumptions, highlighting that redundant, low-quality samples can degrade performance and reaffirming that "more can be less."
📅 2025-03-04 | 💬 11 pages, 4 figures
Anomaly event detection plays a crucial role in various real-world applications. However, current approaches predominantly rely on supervised learning, which faces significant challenges: the requirement for extensive labeled training data and lack of interpretability in decision-making processes. To address these limitations, we present a training-free framework that integrates open-set object detection with symbolic regression, powered by Large Language Models (LLMs) for efficient symbolic pattern discovery. The LLMs guide the symbolic reasoning process, establishing logical relationships between detected entities. Through extensive experiments across multiple domains, our framework demonstrates several key advantages: (1) achieving superior detection accuracy through direct reasoning without any training process; (2) providing highly interpretable logical expressions that are readily comprehensible to humans; and (3) requiring minimal annotation effort - approximately 1% of the data needed by traditional training-based methods.To facilitate comprehensive evaluation and future research, we introduce two datasets: a large-scale private dataset containing over 110,000 annotated images covering various anomaly scenarios including construction site safety violations, illegal fishing activities, and industrial hazards, along with a public benchmark dataset of 5,000 samples with detailed anomaly event annotations. Code is available at here.
📅 2025-03-04
Recently, Large Language Models (LLMs) have been increasingly used to automate SE tasks such as code generation and summarization. However, evaluating the quality of LLM-generated software artifacts remains challenging. Human evaluation, while effective, is very costly and time-consuming. Traditional automated metrics like BLEU rely on high-quality references and struggle to capture nuanced aspects of software quality, such as readability and usefulness. In response, the LLM-as-a-Judge paradigm, which employs LLMs for automated evaluation, has emerged. Given that LLMs are typically trained to align with human judgment and possess strong coding abilities and reasoning skills, they hold promise as cost-effective and scalable surrogates for human evaluators. Nevertheless, LLM-as-a-Judge research in the SE community is still in its early stages, with many breakthroughs needed. This forward-looking SE 2030 paper aims to steer the research community toward advancing LLM-as-a-Judge for evaluating LLMgenerated software artifacts, while also sharing potential research paths to achieve this goal. We provide a literature review of existing SE studies on LLM-as-a-Judge and envision these frameworks as reliable, robust, and scalable human surrogates capable of evaluating software artifacts with consistent, multi-faceted assessments by 2030 and beyond. To validate this vision, we analyze the limitations of current studies, identify key research gaps, and outline a detailed roadmap to guide future developments of LLM-as-a-Judge in software engineering. While not intended to be a definitive guide, our work aims to foster further research and adoption of LLM-as-a-Judge frameworks within the SE community, ultimately improving the effectiveness and scalability of software artifact evaluation methods.
📅 2025-03-04 | 💬 NAACL 25 (main, long), 32 pages
As the diversity of users increases, the capability of providing personalized responses by large language models (LLMs) has become increasingly important. Existing approaches have only limited successes in LLM personalization, due to the absence of personalized learning or the reliance on shared personal data. This paper proposes a new approach for a few-shot personalization of LLMs with their mis-aligned responses (Fermi). Our key idea is to learn a set of personalized prompts for each user by progressively improving the prompts using LLMs, based on user profile (e.g., demographic information) and a few examples of previous opinions. During an iterative process of prompt improvement, we incorporate the contexts of mis-aligned responses by LLMs, which are especially crucial for the effective personalization of LLMs. In addition, we develop an effective inference method to further leverage the context of the test query and the personalized prompts. Our experimental results demonstrate that Fermi significantly improves performance across various benchmarks, compared to best-performing baselines.
📅 2025-03-04 | 💬 8 pages, 4 figures
Large language models have been used to simulate human society using multi-agent systems. Most current social simulation research emphasizes interactive behaviors in fixed environments, ignoring information opacity, relationship variability and diffusion diversity. In this paper, we study the dynamics of information diffusion in 12 asymmetric open environments defined by information content and distribution mechanisms. We first present a general framework to capture the features of information diffusion. Then, we designed a dynamic attention mechanism to help agents allocate attention to different information, addressing the limitations of LLM-based attention. Agents start by responding to external information stimuli within a five-agent group, increasing group size and forming information circles while developing relationships and sharing information. Additionally, we observe the emergence of information cocoons, the evolution of information gaps, and the accumulation of social capital, which are closely linked to psychological, sociological, and communication theories.
📅 2025-03-04 | 💬 17 pages, 5 figures, 6 tables (NAACL 2025 Findings)
Large Language Model (LLM) agents exhibit remarkable performance across diverse applications by using external tools to interact with environments. However, integrating external tools introduces security risks, such as indirect prompt injection (IPI) attacks. Despite defenses designed for IPI attacks, their robustness remains questionable due to insufficient testing against adaptive attacks. In this paper, we evaluate eight different defenses and bypass all of them using adaptive attacks, consistently achieving an attack success rate of over 50%. This reveals critical vulnerabilities in current defenses. Our research underscores the need for adaptive attack evaluation when designing defenses to ensure robustness and reliability. The code is available at https://github.com/uiuc-kang-lab/AdaptiveAttackAgent.
📅 2025-03-04 | 💬 To be published in the 47th IEEE/ACM International Conference on Software Engineering - Demonstration Track (ICSE-Demo 2025)
As REST APIs have become widespread in modern web services, comprehensive testing of these APIs is increasingly crucial. Because of the vast search space of operations, parameters, and parameter values, along with their dependencies and constraints, current testing tools often achieve low code coverage, resulting in suboptimal fault detection. To address this limitation, we present AutoRestTest, a novel tool that integrates the Semantic Property Dependency Graph (SPDG) with Multi-Agent Reinforcement Learning (MARL) and large language models (LLMs) for effective REST API testing. AutoRestTest determines operation-dependent parameters using the SPDG and employs five specialized agents (operation, parameter, value, dependency, and header) to identify dependencies of operations and generate operation sequences, parameter combinations, and values. Through an intuitive command-line interface, users can easily configure and monitor tests with successful operation count, unique server errors detected, and time elapsed. Upon completion, AutoRestTest generates a detailed report highlighting errors detected and operations exercised. In this paper, we introduce our tool and present preliminary findings, with a demonstration video available at https://www.youtube.com/watch?v=VVus2W8rap8.
📅 2025-03-04
In this work, we design and implement VQ-LLM, an efficient fused Vector Quantization (VQ) kernel generation framework. We first introduce a software abstraction called codebook cache to optimize codebook access efficiency and support the integration of VQ with various computations. The codebook cache adaptively stores different entries across the GPU's memory hierarchy, including off-chip global memory, on-chip shared memory, and registers. Centered around the codebook cache, we design an efficient computation engine that optimizes memory traffic during computations involving codebooks. This compute engine adopts the codebook-centric dataflow and fusion optimizations. Additionally, we provide adaptive heuristics to tailor parameter selection in our optimizations to diverse VQ configurations. Our optimizations achieve an average latency reduction of 46.13% compared to unoptimized versions. Compared to existing open-source implementations, our methods decrease latency by 64.36% to 99.1%. A final comparison with state-of-the-art element-wise quantization methods like AWQ and KVQuant shows that our VQ-LLM is practically viable, achieving latencies close or even better latencies to those at equivalent bit-widths, potentially offering greater accuracy.
📅 2025-03-04
Large language models (LLMs) frequently hallucinate due to misaligned self-awareness, generating erroneous outputs when addressing queries beyond their knowledge boundaries. While existing approaches mitigate hallucinations via uncertainty estimation or query rejection, they suffer from computational inefficiency or sacrificed helpfulness. To address these issues, we propose the Explicit Knowledge Boundary Modeling (EKBM) framework, integrating fast and slow reasoning systems to harmonize reliability and usability. The framework first employs a fast-thinking model to generate confidence-labeled responses, enabling immediate use of high-confidence outputs. For uncertain predictions, a slow refinement model conducts targeted reasoning to improve accuracy. To align model behavior with our proposed object, we propose a hybrid training pipeline, enhancing self-awareness without degrading task performance. Evaluations on dialogue state tracking tasks demonstrate that EKBM achieves superior model reliability over uncertainty-based baselines. Further analysis reveals that refinement substantially boosts accuracy while maintaining low computational overhead. Our work establishes a scalable paradigm for advancing LLM reliability and balancing accuracy and practical utility in error-sensitive applications.
📅 2025-03-04
Our work tackles the challenge of securing user inputs in cloud-hosted large language model (LLM) serving while ensuring model confidentiality, output invariance, and compute efficiency. We introduce Secure Partitioned Decoding (SPD), which uses confidential computing to confine user prompts to a trusted execution environment (TEE), namely a confidential virtual machine (CVM), while allowing service providers to generate tokens efficiently. We also introduce a novel cryptographic method, Prompt Obfuscation (PO), to ensure robustness against reconstruction attacks on SPD. We demonstrate our approach preserves both prompt confidentiality and LLM serving efficiency. Our solution enables privacy-preserving cloud LLM serving that handles sensitive prompts, such as clinical records, financial data, and personal information.
📅 2025-03-04 | 💬 Accepted to NAACL 2025 Industry
This paper conducts a longitudinal study over eleven months to address the limitations of prior research on the Open Ko-LLM Leaderboard, which have relied on empirical studies with restricted observation periods of only five months. By extending the analysis duration, we aim to provide a more comprehensive understanding of the progression in developing Korean large language models (LLMs). Our study is guided by three primary research questions: (1) What are the specific challenges in improving LLM performance across diverse tasks on the Open Ko-LLM Leaderboard over time? (2) How does model size impact task performance correlations across various benchmarks? (3) How have the patterns in leaderboard rankings shifted over time on the Open Ko-LLM Leaderboard?. By analyzing 1,769 models over this period, our research offers a comprehensive examination of the ongoing advancements in LLMs and the evolving nature of evaluation frameworks.
📅 2025-03-04 | 💬 Accepted to NAACL 2025 Industry
The Open Ko-LLM Leaderboard has been instrumental in benchmarking Korean Large Language Models (LLMs), yet it has certain limitations. Notably, the disconnect between quantitative improvements on the overly academic leaderboard benchmarks and the qualitative impact of the models should be addressed. Furthermore, the benchmark suite is largely composed of translated versions of their English counterparts, which may not fully capture the intricacies of the Korean language. To address these issues, we propose Open Ko-LLM Leaderboard2, an improved version of the earlier Open Ko-LLM Leaderboard. The original benchmarks are entirely replaced with new tasks that are more closely aligned with real-world capabilities. Additionally, four new native Korean benchmarks are introduced to better reflect the distinct characteristics of the Korean language. Through these refinements, Open Ko-LLM Leaderboard2 seeks to provide a more meaningful evaluation for advancing Korean LLMs.
📅 2025-03-04 | 💬 Published at ICLR 2025 (Oral)
LLMs are an integral component of retrieval-augmented generation (RAG) systems. While many studies focus on evaluating the overall quality of end-to-end RAG systems, there is a gap in understanding the appropriateness of LLMs for the RAG task. To address this, we introduce Trust-Score, a holistic metric that evaluates the trustworthiness of LLMs within the RAG framework. Our results show that various prompting methods, such as in-context learning, fail to effectively adapt LLMs to the RAG task as measured by Trust-Score. Consequently, we propose Trust-Align, a method to align LLMs for improved Trust-Score performance. 26 out of 27 models aligned using Trust-Align substantially outperform competitive baselines on ASQA, QAMPARI, and ELI5. Specifically, in LLaMA-3-8b, Trust-Align outperforms FRONT on ASQA (up 12.56), QAMPARI (up 36.04), and ELI5 (up 17.69). Trust-Align also significantly enhances models' ability to correctly refuse and provide quality citations. We also demonstrate the effectiveness of Trust-Align across different open-weight models, including the LLaMA series (1b to 8b), Qwen-2.5 series (0.5b to 7b), and Phi3.5 (3.8b). We release our code at https://github.com/declare-lab/trust-align.
📅 2025-03-04 | 💬 AAAI 25
POI representation learning plays a crucial role in handling tasks related to user mobility data. Recent studies have shown that enriching POI representations with multimodal information can significantly enhance their task performance. Previously, the textual information incorporated into POI representations typically involved only POI categories or check-in content, leading to relatively weak textual features in existing methods. In contrast, large language models (LLMs) trained on extensive text data have been found to possess rich textual knowledge. However leveraging such knowledge to enhance POI representation learning presents two key challenges: first, how to extract POI-related knowledge from LLMs effectively, and second, how to integrate the extracted information to enhance POI representations. To address these challenges, we propose POI-Enhancer, a portable framework that leverages LLMs to improve POI representations produced by classic POI learning models. We first design three specialized prompts to extract semantic information from LLMs efficiently. Then, the Dual Feature Alignment module enhances the quality of the extracted information, while the Semantic Feature Fusion module preserves its integrity. The Cross Attention Fusion module then fully adaptively integrates such high-quality information into POI representations and Multi-View Contrastive Learning further injects human-understandable semantic information into these representations. Extensive experiments on three real-world datasets demonstrate the effectiveness of our framework, showing significant improvements across all baseline representations.
📅 2025-03-04 | 💬 ICLR 2025 Oral Presentation, 22 pages
Aligning large language models (LLMs) with human preferences becomes a key component to obtaining state-of-the-art performance, but it yields a huge cost to construct a large human-annotated preference dataset. To tackle this problem, we propose a new framework, Spread Preference Annotation with direct preference judgment (SPA), that boosts the alignment of LLMs using only a very small amount of human-annotated preference data. Our key idea is leveraging the human prior knowledge within the small (seed) data and progressively improving the alignment of LLM, by iteratively generating the responses and learning from them with the self-annotated preference data. To be specific, we propose to derive the preference label from the logits of LLM to explicitly extract the model's inherent preference. Compared to the previous approaches using external reward models or implicit in-context learning, we observe that the proposed approach is significantly more effective. In addition, we introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data. Our experimental results demonstrate that the proposed framework significantly boosts the alignment of LLMs. For example, we achieve superior alignment performance on AlpacaEval 2.0 with only 3.3% of the ground-truth preference labels in the Ultrafeedback data compared to the cases using the entire data or state-of-the-art baselines.
📅 2025-03-04
Using language models to scalably approximate human preferences on text quality (LLM-as-a-judge) has become a standard practice applicable to many tasks. A judgment is often extracted from the judge's textual output alone, typically with greedy decoding. However, LLM judges naturally provide distributions over judgment tokens, inviting a breadth of inference methods for extracting fine-grained preferences. We find that taking the mean of the judgment distribution consistently outperforms taking the mode (i.e. greedy decoding) in all evaluation settings (i.e. pointwise, pairwise, and listwise). We further explore novel methods of deriving preferences from judgment distributions, and find that methods incorporating risk aversion often improve performance. Lastly, we analyze LLM-as-a-judge paired with chain-of-thought (CoT) prompting, showing that CoT can collapse the spread of the judgment distribution, often harming performance. Our findings suggest leveraging distributional output can improve LLM-as-a-judge, as opposed to using the text interface alone.
📅 2025-03-04
Large language models (LLMs) have demonstrated exceptional capabilities across a wide range of tasks but also pose significant risks due to their potential to generate harmful content. Although existing safety mechanisms can improve model safety, they often lead to overly cautious behavior and fail to fully utilize LLMs' internal cognitive processes. Drawing inspiration from cognitive science, where humans rely on reflective reasoning (System 2 thinking) to regulate language and behavior, we empirically demonstrate that LLMs also possess a similar capacity for internal assessment and regulation, which can be actively detected. Building on this insight, we introduce SafeSwitch, a framework that dynamically regulates unsafe outputs by monitoring and utilizing the model's internal states. Our empirical results show that SafeSwitch reduces harmful outputs by over 80% on safety benchmarks while maintaining strong utility. Compared to traditional safety alignment methods, SafeSwitch delivers more informative and context-aware refusals, demonstrates resilience to unseen queries, and achieves these benefits while only tuning less than 6% of the original parameters. These features make SafeSwitch a promising approach for implementing nuanced safety controls in LLMs. Codes for this work are available at https://github.com/Hanpx20/SafeSwitch.
📅 2025-03-04
Reinforcement learning has shown remarkable performance in aligning language models with human preferences, leading to the rise of attention towards developing RLHF platforms. These platforms enable users to fine-tune models without requiring any expertise in developing complex machine learning algorithms. While these platforms offer useful features such as reward modeling and RLHF fine-tuning, their security and reliability remain largely unexplored. Given the growing adoption of RLHF and open-source RLHF frameworks, we investigate the trustworthiness of these systems and their potential impact on behavior of LLMs. In this paper, we present an attack targeting publicly available RLHF tools. In our proposed attack, an adversarial RLHF platform corrupts the LLM alignment process by selectively manipulating data samples in the preference dataset. In this scenario, when a user's task aligns with the attacker's objective, the platform manipulates a subset of the preference dataset that contains samples related to the attacker's target. This manipulation results in a corrupted reward model, which ultimately leads to the misalignment of the language model. Our results demonstrate that such an attack can effectively steer LLMs toward undesirable behaviors within the targeted domains. Our work highlights the critical need to explore the vulnerabilities of RLHF platforms and their potential to cause misalignment in LLMs during the RLHF fine-tuning process.
📅 2025-03-04
Despite the state-of-the-art performance of Large Language Models (LLMs), these models often suffer from hallucinations, which can undermine their performance in critical applications. In this work, we propose SAFE, a novel method for detecting and mitigating hallucinations by leveraging Sparse Autoencoders (SAEs). While hallucination detection techniques and SAEs have been explored independently, their synergistic application in a comprehensive system, particularly for hallucination-aware query enrichment, has not been fully investigated. To validate the effectiveness of SAFE, we evaluate it on two models with available SAEs across three diverse cross-domain datasets designed to assess hallucination problems. Empirical results demonstrate that SAFE consistently improves query generation accuracy and mitigates hallucinations across all datasets, achieving accuracy improvements of up to 29.45%.
📅 2025-03-04 | 💬 Accepted for publication in TODAES Special Issue on Large Language Models for Electronic System Design Automation
Traditionally, digital hardware designs are written in the Verilog hardware description language (HDL) and debugged manually by engineers. This can be time-consuming and error-prone for complex designs. Large Language Models (LLMs) are emerging as a potential tool to help generate fully functioning HDL code, but most works have focused on generation in the single-shot capacity: i.e., run and evaluate, a process that does not leverage debugging and, as such, does not adequately reflect a realistic development process. In this work, we evaluate the ability of LLMs to leverage feedback from electronic design automation (EDA) tools to fix mistakes in their own generated Verilog. To accomplish this, we present an open-source, highly customizable framework, AutoChip, which combines conversational LLMs with the output from Verilog compilers and simulations to iteratively generate and repair Verilog. To determine the success of these LLMs we leverage the VerilogEval benchmark set. We evaluate four state-of-the-art conversational LLMs, focusing on readily accessible commercial models. EDA tool feedback proved to be consistently more effective than zero-shot prompting only with GPT-4o, the most computationally complex model we evaluated. In the best case, we observed a 5.8% increase in the number of successful designs with a 34.2% decrease in cost over the best zero-shot results. Mixing smaller models with this larger model at the end of the feedback iterations resulted in equally as much success as with GPT-4o using feedback, but incurred 41.9% lower cost (corresponding to an overall decrease in cost over zero-shot by 89.6%).
📅 2025-03-04
Having an LLM that aligns with human preferences is essential for accommodating individual needs, such as maintaining writing style or generating specific topics of interest. The majority of current alignment methods rely on fine-tuning or prompting, which can be either costly or difficult to control. Model steering algorithms, which modify the model output by constructing specific steering directions, are typically easy to implement and optimization-free. However, their capabilities are typically limited to steering the model into one of the two directions (i.e., bidirectional steering), and there has been no theoretical understanding to guarantee their performance. In this work, we propose a theoretical framework to understand and quantify the model steering methods. Inspired by the framework, we propose a confident direction steering method (CONFST) that steers LLMs via modifying their activations at inference time. More specifically, CONFST builds a confident direction that is closely aligned with users' preferences, and this direction is then added to the activations of the LLMs to effectively steer the model output. Our approach offers three key advantages over popular bidirectional model steering methods: 1) It is more powerful, since multiple (i.e. more than two) users' preferences can be aligned simultaneously; 2) It is simple to implement, since there is no need to determine which layer to add the steering vector to; 3) No explicit user instruction is required. We validate our method on GPT-2 XL (1.5B), Mistral (7B) and Gemma-it (9B) models for tasks that require shifting the output of LLMs across various topics and styles, achieving superior performance over competing methods.
📅 2025-03-04 | 💬 under review
The increased adoption of Large Language Models (LLMs) and their potential to shape public opinion have sparked interest in assessing these models' political leanings. Building on previous research that compared LLMs and human opinions and observed political bias in system responses, we take a step further to investigate the underlying causes of such biases by empirically examining how the values and biases embedded in training corpora shape model outputs. Specifically, we propose a method to quantitatively evaluate political leanings embedded in the large pretraining corpora. Subsequently we investigate to whom are the LLMs' political leanings more aligned with, their pretrainig corpora or the surveyed human opinions. As a case study, we focus on probing the political leanings of LLMs in 32 U.S. Supreme Court cases, addressing contentious topics such as abortion and voting rights. Our findings reveal that LLMs strongly reflect the political leanings in their training data, and no strong correlation is observed with their alignment to human opinions as expressed in surveys. These results underscore the importance of responsible curation of training data and the need for robust evaluation metrics to ensure LLMs' alignment with human-centered values.
📅 2025-03-04 | 💬 9 pages, 5 figures, to be published in EuroMLSys '25
Large Language Models (LLMs) face challenges for on-device inference due to high memory demands. Traditional methods to reduce memory usage often compromise performance and lack adaptability. We propose FlexInfer, an optimized offloading framework for on-device inference, addressing these issues with techniques like asynchronous prefetching, balanced memory locking, and flexible tensor preservation. These strategies enhance memory efficiency and mitigate I/O bottlenecks, ensuring high performance within user-specified resource constraints. Experiments demonstrate that FlexInfer significantly improves throughput under limited resources, achieving up to 12.5 times better performance than existing methods and facilitating the deployment of large models on resource-constrained devices.
📅 2025-03-04 | 💬 We release all the experimental dataset and source code at: https://github.com/HSM316/LLM_Wikipedia
In this paper, we present a thorough analysis of the impact of Large Language Models (LLMs) on Wikipedia, examining the evolution of Wikipedia through existing data and using simulations to explore potential risks. We begin by analyzing page views and article content to study Wikipedia's recent changes and assess the impact of LLMs. Subsequently, we evaluate how LLMs affect various Natural Language Processing (NLP) tasks related to Wikipedia, including machine translation and retrieval-augmented generation (RAG). Our findings and simulation results reveal that Wikipedia articles have been influenced by LLMs, with an impact of approximately 1%-2% in certain categories. If the machine translation benchmark based on Wikipedia is influenced by LLMs, the scores of the models may become inflated, and the comparative results among models might shift as well. Moreover, the effectiveness of RAG might decrease if the knowledge base becomes polluted by LLM-generated content. While LLMs have not yet fully changed Wikipedia's language and knowledge structures, we believe that our empirical findings signal the need for careful consideration of potential future risks.
📅 2025-03-04
Large Language Models (LLMs) often exhibit misaligned confidence scores, usually overestimating the reliability of their predictions. While verbalized confidence in Large Language Models (LLMs) has gained attention, prior work remains divided on whether confidence scores can be systematically steered through prompting. Recent studies even argue that such prompt-induced confidence shifts are negligible, suggesting LLMs' confidence calibration is rigid to linguistic interventions. Contrary to these claims, we first rigorously confirm the existence of directional confidence shifts by probing three models (including GPT3.5, LLAMA3-70b, GPT4) across 7 benchmarks, demonstrating that explicit instructions can inflate or deflate confidence scores in a regulated manner. Based on this observation, we propose a novel framework containing three components: confidence steering, steered confidence aggregation and steered answers selection, named SteeringConf. Our method, SteeringConf, leverages a confidence manipulation mechanism to steer the confidence scores of LLMs in several desired directions, followed by a summarization module that aggregates the steered confidence scores to produce a final prediction. We evaluate our method on 7 benchmarks and it consistently outperforms the baselines in terms of calibration metrics in task of confidence calibration and failure detection.
📅 2025-03-04
Large language models (LLMs) are known to hallucinate, a phenomenon often linked to creativity. While previous research has primarily explored this connection through theoretical or qualitative lenses, our work takes a quantitative approach to systematically examine the relationship between hallucination and creativity in LLMs. Given the complex nature of creativity, we propose a narrow definition tailored to LLMs and introduce an evaluation framework, HCL, which quantifies Hallucination and Creativity across different Layers of LLMs during decoding. Our empirical analysis reveals a tradeoff between hallucination and creativity that is consistent across layer depth, model type, and model size. Notably, across different model architectures, we identify a specific layer at each model size that optimally balances this tradeoff. Additionally, the optimal layer tends to appear in the early layers of larger models, and the confidence of the model is also significantly higher at this layer. These findings provide a quantitative perspective that offers new insights into the interplay between LLM creativity and hallucination. The code and data for our experiments are available at https://github.com/ZicongHe2002/HCL-Spark.
📅 2025-03-04 | 💬 Accepted by ICLR 2025. Code is available at https://github.com/open-compass/ANAH
Large language models (LLMs) exhibit hallucinations (i.e., unfaithful or nonsensical information) when serving as AI assistants in various domains. Since hallucinations always come with truthful content in the LLM responses, previous factuality alignment methods that conduct response-level preference learning inevitably introduced noises during training. Therefore, this paper proposes a fine-grained factuality alignment method based on Direct Preference Optimization (DPO), called Mask-DPO. Incorporating sentence-level factuality as mask signals, Mask-DPO only learns from factually correct sentences in the preferred samples and prevents the penalty on factual contents in the not preferred samples, which resolves the ambiguity in the preference learning. Extensive experimental results demonstrate that Mask-DPO can significantly improve the factuality of LLMs responses to questions from both in-domain and out-of-domain datasets, although these questions and their corresponding topics are unseen during training. Only trained on the ANAH train set, the score of Llama3.1-8B-Instruct on the ANAH test set is improved from 49.19% to 77.53%, even surpassing the score of Llama3.1-70B-Instruct (53.44%), while its FactScore on the out-of-domain Biography dataset is also improved from 30.29% to 39.39%. We further study the generalization property of Mask-DPO using different training sample scaling strategies and find that scaling the number of topics in the dataset is more effective than the number of questions. We provide a hypothesis of what factual alignment is doing with LLMs, on the implication of this phenomenon, and conduct proof-of-concept experiments to verify it. We hope the method and the findings pave the way for future research on scaling factuality alignment.
📅 2025-03-04 | 💬 This paper needs approval from Amazon for open resource release
Large language models (LLMs) have demonstrated remarkable performance across diverse tasks by encoding vast amounts of factual knowledge. However, they are still prone to hallucinations, generating incorrect or misleading information, often accompanied by high uncertainty. Existing methods for hallucination detection primarily focus on quantifying internal uncertainty, which arises from missing or conflicting knowledge within the model. However, hallucinations can also stem from external uncertainty, where ambiguous user queries lead to multiple possible interpretations. In this work, we introduce Semantic Volume, a novel mathematical measure for quantifying both external and internal uncertainty in LLMs. Our approach perturbs queries and responses, embeds them in a semantic space, and computes the determinant of the Gram matrix of the embedding vectors, capturing their dispersion as a measure of uncertainty. Our framework provides a generalizable and unsupervised uncertainty detection method without requiring white-box access to LLMs. We conduct extensive experiments on both external and internal uncertainty detection, demonstrating that our Semantic Volume method consistently outperforms existing baselines in both tasks. Additionally, we provide theoretical insights linking our measure to differential entropy, unifying and extending previous sampling-based uncertainty measures such as the semantic entropy. Semantic Volume is shown to be a robust and interpretable approach to improving the reliability of LLMs by systematically detecting uncertainty in both user queries and model responses.
📅 2025-03-04 | 💬 arXiv admin note: substantial text overlap with arXiv:2411.00914
Anomaly detection in complex industrial environments poses unique challenges, particularly in contexts characterized by data sparsity and evolving operational conditions. Predictive maintenance (PdM) in such settings demands methodologies that are adaptive, transferable, and capable of integrating domain-specific knowledge. In this paper, we present RAAD-LLM, a novel framework for adaptive anomaly detection, leveraging large language models (LLMs) integrated with Retrieval-Augmented Generation (RAG). This approach addresses the aforementioned PdM challenges. By effectively utilizing domain-specific knowledge, RAAD-LLM enhances the detection of anomalies in time series data without requiring fine-tuning on specific datasets. The framework's adaptability mechanism enables it to adjust its understanding of normal operating conditions dynamically, thus increasing detection accuracy. We validate this methodology through a real-world application for a plastics manufacturing plant and the Skoltech Anomaly Benchmark (SKAB). Results show significant improvements over our previous model with an accuracy increase from 70.7 to 89.1 on the real-world dataset. By allowing for the enriching of input series data with semantics, RAAD-LLM incorporates multimodal capabilities that facilitate more collaborative decision-making between the model and plant operators. Overall, our findings support RAAD-LLM's ability to revolutionize anomaly detection methodologies in PdM, potentially leading to a paradigm shift in how anomaly detection is implemented across various industries.
📅 2025-03-04
Personalized product search aims to retrieve and rank items that match users' preferences and search intent. Despite their effectiveness, existing approaches typically assume that users' query fully captures their real motivation. However, our analysis of a real-world e-commerce platform reveals that users often engage in relevant consultations before searching, indicating they refine intents through consultations based on motivation and need. The implied motivation in consultations is a key enhancing factor for personalized search. This unexplored area comes with new challenges including aligning contextual motivations with concise queries, bridging the category-text gap, and filtering noise within sequence history. To address these, we propose a Motivation-Aware Personalized Search (MAPS) method. It embeds queries and consultations into a unified semantic space via LLMs, utilizes a Mixture of Attention Experts (MoAE) to prioritize critical semantics, and introduces dual alignment: (1) contrastive learning aligns consultations, reviews, and product features; (2) bidirectional attention integrates motivation-aware embeddings with user preferences. Extensive experiments on real and synthetic data show MAPS outperforms existing methods in both retrieval and ranking tasks.
📅 2025-03-04
Due to the implement of guardrails by developers, Large language models (LLMs) have demonstrated exceptional performance in explicit bias tests. However, bias in LLMs may occur not only explicitly, but also implicitly, much like humans who consciously strive for impartiality yet still harbor implicit bias. The unconscious and automatic nature of implicit bias makes it particularly challenging to study. This paper provides a comprehensive review of the existing literature on implicit bias in LLMs. We begin by introducing key concepts, theories and methods related to implicit bias in psychology, extending them from humans to LLMs. Drawing on the Implicit Association Test (IAT) and other psychological frameworks, we categorize detection methods into three primary approaches: word association, task-oriented text generation and decision-making. We divide our taxonomy of evaluation metrics for implicit bias into two categories: single-value-based metrics and comparison-value-based metrics. We classify datasets into two types: sentences with masked tokens and complete sentences, incorporating datasets from various domains to reflect the broad application of LLMs. Although research on mitigating implicit bias in LLMs is still limited, we summarize existing efforts and offer insights on future challenges. We aim for this work to serve as a clear guide for researchers and inspire innovative ideas to advance exploration in this task.
📅 2025-03-04 | 💬 9 pages
Bilateral markets, such as those for government bonds, involve decentralized and opaque transactions between market makers (MMs) and clients, posing significant challenges for traditional modeling approaches. To address these complexities, we introduce TRIBE an agent-based model augmented with a large language model (LLM) to simulate human-like decision-making in trading environments. TRIBE leverages publicly available data and stylized facts to capture realistic trading dynamics, integrating human biases like risk aversion and ambiguity sensitivity into the decision-making processes of agents. Our research yields three key contributions: first, we demonstrate that integrating LLMs into agent-based models to enhance client agency is feasible and enriches the simulation of agent behaviors in complex markets; second, we find that even slight trade aversion encoded within the LLM leads to a complete cessation of trading activity, highlighting the sensitivity of market dynamics to agents' risk profiles; third, we show that incorporating human-like variability shifts power dynamics towards clients and can disproportionately affect the entire system, often resulting in systemic agent collapse across simulations. These findings underscore the emergent properties that arise when introducing stochastic, human-like decision processes, revealing new system behaviors that enhance the realism and complexity of artificial societies.
📅 2025-03-04 | 💬 This paper has been accepted for publication at the AAAI 2022 Workshop on Planning in the Era of LLMs
Recently, Large Language Models (LLMs) have emerged as an alternative to training task-specific dialog agents, due to their broad reasoning capabilities and performance in zero-shot learning scenarios. However, many LLM-based dialog systems fall short in planning towards an overarching dialog goal and therefore cannot steer the conversation appropriately. Furthermore, these models struggle with hallucination, making them unsuitable for information access in sensitive domains, such as legal or medical domains, where correctness of information given to users is critical. The recently introduced task Conversational Tree Search (CTS) proposes the use of dialog graphs to avoid hallucination in sensitive domains, however, state-of-the-art agents are Reinforcement Learning (RL) based and require long training times, despite excelling at dialog strategy. This paper introduces a novel zero-shot method for controllable CTS agents, where LLMs guide the dialog planning through domain graphs by searching and pruning relevant graph nodes based on user interaction preferences. We show that these agents significantly outperform state-of-the-art CTS agents ($p<0.0001$; Barnard Exact test) in simulation. This generalizes to all available CTS domains. Finally, we perform user evaluation to test the agent's performance in the wild, showing that our policy significantly ($p<0.05$; Barnard Exact) improves task-success compared to the state-of-the-art RL-based CTS agent.
📅 2025-03-04
Understanding the semantics of columns in relational tables is an important pre-processing step for indexing data lakes in order to provide rich data search. An approach to establishing such understanding is column type annotation (CTA) where the goal is to annotate table columns with terms from a given vocabulary. This paper experimentally compares different knowledge generation and self-refinement strategies for LLM-based column type annotation. The strategies include using LLMs to generate term definitions, error-based refinement of term definitions, self-correction, and fine-tuning using examples and term definitions. We evaluate these strategies along two dimensions: effectiveness measured as F1 performance and efficiency measured in terms of token usage and cost. Our experiments show that the best performing strategy depends on the model/dataset combination. We find that using training data to generate label definitions outperforms using the same data as demonstrations for in-context learning for two out of three datasets using OpenAI models. The experiments further show that using the LLMs to refine label definitions brings an average increase of 3.9% F1 in 10 out of 12 setups compared to the performance of the non-refined definitions. Combining fine-tuned models with self-refined term definitions results in the overall highest performance, outperforming zero-shot prompting fine-tuned models by at least 3% in F1 score. The costs analysis shows that while reaching similar F1 score, self-refinement via prompting is more cost efficient for use cases requiring smaller amounts of tables to be annotated while fine-tuning is more efficient for large amounts of tables.
📅 2025-03-04 | 💬 8 pages, 5 figures
Robotic instruction following tasks require seamless integration of visual perception, task planning, target localization, and motion execution. However, existing task planning methods for instruction following are either data-driven or underperform in zero-shot scenarios due to difficulties in grounding lengthy instructions into actionable plans under operational constraints. To address this, we propose FlowPlan, a structured multi-stage LLM workflow that elevates zero-shot pipeline and bridges the performance gap between zero-shot and data-driven in-context learning methods. By decomposing the planning process into modular stages--task information retrieval, language-level reasoning, symbolic-level planning, and logical evaluation--FlowPlan generates logically coherent action sequences while adhering to operational constraints and further extracts contextual guidance for precise instance-level target localization. Benchmarked on the ALFRED and validated in real-world applications, our method achieves competitive performance relative to data-driven in-context learning methods and demonstrates adaptability across diverse environments. This work advances zero-shot task planning in robotic systems without reliance on labeled data. Project website: https://instruction-following-project.github.io/.
📅 2025-03-04
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
📅 2025-03-04
Recent advancements in large language models (LLMs) have enabled LLM-based agents to successfully tackle interactive planning tasks. However, despite their successes, existing approaches often suffer from planning hallucinations and require retraining for each new agent. To address these challenges, we propose the Meta Plan Optimization (MPO) framework, which enhances agent planning capabilities by directly incorporating explicit guidance. Unlike previous methods that rely on complex knowledge, which either require significant human effort or lack quality assurance, MPO leverages high-level general guidance through meta plans to assist agent planning and enables continuous optimization of the meta plans based on feedback from the agent's task execution. Our experiments conducted on two representative tasks demonstrate that MPO significantly outperforms existing baselines. Moreover, our analysis indicates that MPO provides a plug-and-play solution that enhances both task completion efficiency and generalization capabilities in previous unseen scenarios.
📅 2025-03-04 | 💬 Work in progress
Developing a general-purpose extraction system that can extract events with massive types is a long-standing target in Event Extraction (EE). In doing so, the challenge comes from two aspects: 1) The absence of an efficient and effective annotation method. 2) The absence of a powerful extraction method can handle massive types. For the first challenge, we propose a collaborative annotation method based on Large Language Models (LLMs). Through collaboration among multiple LLMs, it first refines annotations of trigger words from distant supervision and then carries out argument annotation. Next, a voting phase consolidates the annotation preferences across different LLMs. Finally, we create the EEMT dataset, the largest EE dataset to date, featuring over 200,000 samples, 3,465 event types, and 6,297 role types. For the second challenge, we propose an LLM-based Partitioning EE method called LLM-PEE. To overcome the limited context length of LLMs, LLM-PEE first recalls candidate event types and then splits them into multiple partitions for LLMs to extract events. The results in the supervised setting show that LLM-PEE outperforms the state-of-the-art methods by 5.4 in event detection and 6.1 in argument extraction. In the zero-shot setting, LLM-PEE achieves up to 12.9 improvement compared to mainstream LLMs, demonstrating its strong generalization capabilities.
📅 2025-03-04 | 💬 ICLR 2025
Aligning with personalized preferences, which vary significantly across cultural, educational, and political differences, poses a significant challenge due to the computational costs and data demands of traditional alignment methods. In response, this paper presents Personalized Alignment at Decoding-time (PAD), a novel framework designed to align LLM outputs with diverse personalized preferences during the inference phase, eliminating the need for additional training. By introducing a unique personalized reward modeling strategy, this framework decouples the text generation process from personalized preferences, facilitating the generation of generalizable token-level personalized rewards. The PAD algorithm leverages these rewards to guide the decoding process, dynamically tailoring the base model's predictions to personalized preferences. Extensive experimental results demonstrate that PAD not only outperforms existing training-based alignment methods in terms of aligning with diverse preferences but also shows significant generalizability to preferences unseen during training and scalability across different base models. This work advances the capability of LLMs to meet user needs in real-time applications, presenting a substantial step forward in personalized LLM alignment.
📅 2025-03-04 | 💬 Preprint
Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of earlier modalities (e.g., images) to incorporate information from later modalities (e.g., text). To address this problem, we propose AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code is publicly available at https://github.com/sony/aki, and we will release our AKI-4B model to encourage further advancements in MLLMs across various directions.
📅 2025-03-04
We present a comprehensive, in-depth review of ideation assisted by large language models (LLMs), highlighting emerging trends and identifying unaddressed research gaps. In total, we examined 61 studies investigating the application of LLMs in both group and individual ideation processes. From these studies, we derived the Hourglass Ideation Framework for LLM-assisted ideation, comprising three phases and seven key ideation stages, which served as the basis for our systematic survey. Our analysis reveals that LLMs are most frequently used for idea generation and refinement, but their use in scope specification, foundational material structuring and multi-idea evaluation and selection remains limited. We provide our findings in extensive tabular and online formats. These catalogues detail research on LLM-assisted, purely LLM-based, and human-only activities across the seven ideation stages for each of the 61 studies. These also detail creative domains, publication outlets, interaction designs, user study designs, and assessment methods. Our analysis of system interaction design reveals a predominant focus on supporting individual ideation activities and text-based interaction, with a growing trend of incorporating multimedia elements. However, in group ideation, tools and interaction modalities targeting both synchronous and asynchronous collaboration are much scarcer. We synthesize the primary findings of our review and outline promising directions for future research in LLM-assisted ideation. We hope this review will help researchers quickly gain an overview of this rapidly expanding area, efficiently locate relevant work, and identify underexplored areas for further investigation. In addition, we believe the framework we present here will form the basis for the development of future problem and solution space taxonomies, and methodologies for LLM-assisted ideation development and use.
📅 2025-03-04 | 💬 ICLR 2025 Camera Ready
In this work, we investigate a typical scenario in code generation where a developer edits existing code in real time and requests a code assistant, e.g., a large language model, to re-predict the next token or next line on the fly. Naively, the LLM needs to re-encode the entire KV cache to provide an accurate prediction. However, this process is computationally expensive, especially when the sequence length is long. Simply encoding the edited subsequence and integrating it to the original KV cache meets the temporal confusion problem, leading to significantly worse performance. We address this efficiency and accuracy trade-off by introducing \underline{\textbf{Positional \textbf{I}ntegrity \textbf{E}ncoding} (PIE). Building upon the rotary positional encoding, PIE first removes the rotary matrices in the Key cache that introduce temporal confusion and then reapplies the correct rotary matrices. This process ensures that positional relationships between tokens are correct and requires only a single round of matrix multiplication. We validate the effectiveness of PIE through extensive experiments on the RepoBench-C-8k dataset, utilizing DeepSeek-Coder models with 1.3B, 6.7B, and 33B parameters. Our evaluation includes three real-world coding tasks: code insertion, code deletion, and multi-place code editing. Results demonstrate that PIE reduces computational overhead by over 85% compared to the standard full recomputation approach across all model sizes and tasks while well approximating the model performance.
📅 2025-03-04
Recent work found that LLMs are sensitive to a wide range of arbitrary prompt dimensions, including the type of delimiters, answer enumerators, instruction wording, and more. This throws into question popular single-prompt evaluation practices. We present DOVE (Dataset Of Variation Evaluation) a large-scale dataset containing prompt perturbations of various evaluation benchmarks. In contrast to previous work, we examine LLM sensitivity from an holistic perspective, and assess the joint effects of perturbations along various dimensions, resulting in thousands of perturbations per instance. We evaluate several model families against DOVE, leading to several findings, including efficient methods for choosing well-performing prompts, observing that few-shot examples reduce sensitivity, and identifying instances which are inherently hard across all perturbations. DOVE consists of more than 250M prompt perturbations and model outputs, which we make publicly available to spur a community-wide effort toward meaningful, robust, and efficient evaluation. Browse the data, contribute, and more: https://slab-nlp.github.io/DOVE/
📅 2025-03-04
In this paper, we argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of noise, such as small datasets, methodological inconsistencies, and unreliable evaluation setups. This can, at times, make it impossible to evaluate and compare attacks and defenses fairly, thereby slowing progress. We systematically analyze the LLM safety evaluation pipeline, covering dataset curation, optimization strategies for automated red-teaming, response generation, and response evaluation using LLM judges. At each stage, we identify key issues and highlight their practical impact. We also propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers. Lastly, we offer an opposing perspective, highlighting practical reasons for existing limitations. We believe that addressing the outlined problems in future research will improve the field's ability to generate easily comparable results and make measurable progress.
📅 2025-03-04
In recent years, Large Language Models (LLMs) have dramatically advanced the performance of automated code translation, making their computational accuracy score reach up to over 80% on many previous benchmarks. However, most code samples in these benchmarks are short, standalone, statement/method-level, and algorithmic, which is not aligned with practical coding tasks. Therefore, it is still unknown the actual capability of LLMs in translating code samples written for daily development. To achieve this, we construct a class-level code translation benchmark, ClassEval-T, and make the first attempt to extensively assess recent LLMs' performance on class-level code translation. ClassEval-T is extended from ClassEval, a well-known class-level Python code generation benchmark consisting of multiple practical coding topics, such as database operation and game design, and diverse contextual dependencies (e.g., fields, methods, and libraries). It cost us 360 person-hours to accomplish the manual migration to Java and C++ with complete code samples and associated test suites. Subsequently, we design three translation strategies (i.e., holistic, min-dependency, and standalone) for class-level code translations and evaluate eight recent LLMs of commercial, general, and code kinds in diverse families and sizes on ClassEval-T. Experimental results demonstrate a remarkable performance drop compared with the most widely studied method-level code translation benchmark, and obvious discrepancies among LLMs appear, showing the effectiveness of ClassEval-T in measuring recent LLMs. Afterwards, we further discuss the usage scenarios for diverse translation strategies and LLMs' ability to dependency awareness when translating class samples. Finally, 1,243 failure cases made by the best-performing LLM under test are analyzed and categorized in this paper for practical guidance and future enlightenment.
📅 2025-03-04 | 💬 Preprint accepted for Publication in Educational Technology & Society (ET&S)
The use of large language model (LLM)-powered chatbots, such as ChatGPT, has become popular across various domains, supporting a range of tasks and processes. However, due to the intrinsic complexity of LLMs, effective prompting is more challenging than it may seem. This highlights the need for innovative educational and support strategies that are both widely accessible and seamlessly integrated into task workflows. Yet, LLM prompting is highly task- and domain-dependent, limiting the effectiveness of generic approaches. In this study, we explore whether LLM-based methods can facilitate learning assessments by using ad-hoc guidelines and a minimal number of annotated prompt samples. Our framework transforms these guidelines into features that can be identified within learners' prompts. Using these feature descriptions and annotated examples, we create few-shot learning detectors. We then evaluate different configurations of these detectors, testing three state-of-the-art LLMs and ensembles. We run experiments with cross-validation on a sample of original prompts, as well as tests on prompts collected from task-naive learners. Our results show how LLMs perform on feature detection. Notably, GPT- 4 demonstrates strong performance on most features, while closely related models, such as GPT-3 and GPT-3.5 Turbo (Instruct), show inconsistent behaviors in feature classification. These differences highlight the need for further research into how design choices impact feature selection and prompt detection. Our findings contribute to the fields of generative AI literacy and computer-supported learning assessment, offering valuable insights for both researchers and practitioners.
📅 2025-03-04 | 💬 5 pages, 4 figures,4 tables
Click-Through Rate (CTR) prediction is essential in online advertising, where semantic information plays a pivotal role in shaping user decisions and enhancing CTR effectiveness. Capturing and modeling deep semantic information, such as a user's preference for "H\"aagen-Dazs' HEAVEN strawberry light ice cream" due to its health-conscious and premium attributes, is challenging. Traditional semantic modeling often overlooks these intricate details at the user and item levels. To bridge this gap, we introduce a novel approach that models deep semantic information end-to-end, leveraging the comprehensive world knowledge capabilities of Large Language Models (LLMs). Our proposed LLM-infused CTR prediction framework(Multi-level Deep Semantic Information Infused CTR model via Distillation, MSD) is designed to uncover deep semantic insights by utilizing LLMs to extract and distill critical information into a smaller, more efficient model, enabling seamless end-to-end training and inference. Importantly, our framework is carefully designed to balance efficiency and effectiveness, ensuring that the model not only achieves high performance but also operates with optimal resource utilization. Online A/B tests conducted on the Meituan sponsored-search system demonstrate that our method significantly outperforms baseline models in terms of Cost Per Mile (CPM) and CTR, validating its effectiveness, scalability, and balanced approach in real-world applications.
📅 2025-03-04 | 💬 36 pages, 37 figures
Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals .
📅 2025-03-04 | 💬 Submitted to ACL ARR 2024 December
Long-context modeling has drawn more and more attention in the area of Large Language Models (LLMs). Continual training with long-context data becomes the de-facto method to equip LLMs with the ability to process long inputs. However, it still remains an open challenge to measure the quality of long-context training data. To address this issue, we propose a Long-context data selection framework with Attention-based Dependency Measurement (LADM), which can efficiently identify high-quality long-context data from a large-scale, multi-domain pre-training corpus. LADM leverages the retrieval capabilities of the attention mechanism to capture contextual dependencies, ensuring a comprehensive quality measurement of long-context data. Experimental results show that our LADM framework significantly boosts the performance of LLMs on multiple long-context tasks with only 1B tokens for continual training.
📅 2025-03-04 | 💬 10 pages, 8 figures, 6 tables, submitted for review under IJCNN 2025
Large Language Models (LLMs) offer remarkable capabilities in code generation, natural language processing, and domain-specific reasoning. Their potential in aiding quantum software development remains underexplored, particularly for the PennyLane framework-a leading platform for hybrid quantum-classical computing. To address this gap, we introduce a novel, high-quality dataset comprising 3,347 PennyLane-specific code samples of quantum circuits and their contextual descriptions, specifically curated to train/fine-tune LLM-based quantum code assistance. Our key contributions are threefold: (1) the automatic creation and open-source release of a comprehensive PennyLane dataset leveraging quantum computing textbooks, official documentation, and open-source repositories; (2) the development of a systematic methodology for data refinement, annotation, and formatting to optimize LLM training efficiency; and (3) a thorough evaluation, based on a Retrieval-Augmented Generation (RAG) framework, demonstrating the effectiveness of our dataset in streamlining PennyLane code generation and improving quantum development workflows. Compared to existing efforts that predominantly focus on Qiskit, our dataset significantly broadens the spectrum of quantum frameworks covered in AI-driven code assistance. By bridging this gap and providing reproducible dataset-creation methodologies, we aim to advance the field of AI-assisted quantum programming, making quantum computing more accessible to both newcomers and experienced developers.
📅 2025-03-04 | 💬 Accepted at ICLR 2025
Very large language models (LLMs) such as GPT-4 have shown the ability to handle complex tasks by generating and self-refining step-by-step rationales. Smaller language models (SLMs), typically with < 13B parameters, have been improved by using the data generated from very-large LMs through knowledge distillation. However, various practical constraints such as API costs, copyright, legal and ethical policies restrict using large (often opaque) models to train smaller models for commercial use. Limited success has been achieved at improving the ability of an SLM to explore the space of possible rationales and evaluate them by itself through self-deliberation. To address this, we propose COALITION, a trainable framework that facilitates interaction between two variants of the same SLM and trains them to generate and refine rationales optimized for the end-task. The variants exhibit different behaviors to produce a set of diverse candidate rationales during the generation and refinement steps. The model is then trained via Selective Rationale Optimization (SRO) to prefer generating rationale candidates that maximize the likelihood of producing the ground-truth answer. During inference, COALITION employs a controller to select the suitable variant for generating and refining the rationales. On five different datasets covering mathematical problems, commonsense reasoning, and natural language inference, COALITION outperforms several baselines by up to 5%. Our ablation studies reveal that cross-communication between the two variants performs better than using the single model to self-refine the rationales. We also demonstrate the applicability of COALITION for LMs of varying scales (4B to 14B parameters) and model families (Mistral, Llama, Qwen, Phi). We release the code for this work at https://github.com/Sohanpatnaik106/coalition.
📅 2025-03-04
This paper investigates the challenges of affect control in large language models (LLMs), focusing on their ability to express appropriate emotional states during extended dialogues. We evaluated state-of-the-art open-weight LLMs to assess their affective expressive range in terms of arousal and valence. Our study employs a novel methodology combining LLM-based sentiment analysis with multiturn dialogue simulations between LLMs. We quantify the models' capacity to express a wide spectrum of emotions and how they fluctuate during interactions. Our findings reveal significant variations among LLMs in their ability to maintain consistent affect, with some models demonstrating more stable emotional trajectories than others. Furthermore, we identify key challenges in affect control, including difficulties in producing and maintaining extreme emotional states and limitations in adapting affect to changing conversational contexts. These findings have important implications for the development of more emotionally intelligent AI systems and highlight the need for improved affect modelling in LLMs.
📅 2025-03-04
Personalizing Large Language Models (LLMs) has become a critical step in facilitating their widespread application to enhance individual life experiences. In pursuit of personalization, distilling key preference information from an individual's historical data as instructional preference context to customize LLM generation has emerged as a promising direction. However, these methods face a fundamental limitation by overlooking the inter-user comparative analysis, which is essential for identifying the inter-user differences that truly shape preferences. To address this limitation, we propose Difference-aware Personalization Learning (DPL), a novel approach that emphasizes extracting inter-user differences to enhance LLM personalization. DPL strategically selects representative users for comparison and establishes a structured standard to extract meaningful, task-relevant differences for customizing LLM generation. Extensive experiments on real-world datasets demonstrate that DPL significantly enhances LLM personalization. We release our code at https://github.com/SnowCharmQ/DPL.
📅 2025-03-04
Large Language Models (LLMs) are increasingly integrated into software applications, with prompts serving as the primary 'programming' interface to guide their behavior. As a result, a new software paradigm, promptware, has emerged, using natural language prompts to interact with LLMs and enabling complex tasks without traditional coding. Unlike traditional software, which relies on formal programming languages and deterministic runtime environments, promptware is based on ambiguous, unstructured, and context-dependent natural language and operates on LLMs as runtime environments, which are probabilistic and non-deterministic. These fundamental differences introduce unique challenges in prompt development. In practice, prompt development is largely ad hoc and experimental, relying on a time-consuming trial-and-error process - a challenge we term the 'promptware crisis.' To address this, we propose promptware engineering, a new methodology that adapts established software engineering principles to the process of prompt development. Building on decades of success in traditional software engineering, we envision a systematic framework that includes prompt requirements engineering, design, implementation, testing, debugging, and evolution. Unlike traditional software engineering, our framework is specifically tailored to the unique characteristics of prompt development. This paper outlines a comprehensive roadmap for promptware engineering, identifying key research directions and offering actionable insights to advance LLM-based software development.
📅 2025-03-04 | 💬 22 pages, 11 images, 9 tables, Manuscript submitted to a journal (2024)
LLMs have garnered considerable attention for their potential to streamline Automated Program Repair (APR). LLM-based approaches can either insert the correct code or directly generate patches when provided with buggy methods. However, most of LLM-based APR methods rely on a single type of software information, without fully leveraging different software artifacts. Despite this, many LLM-based approaches do not explore which specific types of information best assist in APR. Addressing this gap is crucial for advancing LLM-based APR techniques. We propose DEVLoRe to use issue content (description and message) and stack error traces to localize buggy methods, then rely on debug information in buggy methods and issue content and stack error to localize buggy lines and generate plausible patches which can pass all unit tests. The results show that while issue content is particularly effective in assisting LLMs with fault localization and program repair, different types of software artifacts complement each other. By incorporating different artifacts, DEVLoRe successfully locates 49.3% and 47.6% of single and non-single buggy methods and generates 56.0% and 14.5% plausible patches for the Defects4J v2.0 dataset, respectively. This outperforms current state-of-the-art APR methods. The source code and experimental results of this work for replication are available at https://github.com/XYZboom/DEVLoRe.
📅 2025-03-04
The task of scholar name disambiguation is crucial in various real-world scenarios, including bibliometric-based candidate evaluation for awards, application material anti-fraud measures, and more. Despite significant advancements, current methods face limitations due to the complexity of heterogeneous data, often necessitating extensive human intervention. This paper proposes a novel approach by leveraging search-enhanced language models across multiple languages to improve name disambiguation. By utilizing the powerful query rewriting, intent recognition, and data indexing capabilities of search engines, our method can gather richer information for distinguishing between entities and extracting profiles, resulting in a more comprehensive data dimension. Given the strong cross-language capabilities of large language models(LLMs), optimizing enhanced retrieval methods with this technology offers substantial potential for high-efficiency information retrieval and utilization. Our experiments demonstrate that incorporating local languages significantly enhances disambiguation performance, particularly for scholars from diverse geographic regions. This multi-lingual, search-enhanced methodology offers a promising direction for more efficient and accurate active scholar name disambiguation.
📅 2025-03-04
To provide flexibility and low-level interaction capabilities, the unsafe tag in Rust is essential in many projects, but undermines memory safety and introduces Undefined Behaviors (UBs) that reduce safety. Eliminating these UBs requires a deep understanding of Rust's safety rules and strong typing. Traditional methods require depth analysis of code, which is laborious and depends on knowledge design. The powerful semantic understanding capabilities of LLM offer new opportunities to solve this problem. Although existing large model debugging frameworks excel in semantic tasks, limited by fixed processes and lack adaptive and dynamic adjustment capabilities. Inspired by the dual process theory of decision-making (Fast and Slow Thinking), we present a LLM-based framework called RustBrain that automatically and flexibly minimizes UBs in Rust projects. Fast thinking extracts features to generate solutions, while slow thinking decomposes, verifies, and generalizes them abstractly. To apply verification and generalization results to solution generation, enabling dynamic adjustments and precise outputs, RustBrain integrates two thinking through a feedback mechanism. Experimental results on Miri dataset show a 94.3% pass rate and 80.4% execution rate, improving flexibility and Rust projects safety.
📅 2025-03-04
The application of large language models (LLMs) in the legal domain holds significant potential for information retrieval and question answering, yet Thai legal QA systems face challenges due to a lack of standardized evaluation benchmarks and the complexity of Thai legal structures. This paper introduces NitiBench, a benchmark comprising two datasets: the NitiBench-CCL, covering general Thai financial law, and the NitiBench-Tax, which includes real-world tax law cases requiring advanced legal reasoning. We evaluate retrieval-augmented generation (RAG) and long-context LLM-based approaches to address three key research questions: the impact of domain-specific components like section-based chunking and cross-referencing, the comparative performance of different retrievers and LLMs, and the viability of long-context LLMs as an alternative to RAG. Our results show that section-based chunking significantly improves retrieval and end-to-end performance, current retrievers struggle with complex queries, and long-context LLMs still underperform RAG-based systems in Thai legal QA. To support fair evaluation, we propose tailored multi-label retrieval metrics and the use of an LLM-as-judge for coverage and contradiction detection method. These findings highlight the limitations of current Thai legal NLP solutions and provide a foundation for future research in the field. We also open-sourced our codes and dataset to available publicly.
📅 2025-03-04
Misinformation surrounding emerging outbreaks poses a serious societal threat, making robust countermeasures essential. One promising approach is stance detection (SD), which identifies whether social media posts support or oppose misleading claims. In this work, we finetune classifiers on COVID-19 misinformation SD datasets consisting of claims and corresponding tweets. Specifically, we test controllable misinformation generation (CMG) using large language models (LLMs) as a method for data augmentation. While CMG demonstrates the potential for expanding training datasets, our experiments reveal that performance gains over traditional augmentation methods are often minimal and inconsistent, primarily due to built-in safeguards within LLMs. We release our code and datasets to facilitate further research on misinformation detection and generation.
📅 2025-03-04
The rapid advancement of large language models (LLMs) increases the difficulty of distinguishing between human-written and LLM-generated text. Detecting LLM-generated text is crucial for upholding academic integrity, preventing plagiarism, protecting copyrights, and ensuring ethical research practices. Most prior studies on detecting LLM-generated text focus primarily on English text. However, languages with distinct morphological and syntactic characteristics require specialized detection approaches. Their unique structures and usage patterns can hinder the direct application of methods primarily designed for English. Among such languages, we focus on Korean, which has relatively flexible spacing rules, a rich morphological system, and less frequent comma usage compared to English. We introduce KatFish, the first benchmark dataset for detecting LLM-generated Korean text. The dataset consists of text written by humans and generated by four LLMs across three genres. By examining spacing patterns, part-of-speech diversity, and comma usage, we illuminate the linguistic differences between human-written and LLM-generated Korean text. Building on these observations, we propose KatFishNet, a detection method specifically designed for the Korean language. KatFishNet achieves an average of 19.78% higher AUROC compared to the best-performing existing detection method. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_generated_korean_text_through_linguistic_analysis.
📅 2025-03-04
Large Language Models (LLMs) are known to exhibit a memorization phenomenon in code generation: instead of truly understanding the underlying principles of a programming problem, they tend to memorize the original prompt and its solution together in the training. Consequently, when facing variants of the original problem, their answers very likely resemble the memorized solutions and fail to generalize. In this paper, we investigate this phenomenon by designing three evolution strategies to create variants: mutation, paraphrasing, and code-rewriting. By comparing the performance and AST similarity of the LLM-generated codes before and after these three evolutions, we develop a memorization score that positively correlates with the level of memorization. As expected, as supervised fine-tuning goes on, the memorization score rises before overfitting, suggesting more severe memorization. We demonstrate that common mitigation approaches, such as prompt translation and using evolved variants as data augmentation in supervised learning and reinforcement learning, either compromise the performance or fail to alleviate the memorization issue. Therefore, memorization remains a significant challenge in LLM code generation, highlighting the need for a more effective solution.
📅 2025-03-04 | 💬 NAACL 2025 Findings
Personalizing large language models (LLMs) is essential for delivering tailored interactions that improve user experience. Many existing personalization methods require fine-tuning LLMs for each user, rendering them prohibitively expensive for widespread adoption. Although retrieval-based approaches offer a more compute-efficient alternative, they still depend on large, high-quality datasets that are not consistently available for all users. To address this challenge, we propose CHAMELEON, a scalable and efficient personalization approach that uses (1) self-generated personal preference data and (2) representation editing to enable quick and cost-effective personalization. Our experiments on various tasks, including those from the LaMP personalization benchmark, show that CHAMELEON efficiently adapts models to personal preferences, improving instruction-tuned models and outperforms two personalization baselines by an average of 40% across two model architectures.
📅 2025-03-03
VR simulation in Health Professions (HP) education demonstrates huge potential, but fixed learning content with little customization limits its application beyond lab environments. To address these limitations in the context of VR for patient communication training, we conducted a user-centered study involving semi-structured interviews with advanced HP students to understand their challenges in clinical communication training and perceptions of VR-based solutions. From this, we derived design insights emphasizing the importance of realistic scenarios, simple interactions, and unpredictable dialogues. Building on these insights, we developed the Virtual AI Patient Simulator (VAPS), a novel VR system powered by Large Language Models (LLMs) and Embodied Conversational Agents (ECAs), supporting dynamic and customizable patient interactions for immersive learning. We also provided an example of how clinical professors could use user-friendly design forms to create personalized scenarios that align with course objectives in VAPS and discuss future implications of integrating AI-driven technologies into VR education.
📅 2025-03-03 | 💬 14 pages, 10 figures, submitted to ACL Rolling Review, February 2025 cycle, see https://github.com/Aurora-cx/TypoLLM
Human readers can efficiently comprehend scrambled words, a phenomenon known as Typoglycemia, primarily by relying on word form; if word form alone is insufficient, they further utilize contextual cues for interpretation. While advanced large language models (LLMs) exhibit similar abilities, the underlying mechanisms remain unclear. To investigate this, we conduct controlled experiments to analyze the roles of word form and contextual information in semantic reconstruction and examine LLM attention patterns. Specifically, we first propose SemRecScore, a reliable metric to quantify the degree of semantic reconstruction, and validate its effectiveness. Using this metric, we study how word form and contextual information influence LLMs' semantic reconstruction ability, identifying word form as the core factor in this process. Furthermore, we analyze how LLMs utilize word form and find that they rely on specialized attention heads to extract and process word form information, with this mechanism remaining stable across varying levels of word scrambling. This distinction between LLMs' fixed attention patterns primarily focused on word form and human readers' adaptive strategy in balancing word form and contextual information provides insights into enhancing LLM performance by incorporating human-like, context-aware mechanisms.
📅 2025-03-03 | 💬 Submitted to ACL 2025
Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS.
📅 2025-03-03
With a recent trend of using Large Language Models (LLMs) for different applications within smart cities, there is a need for pushing these models toward the edge of network while still preserving their performance. Edge Computing (EC) as a physically closer computing resource to the end users can help to reduce the communication delay for serving end users' tasks for LLM-dependent services. However, EC servers have limited capacity in terms of communication, computation, and storage capacity. This paper introduces DILEMMA, a novel framework addressing the challenges of deploying LLMs in EC systems by jointly optimizing layer placement and layer quantization in EC systems. DILEMMA formulates an Integer Linear Programming problem to minimize total inference delay while ensuring acceptable LLM performance levels, leveraging layer-wise quantization and knowledge distillation for LLM performance control. Experimental evaluations on OPT-350 model using the SQuAD dataset demonstrate that DILEMMA achieves a quantization ratio of up to 12.75% while preserving model loss, highlighting its effectiveness in resource-constrained environments.
📅 2025-03-03 | 💬 15 pages, 10 figures
Integrating LLM models into educational practice fosters personalized learning by accommodating the diverse behavioral patterns of different learner types. This study aims to explore these learner types within a novel interactive setting, providing a detailed analysis of their distinctive characteristics and interaction dynamics. The research involved 110 students from a university in China, who engaged with multiple LLM agents in an LLM-empowered learning environment, completing coursework across six modules. Data on the students' non-cognitive traits, course engagement, and AI interaction patterns were collected and analyzed. Using hierarchical cluster analysis, the students were classified into three distinct groups: active questioners, responsive navigators, and silent listeners. Epistemic network analysis was then applied to further delineate the interaction profiles and cognitive engagement of different types of learners. The findings underscore how different learner types engage with human-AI interactive learning and offer practical implications for the design of adaptive educational systems.
📅 2025-03-03
Uncertainty estimation is crucial for evaluating Large Language Models (LLMs), particularly in high-stakes domains where incorrect answers result in significant consequences. Numerous approaches consider this problem, while focusing on a specific type of uncertainty, ignoring others. We investigate what estimates, specifically token-wise entropy and model-as-judge (MASJ), would work for multiple-choice question-answering tasks for different question topics. Our experiments consider three LLMs: Phi-4, Mistral, and Qwen of different sizes from 1.5B to 72B and $14$ topics. While MASJ performs similarly to a random error predictor, the response entropy predicts model error in knowledge-dependent domains and serves as an effective indicator of question difficulty: for biology ROC AUC is $0.73$. This correlation vanishes for the reasoning-dependent domain: for math questions ROC-AUC is $0.55$. More principally, we found out that the entropy measure required a reasoning amount. Thus, data-uncertainty related entropy should be integrated within uncertainty estimates frameworks, while MASJ requires refinement. Moreover, existing MMLU-Pro samples are biased, and should balance required amount of reasoning for different subdomains to provide a more fair assessment of LLMs performance.
📅 2025-03-03 | 💬 8 pages, 5 figures for main body
With the rapid development of large language models (LLMs), LLM-as-a-judge has emerged as a widely adopted approach for text quality evaluation, including hallucination evaluation. While previous studies have focused exclusively on single-context evaluation (e.g., discourse faithfulness or world factuality), real-world hallucinations typically involve mixed contexts, which remains inadequately evaluated. In this study, we use summarization as a representative task to comprehensively evaluate LLMs' capability in detecting mixed-context hallucinations, specifically distinguishing between factual and non-factual hallucinations. Through extensive experiments across direct generation and retrieval-based models of varying scales, our main observations are: (1) LLMs' intrinsic knowledge introduces inherent biases in hallucination evaluation; (2) These biases particularly impact the detection of factual hallucinations, yielding a significant performance bottleneck; (3) The fundamental challenge lies in effective knowledge utilization, balancing between LLMs' intrinsic knowledge and external context for accurate mixed-context hallucination evaluation.
📅 2025-03-03 | 💬 13pages, 4 figures, 6tables
Personalizing large language models (LLMs) is important for aligning outputs with diverse user preferences, yet existing methods struggle with flexibility and generalization. We propose CoPL (Collaborative Preference Learning), a graph-based collaborative filtering framework that models user-response relationships to enhance preference estimation, particularly in sparse annotation settings. By integrating a mixture of LoRA experts, CoPL efficiently fine-tunes LLMs while dynamically balancing shared and user-specific preferences. Additionally, an optimization-free adaptation strategy enables generalization to unseen users without fine-tuning. Experiments on UltraFeedback-P demonstrate that CoPL outperforms existing personalized reward models, effectively capturing both common and controversial preferences, making it a scalable solution for personalized LLM alignment.
📅 2025-03-03
Recent large language model (LLM) reasoning, despite its success, suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth, particularly in small-scale models deployed in resource-constrained environments. This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning to address these challenges, introducing a novel paradigm termed as graph-augmented reasoning. Our goal is to enable frozen, small-scale LLMs to retrieve and process relevant mathematical knowledge in a step-wise manner, enhancing their problem-solving abilities without additional training. To this end, we propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model (PRP-RM) that refines retrieved information and evaluates each reasoning step. Experiments on the Math500 and GSM8K benchmarks across six models demonstrate that KG-RAR yields encouraging results, achieving a 20.73\% relative improvement with Llama-3B on Math500.
📅 2025-03-03 | 💬 14 pages, 10 figures, 2 tables, Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems
Problem reframing is a designerly activity wherein alternative perspectives are created to recast what a stated design problem is about. Generating alternative problem frames is challenging because it requires devising novel and useful perspectives that fit the given problem context. Large language models (LLMs) could assist this activity via their generative capability. However, it is not clear whether they can help designers produce high-quality frames. Therefore, we asked if there are benefits to working with LLMs. To this end, we compared three ways of using LLMs (N=280): 1) free-form, 2) direct generation, and 3) a structured approach informed by a theory of reframing. We found that using LLMs does not help improve the quality of problem frames. In fact, it increases the competence gap between experienced and inexperienced designers. Also, inexperienced ones perceived lower agency when working with LLMs. We conclude that there is no benefit to using LLMs in problem reframing and discuss possible factors for this lack of effect.
📅 2025-03-03
Multiple-choice exam questions with "None of the above" (NA) options have been extensively studied in educational testing, in which existing research suggests that they better assess true knowledge. However, their impact on Large Language Models (LLMs) evaluation remains underexplored. Through systematic experiments with 28 LLMs on the MMLU benchmark, we examine how NA options affect model performance and confidence calibration. Our analysis reveals that NA options, when used as the correct answer, lead to a consistent 30-50\% performance drop across models regardless of scale--suggesting that LLMs lack the meta-cognitive ability to systematically evaluate and reject all given options when none are correct. This degradation shows strong domain dependence, with minimal impact on mathematical reasoning (14.6\% drop) but severe effects on tasks requiring uncertainty handling like business ethics (48.1\% drop). Our results highlight important implications for benchmark design and raise questions about LLMs' ability to handle uncertainty in real-world applications.