Skip to the content.

llm - 2025_03

Home / Papers / llm

Papers

📅 2025-03-07 | 💬 7 pages. Accepted to ICRA 2025
Robotic assembly tasks remain an open challenge due to their long horizon nature and complex part relations. Behavior trees (BTs) are increasingly used in robot task planning for their modularity and flexibility, but creating them manually can be effort-intensive. Large language models (LLMs) have recently been applied to robotic task planning for generating action sequences, yet their ability to generate BTs has not been fully investigated. To this end, we propose LLM-as-BT-Planner, a novel framework that leverages LLMs for BT generation in robotic assembly task planning. Four in-context learning methods are introduced to utilize the natural language processing and inference capabilities of LLMs for producing task plans in BT format, reducing manual effort while ensuring robustness and comprehensibility. Additionally, we evaluate the performance of fine-tuned smaller LLMs on the same tasks. Experiments in both simulated and real-world settings demonstrate that our framework enhances LLMs' ability to generate BTs, improving success rate through in-context learning and supervised fine-tuning.
📅 2025-03-07
Unsupervised domain adaptation leverages abundant labeled data from various source domains to generalize onto unlabeled target data. Prior research has primarily focused on learning domain-invariant features across the source and target domains. However, these methods often require training a model using source domain data, which is time-consuming and can limit model usage for applications with different source data. This paper introduces a simple framework that utilizes the impressive generalization capabilities of Large Language Models (LLMs) for target data annotation without the need of source model training, followed by a novel similarity-based knowledge distillation loss. Our extensive experiments on cross-domain text classification reveal that our framework achieves impressive performance, specifically, 2.44\% accuracy improvement when compared to the SOTA method.
📅 2025-03-07 | 💬 Accepted to NeurIPS 2024 Datasets and Benchmarks Track (Camera-Ready)
Detecting text generated by large language models (LLMs) is of great recent interest. With zero-shot methods like DetectGPT, detection capabilities have reached impressive levels. However, the reliability of existing detectors in real-world applications remains underexplored. In this study, we present a new benchmark, DetectRL, highlighting that even state-of-the-art (SOTA) detection techniques still underperformed in this task. We collected human-written datasets from domains where LLMs are particularly prone to misuse. Using popular LLMs, we generated data that better aligns with real-world applications. Unlike previous studies, we employed heuristic rules to create adversarial LLM-generated text, simulating various prompts usages, human revisions like word substitutions, and writing noises like spelling mistakes. Our development of DetectRL reveals the strengths and limitations of current SOTA detectors. More importantly, we analyzed the potential impact of writing styles, model types, attack methods, the text lengths, and real-world human writing factors on different types of detectors. We believe DetectRL could serve as an effective benchmark for assessing detectors in real-world scenarios, evolving with advanced attack methods, thus providing more stressful evaluation to drive the development of more efficient detectors. Data and code are publicly available at: https://github.com/NLP2CT/DetectRL.
📅 2025-03-07
The increasing adoption of large language models (LLMs) necessitates inference serving systems that can deliver both high throughput and low latency. Deploying LLMs with hundreds of billions of parameters on memory-constrained GPUs exposes significant limitations in static batching methods. Current inference serving systems often treat batch sizes as fixed hyper-parameters, hindering real-time adaptation to varying system conditions. In this paper, we propose a dynamic batching method that continuously monitors memory utilization and adheres to service-level agreements (SLAs) to enable real-time batch size configuration adjustment. The method comprises two core components: a memory-aware batch scheduler that dynamically allocates GPU resources and a latency feedback mechanism that optimizes decoding processes under SLA constraints. The numerical experiments demonstrate throughput gains of 8% to 28% and capacity improvements of 22% compared to traditional static batching methods, while maintaining full compatibility with existing inference infrastructure. These results highlight the effectiveness of dynamic batching in balancing computational efficiency and quality-of-service requirements for contemporary LLM deployment scenarios. The source code of this work is publicly available at https://github.com/KevinLee1110/dynamic-batching.
📅 2025-03-07
Despite the transformative impact of Large Language Models (LLMs) across critical domains such as healthcare, customer service, and business marketing, their integration into Open Radio Access Networks (O-RAN) remains limited. This gap is primarily due to the absence of domain-specific foundational models, with existing solutions often relying on general-purpose LLMs that fail to address the unique challenges and technical intricacies of O-RAN. To bridge this gap, we introduce ORANSight-2.0 (O-RAN Insights), a pioneering initiative aimed at developing specialized foundational LLMs tailored for O-RAN. Built on 18 LLMs spanning five open-source LLM frameworks, ORANSight-2.0 fine-tunes models ranging from 1 to 70B parameters, significantly reducing reliance on proprietary, closed-source models while enhancing performance for O-RAN. At the core of ORANSight-2.0 is RANSTRUCT, a novel Retrieval-Augmented Generation (RAG) based instruction-tuning framework that employs two LLM agents to create high-quality instruction-tuning datasets. The generated dataset is then used to fine-tune the 18 pre-trained open-source LLMs via QLoRA. To evaluate ORANSight-2.0, we introduce srsRANBench, a novel benchmark designed for code generation and codebase understanding in the context of srsRAN, a widely used 5G O-RAN stack. We also leverage ORANBench13K, an existing benchmark for assessing O-RAN-specific knowledge. Our comprehensive evaluations demonstrate that ORANSight-2.0 models outperform general-purpose and closed-source models, such as ChatGPT-4o and Gemini, by 5.421% on ORANBench and 18.465% on srsRANBench, achieving superior performance while maintaining lower computational and energy costs. We also experiment with RAG-augmented variants of ORANSight-2.0 LLMs and thoroughly evaluate their energy characteristics, demonstrating costs for training, standard inference, and RAG-augmented inference.
📅 2025-03-07
Large language models (LLMs) have achieved remarkable performance on knowledge graph question answering (KGQA) tasks by planning and interacting with knowledge graphs. However, existing methods often confuse tool utilization with knowledge reasoning, harming readability of model outputs and giving rise to hallucinatory tool invocations, which hinder the advancement of KGQA. To address this issue, we propose Memory-augmented Query Reconstruction for LLM-based Knowledge Graph Reasoning (MemQ) to decouple LLM from tool invocation tasks using LLM-built query memory. By establishing a memory module with explicit descriptions of query statements, the proposed MemQ facilitates the KGQA process with natural language reasoning and memory-augmented query reconstruction. Meanwhile, we design an effective and readable reasoning to enhance the LLM's reasoning capability in KGQA. Experimental results that MemQ achieves state-of-the-art performance on widely used benchmarks WebQSP and CWQ.
📅 2025-03-07 | 💬 18 pages, 21 figures
Chain-of-thought (CoT) prompting demonstrates varying performance under different reasoning tasks. Previous work attempts to evaluate it but falls short in providing an in-depth analysis of patterns that influence the CoT. In this paper, we study the CoT performance from the perspective of effectiveness and faithfulness. For the former, we identify key factors that influence CoT effectiveness on performance improvement, including problem difficulty, information gain, and information flow. For the latter, we interpret the unfaithful CoT issue by conducting a joint analysis of the information interaction among the question, CoT, and answer. The result demonstrates that, when the LLM predicts answers, it can recall correct information missing in the CoT from the question, leading to the problem. Finally, we propose a novel algorithm to mitigate this issue, in which we recall extra information from the question to enhance the CoT generation and evaluate CoTs based on their information gain. Extensive experiments demonstrate that our approach enhances both the faithfulness and effectiveness of CoT.
📅 2025-03-07
Large language models (LLMs) based on generative pre-trained Transformer have achieved remarkable performance on knowledge graph question-answering (KGQA) tasks. However, LLMs often produce ungrounded subgraph planning or reasoning results in KGQA due to the hallucinatory behavior brought by the generative paradigm. To tackle this issue, we propose READS to reformulate the KGQA process into discriminative subtasks, which simplifies the search space for each subtasks. Based on the subtasks, we design a new corresponding discriminative inference strategy to conduct the reasoning for KGQA, thereby alleviating hallucination and ungrounded reasoning issues in LLMs. Experimental results show that the proposed approach outperforms multiple strong comparison methods, along with achieving state-of-the-art performance on widely used benchmarks WebQSP and CWQ.
📅 2025-03-07
Vision-and-Language Navigation (VLN) is an essential skill for embodied agents, allowing them to navigate in 3D environments following natural language instructions. High-performance navigation models require a large amount of training data, the high cost of manually annotating data has seriously hindered this field. Therefore, some previous methods translate trajectory videos into step-by-step instructions for expanding data, but such instructions do not match well with users' communication styles that briefly describe destinations or state specific needs. Moreover, local navigation trajectories overlook global context and high-level task planning. To address these issues, we propose NavRAG, a retrieval-augmented generation (RAG) framework that generates user demand instructions for VLN. NavRAG leverages LLM to build a hierarchical scene description tree for 3D scene understanding from global layout to local details, then simulates various user roles with specific demands to retrieve from the scene tree, generating diverse instructions with LLM. We annotate over 2 million navigation instructions across 861 scenes and evaluate the data quality and navigation performance of trained models.
📅 2025-03-07 | 💬 8 pages, 3 figures
Evaluation methods for autonomous driving are crucial for algorithm optimization. However, due to the complexity of driving intelligence, there is currently no comprehensive evaluation method for the level of autonomous driving intelligence. In this paper, we propose an evaluation framework for driving behavior intelligence in complex traffic environments, aiming to fill this gap. We constructed a natural language evaluation dataset of human professional drivers and passengers through naturalistic driving experiments and post-driving behavior evaluation interviews. Based on this dataset, we developed an LLM-powered driving evaluation framework. The effectiveness of this framework was validated through simulated experiments in the CARLA urban traffic simulator and further corroborated by human assessment. Our research provides valuable insights for evaluating and designing more intelligent, human-like autonomous driving agents. The implementation details of the framework and detailed information about the dataset can be found at Github.
📅 2025-03-07 | 💬 Accepted by ICLR 2025: https://openreview.net/forum?id=zJjzNj6QUe
Evaluating large language models (LLMs) in diverse and challenging scenarios is essential to align them with human preferences. To mitigate the prohibitive costs associated with human evaluations, utilizing a powerful LLM as a judge has emerged as a favored approach. Nevertheless, this methodology encounters several challenges, including substantial expenses, concerns regarding privacy and security, and reproducibility. In this paper, we propose a straightforward, replicable, and accurate automated evaluation method by leveraging a lightweight LLM as the judge, named RocketEval. Initially, we identify that the performance disparity between lightweight and powerful LLMs in evaluation tasks primarily stems from their ability to conduct comprehensive analyses, which is not easily enhanced through techniques such as chain-of-thought reasoning. By reframing the evaluation task as a multi-faceted Q&A using an instance-specific checklist, we demonstrate that the limited judgment accuracy of lightweight LLMs is largely attributes to high uncertainty and positional bias. To address these challenges, we introduce an automated evaluation process grounded in checklist grading, which is designed to accommodate a variety of scenarios and questions. This process encompasses the creation of checklists, the grading of these checklists by lightweight LLMs, and the reweighting of checklist items to align with the supervised annotations. Our experiments carried out on the automated evaluation benchmarks, MT-Bench and WildBench datasets, reveal that RocketEval, when using Gemma-2-2B as the judge, achieves a high correlation (0.965) with human preferences, which is comparable to GPT-4o. Moreover, RocketEval provides a cost reduction exceeding 50-fold for large-scale evaluation and comparison scenarios. Our code is available at https://github.com/Joinn99/RocketEval-ICLR .
📅 2025-03-07 | 💬 34 pages
In this technical report, we tackle the challenges of training large-scale Mixture of Experts (MoE) models, focusing on overcoming cost inefficiency and resource limitations prevalent in such systems. To address these issues, we present two differently sized MoE large language models (LLMs), namely Ling-Lite and Ling-Plus (referred to as "Bailing" in Chinese, spelled B\v{a}il\'ing in Pinyin). Ling-Lite contains 16.8 billion parameters with 2.75 billion activated parameters, while Ling-Plus boasts 290 billion parameters with 28.8 billion activated parameters. Both models exhibit comparable performance to leading industry benchmarks. This report offers actionable insights to improve the efficiency and accessibility of AI development in resource-constrained settings, promoting more scalable and sustainable technologies. Specifically, to reduce training costs for large-scale MoE models, we propose innovative methods for (1) optimization of model architecture and training processes, (2) refinement of training anomaly handling, and (3) enhancement of model evaluation efficiency. Additionally, leveraging high-quality data generated from knowledge graphs, our models demonstrate superior capabilities in tool use compared to other models. Ultimately, our experimental findings demonstrate that a 300B MoE LLM can be effectively trained on lower-performance devices while achieving comparable performance to models of a similar scale, including dense and MoE models. Compared to high-performance devices, utilizing a lower-specification hardware system during the pre-training phase demonstrates significant cost savings, reducing computing costs by approximately 20%. The models can be accessed at https://huggingface.co/inclusionAI.
📅 2025-03-07
Interactions with online Large Language Models raise privacy issues where providers can gather sensitive information about users and their companies from the prompts. While Differential Privacy can be applied on textual prompts through the Multidimensional Laplace Mechanism, we show that it is difficult to anticipate the utility of such sanitized prompt. Poor utility has clear monetary consequences for LLM services charging on a pay-per-use model as well as great amount of computing resources wasted. To this end, we propose an architecture to predict the utility of a given sanitized prompt before it is sent to the LLM. We experimentally show that our architecture helps prevent such resource waste for up to 12% of the prompts. We also reproduce experiments from one of the most cited paper on distance-based DP for text sanitization and show that a potential performance-driven implementation choice completely changes the output while not being explicitly defined in the paper.
📅 2025-03-07
In this work, we highlight vulnerabilities in robotic systems integrating large language models (LLMs) and vision-language models (VLMs) due to input modality sensitivities. While LLM/VLM-controlled robots show impressive performance across various tasks, their reliability under slight input variations remains underexplored yet critical. These models are highly sensitive to instruction or perceptual input changes, which can trigger misalignment issues, leading to execution failures with severe real-world consequences. To study this issue, we analyze the misalignment-induced vulnerabilities within LLM/VLM-controlled robotic systems and present a mathematical formulation for failure modes arising from variations in input modalities. We propose empirical perturbation strategies to expose these vulnerabilities and validate their effectiveness through experiments on multiple robot manipulation tasks. Our results show that simple input perturbations reduce task execution success rates by 22.2% and 14.6% in two representative LLM/VLM-controlled robotic systems. These findings underscore the importance of input modality robustness and motivate further research to ensure the safe and reliable deployment of advanced LLM/VLM-controlled robotic systems.
📅 2025-03-07
Agents based on large language models (LLMs) have demonstrated strong capabilities in a wide range of complex, real-world applications. However, LLM agents with a compromised memory bank may easily produce harmful outputs when the past records retrieved for demonstration are malicious. In this paper, we propose a novel Memory INJection Attack, MINJA, that enables the injection of malicious records into the memory bank by only interacting with the agent via queries and output observations. These malicious records are designed to elicit a sequence of malicious reasoning steps leading to undesirable agent actions when executing the victim user's query. Specifically, we introduce a sequence of bridging steps to link the victim query to the malicious reasoning steps. During the injection of the malicious record, we propose an indication prompt to guide the agent to autonomously generate our designed bridging steps. We also propose a progressive shortening strategy that gradually removes the indication prompt, such that the malicious record will be easily retrieved when processing the victim query comes after. Our extensive experiments across diverse agents demonstrate the effectiveness of MINJA in compromising agent memory. With minimal requirements for execution, MINJA enables any user to influence agent memory, highlighting practical risks of LLM agents.
📅 2025-03-07 | 💬 Preprint
Recent advancements in long-context Large Language Models (LLMs) have primarily concentrated on processing extended input contexts, resulting in significant strides in long-context comprehension. However, the equally critical aspect of generating long-form outputs has received comparatively less attention. This paper advocates for a paradigm shift in NLP research toward addressing the challenges of long-output generation. Tasks such as novel writing, long-term planning, and complex reasoning require models to understand extensive contexts and produce coherent, contextually rich, and logically consistent extended text. These demands highlight a critical gap in current LLM capabilities. We underscore the importance of this under-explored domain and call for focused efforts to develop foundational LLMs tailored for generating high-quality, long-form outputs, which hold immense potential for real-world applications.
📅 2025-03-07
LLM-as-a-Judge is a framework that uses an LLM (large language model) to evaluate the quality of natural language text - typically text that is also generated by an LLM. This framework holds great promise due to its relative low-cost, ease of use, and strong correlations with human stylistic preferences. However, LLM Judges have been shown to exhibit biases that can distort their judgments. We evaluate how well LLM Judges can grade whether a given response to a conversational question is correct, an ability crucial to soundly estimating the overall response quality. To do so, we create and publicly release a human-annotated dataset with labels of correctness for 1,200 LLM responses. We source questions from a combination of existing datasets and a novel, challenging benchmark (BFF-Bench) created for this analysis. We demonstrate a strong connection between an LLM's ability to correctly answer a question and grade responses to that question. Although aggregate level statistics might imply a judge has high agreement with human annotators, it will struggle on the subset of questions it could not answer. To address this issue, we recommend a simple solution: provide the judge with a correct, human-written reference answer. We perform an in-depth analysis on how reference quality can affect the performance of an LLM Judge. We show that providing a weaker judge (e.g. Qwen 2.5 7B) with higher quality references reaches better agreement with human annotators than a stronger judge (e.g. GPT-4o) with synthetic references.
📅 2025-03-07
Large language models (LLMs) are increasingly deployed across diverse domains, yet they are prone to generating factually incorrect outputs - commonly known as "hallucinations." Among existing mitigation strategies, uncertainty-based methods are particularly attractive due to their ease of implementation, independence from external data, and compatibility with standard LLMs. In this work, we introduce a novel and scalable uncertainty-based semantic clustering framework for automated hallucination detection. Our approach leverages sentence embeddings and hierarchical clustering alongside a newly proposed inconsistency measure, SINdex, to yield more homogeneous clusters and more accurate detection of hallucination phenomena across various LLMs. Evaluations on prominent open- and closed-book QA datasets demonstrate that our method achieves AUROC improvements of up to 9.3% over state-of-the-art techniques. Extensive ablation studies further validate the effectiveness of each component in our framework.
📅 2025-03-07 | 💬 14 pages, 7 figures
Large Language Models (LLMs) have demonstrated impressive capabilities across a range of natural language processing tasks. In particular, improvements in reasoning abilities and the expansion of context windows have opened new avenues for leveraging these powerful models. NL2SQL is challenging in that the natural language question is inherently ambiguous, while the SQL generation requires a precise understanding of complex data schema and semantics. One approach to this semantic ambiguous problem is to provide more and sufficient contextual information. In this work, we explore the performance and the latency trade-offs of the extended context window (a.k.a., long context) offered by Google's state-of-the-art LLM (\textit{gemini-1.5-pro}). We study the impact of various contextual information, including column example values, question and SQL query pairs, user-provided hints, SQL documentation, and schema. To the best of our knowledge, this is the first work to study how the extended context window and extra contextual information can help NL2SQL generation with respect to both accuracy and latency cost. We show that long context LLMs are robust and do not get lost in the extended contextual information. Additionally, our long-context NL2SQL pipeline based on Google's \textit{gemini-pro-1.5} achieve strong performances on various benchmark datasets without finetuning and expensive self-consistency based techniques.
📅 2025-03-07
The LLM-as-a-judge paradigm, in which a judge LLM system replaces human raters in rating the outputs of other generative AI (GenAI) systems, has come to play a critical role in scaling and standardizing GenAI evaluations. To validate judge systems, evaluators collect multiple human ratings for each item in a validation corpus, and then aggregate the ratings into a single, per-item gold label rating. High agreement rates between these gold labels and judge system ratings are then taken as a sign of good judge system performance. In many cases, however, items or rating criteria may be ambiguous, or there may be principled disagreement among human raters. In such settings, gold labels may not exist for many of the items. In this paper, we introduce a framework for LLM-as-a-judge validation in the absence of gold labels. We present a theoretical analysis drawing connections between different measures of judge system performance under different rating elicitation and aggregation schemes. We also demonstrate empirically that existing validation approaches can select judge systems that are highly suboptimal, performing as much as 34% worse than the systems selected by alternative approaches that we describe. Based on our findings, we provide concrete recommendations for developing more reliable approaches to LLM-as-a-judge validation.
📅 2025-03-07 | 💬 8 Pages, 9 Figures, 5 Tables
The increasing complexity and scale of Deep Neural Networks (DNNs) necessitate specialized tensor accelerators, such as Tensor Processing Units (TPUs), to meet various computational and energy efficiency requirements. Nevertheless, designing optimal TPU remains challenging due to the high domain expertise level, considerable manual design time, and lack of high-quality, domain-specific datasets. This paper introduces TPU-Gen, the first Large Language Model (LLM) based framework designed to automate the exact and approximate TPU generation process, focusing on systolic array architectures. TPU-Gen is supported with a meticulously curated, comprehensive, and open-source dataset that covers a wide range of spatial array designs and approximate multiply-and-accumulate units, enabling design reuse, adaptation, and customization for different DNN workloads. The proposed framework leverages Retrieval-Augmented Generation (RAG) as an effective solution for a data-scare hardware domain in building LLMs, addressing the most intriguing issue, hallucinations. TPU-Gen transforms high-level architectural specifications into optimized low-level implementations through an effective hardware generation pipeline. Our extensive experimental evaluations demonstrate superior performance, power, and area efficiency, with an average reduction in area and power of 92\% and 96\% from the manual optimization reference values. These results set new standards for driving advancements in next-generation design automation tools powered by LLMs.
📅 2025-03-07 | 💬 Accepted to NAACL 2025
Reverse thinking plays a crucial role in human reasoning. Humans can reason not only from a problem to a solution but also in reverse, i.e., start from the solution and reason towards the problem. This often enhances overall reasoning performance as it enables consistency checks between their forward and backward thinking. To enable Large Language Models (LLMs) to perform reverse thinking, we introduce Reverse-Enhanced Thinking (RevThink), a framework composed of data augmentation and learning objectives. In RevThink, we augment the dataset by collecting structured forward-backward reasoning from a teacher model, consisting of: (1) the original question, (2) forward reasoning, (3) backward question, and (4) backward reasoning. We then employ three objectives to train a smaller student model in a multi-task learning fashion: (a) generate forward reasoning from a question, (b) generate a backward question from a question, and (c) generate backward reasoning from the backward question. Experiments across 12 datasets covering commonsense, math, and logical reasoning show an average 13.53% improvement over the student model's zero-shot performance and a 6.84% improvement over the strongest knowledge distillation baselines. Moreover, our method demonstrates sample efficiency -- using only 10% of the correct forward reasoning from the training data, it outperforms a standard fine-tuning method trained on 10x more forward reasoning. RevThink also exhibits strong generalization to out-of-distribution held-out datasets.
📅 2025-03-06
Large Language Models (LLMs) have shown remarkable capabilities across tasks, yet they often require additional prompting techniques when facing complex problems. While approaches like self-correction and response selection have emerged as popular solutions, recent studies have shown these methods perform poorly when relying on the LLM itself to provide feedback or selection criteria. We argue this limitation stems from the fact that common LLM post-training procedures lack explicit supervision for discriminative judgment tasks. In this paper, we propose Generative Self-Aggregation (GSA), a novel prompting method that improves answer quality without requiring the model's discriminative capabilities. GSA first samples multiple diverse responses from the LLM, then aggregates them to obtain an improved solution. Unlike previous approaches, our method does not require the LLM to correct errors or compare response quality; instead, it leverages the model's generative abilities to synthesize a new response based on the context of multiple samples. While GSA shares similarities with the self-consistency (SC) approach for response aggregation, SC requires specific verifiable tokens to enable majority voting. In contrast, our approach is more general and can be applied to open-ended tasks. Empirical evaluation demonstrates that GSA effectively improves response quality across various tasks, including mathematical reasoning, knowledge-based problems, and open-ended generation tasks such as code synthesis and conversational responses.
📅 2025-03-06 | 💬 Under Review
LLM test-time compute (or LLM inference) via search has emerged as a promising research area with rapid developments. However, current frameworks often adopt distinct perspectives on three key aspects (task definition, LLM profiling, and search procedures), making direct comparisons challenging. Moreover, the search algorithms employed often diverge from standard implementations, and their specific characteristics are not thoroughly specified. In this survey, we provide a comprehensive technical review that unifies task definitions and provides modular definitions of LLM profiling and search procedures. The definitions enable precise comparisons of various LLM inference frameworks while highlighting their departures from conventional search algorithms. We also discuss the applicability, performance, and efficiency of these methods. We have updated our content to include the latest papers, and the differences between versions are highlighted in the appendix. For further details and ongoing updates, please refer to our GitHub repository: https://github.com/xinzhel/LLM-Agent-Survey/blob/main/search.md
📅 2025-03-06 | 💬 ARR Under Review, First two authors contribute equally
Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning tasks, leading to their widespread deployment. However, recent studies have highlighted concerning biases in these models, particularly in their handling of dialectal variations like African American English (AAE). In this work, we systematically investigate dialectal disparities in LLM reasoning tasks. We develop an experimental framework comparing LLM performance given Standard American English (SAE) and AAE prompts, combining LLM-based dialect conversion with established linguistic analyses. We find that LLMs consistently produce less accurate responses and simpler reasoning chains and explanations for AAE inputs compared to equivalent SAE questions, with disparities most pronounced in social science and humanities domains. These findings highlight systematic differences in how LLMs process and reason about different language varieties, raising important questions about the development and deployment of these systems in our multilingual and multidialectal world. Our code repository is publicly available at https://github.com/Runtaozhou/dialect_bias_eval.
📅 2025-03-06
We present MultiChallenge, a pioneering benchmark evaluating large language models (LLMs) on conducting multi-turn conversations with human users, a crucial yet underexamined capability for their applications. MultiChallenge identifies four categories of challenges in multi-turn conversations that are not only common and realistic among current human-LLM interactions, but are also challenging to all current frontier LLMs. All 4 challenges require accurate instruction-following, context allocation, and in-context reasoning at the same time. We also develop LLM as judge with instance-level rubrics to facilitate an automatic evaluation method with fair agreement with experienced human raters. Despite achieving near-perfect scores on existing multi-turn evaluation benchmarks, all frontier models have less than 50% accuracy on MultiChallenge, with the top-performing Claude 3.5 Sonnet (June 2024) achieving just a 41.4% average accuracy.
📅 2025-03-06 | 💬 under review
Type inference is a crucial task for reusing online code snippets, often found on platforms like StackOverflow, which frequently lack essential type information such as fully qualified names (FQNs) and required libraries. Recent studies have leveraged Large Language Models (LLMs) for type inference on code snippets, showing promising results. However, these results are potentially affected by data leakage, as the benchmark suite (StatType-SO) has been public on GitHub since 2017 (full suite in 2023). Thus, it is uncertain whether LLMs' strong performance reflects genuine code semantics understanding or a mere retrieval of ground truth from training data. To comprehensively assess LLMs' type inference capabilities on Java code snippets, we conducted a three-pronged evaluation. First, utilizing Thalia, a program synthesis technique, we created ThaliaType--a new, unseen dataset for type inference evaluation. On unseen snippets, LLM performance dropped significantly, with up to a 59% decrease in precision and 72% in recall. Second, we developed semantic-preserving transformations that significantly degraded LLMs' type inference performance, revealing weaknesses in understanding code semantics. Third, we used delta debugging to identify the minimal syntax elements sufficient for LLM inference. While type inference primarily involves inferring FQNs for types in the code snippet, LLMs correctly infer FQNs even when the types were absent from the snippets, suggesting a reliance on knowledge from training instead of thoroughly analyzing the snippets. Our findings indicate that LLMs' strong past performance likely stemmed from data leakage, rather than a genuine understanding of the semantics of code snippets. Our findings highlight the crucial need for carefully designed benchmarks using unseen code snippets to assess the true capabilities of LLMs for type inference tasks.
📅 2025-03-06 | 💬 18 pages
Large language models (LLMs) have recently demonstrated remarkable capabilities across domains, tasks, and languages (e.g., ChatGPT and GPT-4), reviving the research of general autonomous agents with human-like cognitive abilities. Such human-level agents require semantic comprehension and instruction-following capabilities, which exactly fall into the strengths of LLMs. Although there have been several initial attempts to build human-level agents based on LLMs, the theoretical foundation remains a challenging open problem. In this paper, we propose a novel theoretical cognitive architecture, the Unified Mind Model (UMM), which offers guidance to facilitate the rapid creation of autonomous agents with human-level cognitive abilities. Specifically, our UMM starts with the global workspace theory and further leverage LLMs to enable the agent with various cognitive abilities, such as multi-modal perception, planning, reasoning, tool use, learning, memory, reflection and motivation. Building upon UMM, we then develop an agent-building engine, MindOS, which allows users to quickly create domain-/task-specific autonomous agents without any programming effort.
📅 2025-03-06 | 💬 16 pages, 14 figures
LLMs have shown preliminary promise in some security tasks and CTF challenges. However, it is unclear whether LLMs are able to realize multistage network attacks, which involve executing a wide variety of actions across multiple hosts such as conducting reconnaissance, exploiting vulnerabilities to gain initial access, leveraging internal hosts to move laterally, and using multiple compromised hosts to exfiltrate data. We evaluate LLMs across 10 multistage networks and find that popular LLMs are unable to realize these attacks. To enable LLMs to realize these attacks, we introduce Incalmo, an LLM-agnostic high-level attack abstraction layer that sits between an LLM and the environment. Rather than LLMs issuing low-level command-line instructions, which can lead to incorrect implementations, Incalmo allows LLMs to specify high-level tasks (e.g., infect a host, scan a network), which are then carried out by Incalmo. Incalmo realizes these tasks by translating them into low-level primitives (e.g., commands to exploit tools). Incalmo also provides an environment state service and an attack graph service to provide structure to LLMs in selecting actions relevant to a multistage attack. Across 9 out of 10 realistic emulated networks (from 25 to 50 hosts), LLMs using Incalmo can successfully autonomously execute multistage attacks. We also conduct an ablation analysis to show the key role the high-level abstractions play. For instance, we find that both Incalmo's high-level tasks and services are crucial. Furthermore, even smaller-parameter LLMs with Incalmo can fully succeed in 5 of 10 environments, while larger-parameter LLMs without Incalmo do not fully succeed in any.
📅 2025-03-06 | 💬 ICLR 2025, camera-ready version
Speculative decoding (SD) has emerged as a widely used paradigm to accelerate LLM inference without compromising quality. It works by first employing a compact model to draft multiple tokens efficiently and then using the target LLM to verify them in parallel. While this technique has achieved notable speedups, most existing approaches necessitate either additional parameters or extensive training to construct effective draft models, thereby restricting their applicability across different LLMs and tasks. To address this limitation, we explore a novel plug-and-play SD solution with layer-skipping, which skips intermediate layers of the target LLM as the compact draft model. Our analysis reveals that LLMs exhibit great potential for self-acceleration through layer sparsity and the task-specific nature of this sparsity. Building on these insights, we introduce SWIFT, an on-the-fly self-speculative decoding algorithm that adaptively selects intermediate layers of LLMs to skip during inference. SWIFT does not require auxiliary models or additional training, making it a plug-and-play solution for accelerating LLM inference across diverse input data streams. Our extensive experiments across a wide range of models and downstream tasks demonstrate that SWIFT can achieve over a 1.3x-1.6x speedup while preserving the original distribution of the generated text. We release our code in https://github.com/hemingkx/SWIFT.
📅 2025-03-06
As foundation models (FMs) play an increasingly prominent role in complex software systems, such as agentic software, they introduce significant observability and debuggability challenges. Although recent Large Reasoning Models (LRMs) generate their thought processes as part of the output, in many scenarios fast-thinking Large Language Models (LLMs) are still preferred due to latency constraints. LLM-powered agents operate autonomously with opaque implicit reasoning, making it difficult to debug their unexpected behaviors or errors. In this paper, we introduce Watson, a novel framework that provides reasoning observability into the implicit reasoning processes of agents driven by fast-thinking LLMs, allowing the identification and localization of errors and guidance for corrections. We demonstrate the accuracy of the recovered implicit reasoning trace by Watson and its usefulness through debugging and improving the performance of LLM-powered agents in two scenarios: Massive Multitask Language Understanding (MMLU) benchmark and SWE-bench-lite. Using Watson, we were able to observe and identify the implicit reasoning errors, and automatically provide targeted corrections at runtime that improve the Pass@1 of agents on MMLU and SWE-bench-lite by 7.58 (13.45% relative improvement) and 7.76 (12.31% relative improvement) percentage points, respectively, without updates to models or the cognitive architecture of the agents.
📅 2025-03-06
Few-shot semantic segmentation (FSS) aims to enable models to segment novel/unseen object classes using only a limited number of labeled examples. However, current FSS methods frequently struggle with generalization due to incomplete and biased feature representations, especially when support images do not capture the full appearance variability of the target class. To improve the FSS pipeline, we propose a novel framework that utilizes large language models (LLMs) to adapt general class semantic information to the query image. Furthermore, the framework employs dense pixel-wise matching to identify similarities between query and support images, resulting in enhanced FSS performance. Inspired by reasoning-based segmentation frameworks, our method, named DSV-LFS, introduces an additional token into the LLM vocabulary, allowing a multimodal LLM to generate a "semantic prompt" from class descriptions. In parallel, a dense matching module identifies visual similarities between the query and support images, generating a "visual prompt". These prompts are then jointly employed to guide the prompt-based decoder for accurate segmentation of the query image. Comprehensive experiments on the benchmark datasets Pascal-$5^{i}$ and COCO-$20^{i}$ demonstrate that our framework achieves state-of-the-art performance-by a significant margin-demonstrating superior generalization to novel classes and robustness across diverse scenarios. The source code is available at \href{https://github.com/aminpdik/DSV-LFS}{https://github.com/aminpdik/DSV-LFS}
📅 2025-03-06 | 💬 10 pages
Large language models (LLMs) are increasingly applied in educational, clinical, and professional settings, but their tendency for sycophancy -- prioritizing user agreement over independent reasoning -- poses risks to reliability. This study introduces a framework to evaluate sycophantic behavior in ChatGPT-4o, Claude-Sonnet, and Gemini-1.5-Pro across AMPS (mathematics) and MedQuad (medical advice) datasets. Sycophantic behavior was observed in 58.19% of cases, with Gemini exhibiting the highest rate (62.47%) and ChatGPT the lowest (56.71%). Progressive sycophancy, leading to correct answers, occurred in 43.52% of cases, while regressive sycophancy, leading to incorrect answers, was observed in 14.66%. Preemptive rebuttals demonstrated significantly higher sycophancy rates than in-context rebuttals (61.75% vs. 56.52%, $Z=5.87$, $p<0.001$), particularly in computational tasks, where regressive sycophancy increased significantly (preemptive: 8.13%, in-context: 3.54%, $p<0.001$). Simple rebuttals maximized progressive sycophancy ($Z=6.59$, $p<0.001$), while citation-based rebuttals exhibited the highest regressive rates ($Z=6.59$, $p<0.001$). Sycophantic behavior showed high persistence (78.5%, 95% CI: [77.2%, 79.8%]) regardless of context or model. These findings emphasize the risks and opportunities of deploying LLMs in structured and dynamic domains, offering insights into prompt programming and model optimization for safer AI applications.
📅 2025-03-06 | 💬 under review
Materials synthesis is vital for innovations such as energy storage, catalysis, electronics, and biomedical devices. Yet, the process relies heavily on empirical, trial-and-error methods guided by expert intuition. Our work aims to support the materials science community by providing a practical, data-driven resource. We have curated a comprehensive dataset of 17K expert-verified synthesis recipes from open-access literature, which forms the basis of our newly developed benchmark, AlchemyBench. AlchemyBench offers an end-to-end framework that supports research in large language models applied to synthesis prediction. It encompasses key tasks, including raw materials and equipment prediction, synthesis procedure generation, and characterization outcome forecasting. We propose an LLM-as-a-Judge framework that leverages large language models for automated evaluation, demonstrating strong statistical agreement with expert assessments. Overall, our contributions offer a supportive foundation for exploring the capabilities of LLMs in predicting and guiding materials synthesis, ultimately paving the way for more efficient experimental design and accelerated innovation in materials science.
📅 2025-03-06
Accurate prediction of human behavior is crucial for AI systems to effectively support real-world applications, such as autonomous robots anticipating and assisting with human tasks. Real-world scenarios frequently present challenges such as occlusions and incomplete scene observations, which can compromise predictive accuracy. Thus, traditional video-based methods often struggle due to limited temporal and spatial perspectives. Large Language Models (LLMs) offer a promising alternative. Having been trained on a large text corpus describing human behaviors, LLMs likely encode plausible sequences of human actions in a home environment. However, LLMs, trained primarily on text data, lack inherent spatial awareness and real-time environmental perception. They struggle with understanding physical constraints and spatial geometry. Therefore, to be effective in a real-world spatial scenario, we propose a multimodal prediction framework that enhances LLM-based action prediction by integrating physical constraints derived from human trajectories. Our experiments demonstrate that combining LLM predictions with trajectory data significantly improves overall prediction performance. This enhancement is particularly notable in situations where the LLM receives limited scene information, highlighting the complementary nature of linguistic knowledge and physical constraints in understanding and anticipating human behavior.
📅 2025-03-06 | 💬 arXiv admin note: substantial text overlap with arXiv:2501.15374
The increasing complexity of LLMs presents significant challenges to their transparency and interpretability, necessitating the use of eXplainable AI (XAI) techniques to enhance trustworthiness and usability. This study introduces a comprehensive evaluation framework with four novel metrics for assessing the effectiveness of five XAI techniques across five LLMs and two downstream tasks. We apply this framework to evaluate several XAI techniques LIME, SHAP, Integrated Gradients, Layer-wise Relevance Propagation (LRP), and Attention Mechanism Visualization (AMV) using the IMDB Movie Reviews and Tweet Sentiment Extraction datasets. The evaluation focuses on four key metrics: Human-reasoning Agreement (HA), Robustness, Consistency, and Contrastivity. Our results show that LIME consistently achieves high scores across multiple LLMs and evaluation metrics, while AMV demonstrates superior Robustness and near-perfect Consistency. LRP excels in Contrastivity, particularly with more complex models. Our findings provide valuable insights into the strengths and limitations of different XAI methods, offering guidance for developing and selecting appropriate XAI techniques for LLMs.
📅 2025-03-06
Large Language Models (LLMs) are vulnerable to jailbreak attacks that exploit weaknesses in traditional safety alignment, which often relies on rigid refusal heuristics or representation engineering to block harmful outputs. While they are effective for direct adversarial attacks, they fall short of broader safety challenges requiring nuanced, context-aware decision-making. To address this, we propose Reasoning-enhanced Finetuning for interpretable LLM Safety (Rational), a novel framework that trains models to engage in explicit safe reasoning before response. Fine-tuned models leverage the extensive pretraining knowledge in self-generated reasoning to bootstrap their own safety through structured reasoning, internalizing context-sensitive decision-making. Our findings suggest that safety extends beyond refusal, requiring context awareness for more robust, interpretable, and adaptive responses. Reasoning is not only a core capability of LLMs but also a fundamental mechanism for LLM safety. Rational employs reasoning-enhanced fine-tuning, allowing it to reject harmful prompts while providing meaningful and context-aware responses in complex scenarios.
📅 2025-03-06
Large language models (LLMs) like OpenAI ChatGPT, Google Gemini, and GitHub Copilot are rapidly gaining traction in the software industry, but their full impact on software engineering remains insufficiently explored. Despite their growing adoption, there is a notable lack of formal, qualitative assessments of how LLMs are applied in real-world software development contexts. To fill this gap, we conducted semi-structured interviews with sixteen early-adopter professional developers to explore their use of LLMs throughout various stages of the software development life cycle. Our investigation examines four dimensions: people - how LLMs affect individual developers and teams; process - how LLMs alter software engineering workflows; product - LLM impact on software quality and innovation; and society - the broader socioeconomic and ethical implications of LLM adoption. Thematic analysis of our data reveals that while LLMs have not fundamentally revolutionized the development process, they have substantially enhanced routine coding tasks, including code generation, refactoring, and debugging. Developers reported the most effective outcomes when providing LLMs with clear, well-defined problem statements, indicating that LLMs excel with decomposed problems and specific requirements. Furthermore, these early-adopters identified that LLMs offer significant value for personal and professional development, aiding in learning new languages and concepts. Early-adopters, highly skilled in software engineering and how LLMs work, identified early and persisting challenges for software engineering, such as inaccuracies in generated content and the need for careful manual review before integrating LLM outputs into production environments. Our study provides a nuanced understanding of how LLMs are shaping the landscape of software development, with their benefits, limitations, and ongoing implications.
📅 2025-03-06
While large language models (LLMs) have been increasingly adopted for machine translation (MT), their performance for specialist domains such as medicine and law remains an open challenge. Prior work has shown that LLMs can be domain-adapted at test-time by retrieving targeted few-shot demonstrations or terminologies for inclusion in the prompt. Meanwhile, for general-purpose LLM MT, recent studies have found some success in generating similarly useful domain knowledge from an LLM itself, prior to translation. Our work studies domain-adapted MT with LLMs through a careful prompting setup, finding that demonstrations consistently outperform terminology, and retrieval consistently outperforms generation. We find that generating demonstrations with weaker models can close the gap with larger model's zero-shot performance. Given the effectiveness of demonstrations, we perform detailed analyses to understand their value. We find that domain-specificity is particularly important, and that the popular multi-domain benchmark is testing adaptation to a particular writing style more so than to a specific domain.
📅 2025-03-06 | 💬 10 pages, includes appendix Published in International Conference on Learning Representations (ICLR) 2025
Large language models (LLMs) are often deployed to perform constrained tasks, with narrow domains. For example, customer support bots can be built on top of LLMs, relying on their broad language understanding and capabilities to enhance performance. However, these LLMs are adversarially susceptible, potentially generating outputs outside the intended domain. To formalize, assess, and mitigate this risk, we introduce domain certification; a guarantee that accurately characterizes the out-of-domain behavior of language models. We then propose a simple yet effective approach, which we call VALID that provides adversarial bounds as a certificate. Finally, we evaluate our method across a diverse set of datasets, demonstrating that it yields meaningful certificates, which bound the probability of out-of-domain samples tightly with minimum penalty to refusal behavior.
📅 2025-03-06
Web browsing agents powered by large language models (LLMs) have shown tremendous potential in automating complex web-based tasks. Existing approaches typically rely on large LLMs (e.g., GPT-4o) to explore web environments and generate trajectory data, which is then used either for demonstration retrieval (for large LLMs) or to distill small LLMs (e.g., Llama3) in a process that remains decoupled from the exploration. In this paper, we propose AgentSymbiotic, an iterative framework that couples data synthesis with task-performance, yielding a "symbiotic improvement" for both large and small LLMs. Our study uncovers a complementary dynamic between LLM types: while large LLMs excel at generating high-quality trajectories for distillation, the distilled small LLMs-owing to their distinct reasoning capabilities-often choose actions that diverge from those of their larger counterparts. This divergence drives the exploration of novel trajectories, thereby enriching the synthesized data. However, we also observe that the performance of small LLMs becomes a bottleneck in this iterative enhancement process. To address this, we propose two innovations in LLM distillation: a speculative data synthesis strategy that mitigates off-policy bias, and a multi-task learning approach designed to boost the reasoning capabilities of the student LLM. Furthermore, we introduce a Hybrid Mode for Privacy Preservation to address user privacy concerns. Evaluated on the WEBARENA benchmark, AgentSymbiotic achieves SOTA performance with both LLM types. Our best Large LLM agent reaches 52%, surpassing the previous best of 45%, while our 8B distilled model demonstrates a competitive 49%, exceeding the prior best of 28%. Code will be released upon acceptance.
📅 2025-03-06
Generative Large Language Models (LLMs) have shown promising results in text annotation using zero-shot and few-shot learning. Yet these approaches do not allow the model to retain information from previous annotations, making each response independent from the preceding ones. This raises the question of whether model memory -- the LLM having knowledge about its own previous annotations in the same task -- affects performance. In this article, using OpenAI's GPT-4o and Meta's Llama 3.1 on two political science datasets, we demonstrate that allowing the model to retain information about its own previous classifications yields significant performance improvements: between 5 and 25\% when compared to zero-shot and few-shot learning. Moreover, memory reinforcement, a novel approach we propose that combines model memory and reinforcement learning, yields additional performance gains in three out of our four tests. These findings have important implications for applied researchers looking to improve performance and efficiency in LLM annotation tasks.
📅 2025-03-06
Despite extensive safety enhancements in large language models (LLMs), multi-turn "jailbreak" conversations crafted by skilled human adversaries can still breach even the most sophisticated guardrails. However, these multi-turn attacks demand considerable manual effort, limiting their scalability. In this work, we introduce a novel approach called Multi-turn-to-Single-turn (M2S) that systematically converts multi-turn jailbreak prompts into single-turn attacks. Specifically, we propose three conversion strategies - Hyphenize, Numberize, and Pythonize - each preserving sequential context yet packaging it in a single query. Our experiments on the Multi-turn Human Jailbreak (MHJ) dataset show that M2S often increases or maintains high Attack Success Rates (ASRs) compared to original multi-turn conversations. Notably, using a StrongREJECT-based evaluation of harmfulness, M2S achieves up to 95.9% ASR on Mistral-7B and outperforms original multi-turn prompts by as much as 17.5% in absolute improvement on GPT-4o. Further analysis reveals that certain adversarial tactics, when consolidated into a single prompt, exploit structural formatting cues to evade standard policy checks. These findings underscore that single-turn attacks - despite being simpler and cheaper to conduct - can be just as potent, if not more, than their multi-turn counterparts. Our findings underscore the urgent need to reevaluate and reinforce LLM safety strategies, given how adversarial queries can be compacted into a single prompt while still retaining sufficient complexity to bypass existing safety measures.
📅 2025-03-06
Recent advancements in speech-to-speech dialogue systems leverage LLMs for multimodal interactions, yet they remain hindered by fine-tuning requirements, high computational overhead, and text-speech misalignment. Existing speech-enabled LLMs often degrade conversational quality by modifying the LLM, thereby compromising its linguistic capabilities. In contrast, we propose LLMVoX, a lightweight 30M-parameter, LLM-agnostic, autoregressive streaming TTS system that generates high-quality speech with low latency, while fully preserving the capabilities of the base LLM. Our approach achieves a significantly lower Word Error Rate compared to speech-enabled LLMs, while operating at comparable latency and UTMOS score. By decoupling speech synthesis from LLM processing via a multi-queue token streaming system, LLMVoX supports seamless, infinite-length dialogues. Its plug-and-play design also facilitates extension to various tasks with different backbones. Furthermore, LLMVoX generalizes to new languages with only dataset adaptation, attaining a low Character Error Rate on an Arabic speech task. Additionally, we have integrated LLMVoX with a Vision-Language Model to create an omni-model with speech, text, and vision capabilities, without requiring additional multimodal training. Our code base and project page is available at https://mbzuai-oryx.github.io/LLMVoX .
📅 2025-03-06 | 💬 Preprint
Recent advancements in long-context Large Language Models (LLMs) have primarily concentrated on processing extended input contexts, resulting in significant strides in long-context comprehension. However, the equally critical aspect of generating long-form outputs has received comparatively less attention. This paper advocates for a paradigm shift in NLP research toward addressing the challenges of long-output generation. Tasks such as novel writing, long-term planning, and complex reasoning require models to understand extensive contexts and produce coherent, contextually rich, and logically consistent extended text. These demands highlight a critical gap in current LLM capabilities. We underscore the importance of this under-explored domain and call for focused efforts to develop foundational LLMs tailored for generating high-quality, long-form outputs, which hold immense potential for real-world applications.
📅 2025-03-06
Large language models (LLMs) exhibit the ability to generalize given few-shot examples in their input prompt, an emergent capability known as in-context learning (ICL). We investigate whether LLMs utilize ICL to perform structured reasoning in ways that are consistent with a Bayesian framework or rely on pattern matching. Using a controlled setting of biased coin flips, we find that: (1) LLMs often possess biased priors, causing initial divergence in zero-shot settings, (2) in-context evidence outweighs explicit bias instructions, (3) LLMs broadly follow Bayesian posterior updates, with deviations primarily due to miscalibrated priors rather than flawed updates, and (4) attention magnitude has negligible effect on Bayesian inference. With sufficient demonstrations of biased coin flips via ICL, LLMs update their priors in a Bayesian manner.
📅 2025-03-06 | 💬 Accepted to ICLR 2025; 11 pages of main text; 26 pages of appendices; Included models: GPT-3.5-{0613, 1106, 0125}, GPT-4-0125, GPT-4o-0806, Gemini-{1.0, 1.5)-Pro, LLaMA-3.1-{7, 70, 405}B, Mixtral-8x{7, 22}B, Qwen-2-72B
Decision-making is a complex process requiring diverse abilities, making it an excellent framework for evaluating Large Language Models (LLMs). Researchers have examined LLMs' decision-making through the lens of Game Theory. However, existing evaluation mainly focus on two-player scenarios where an LLM competes against another. Additionally, previous benchmarks suffer from test set leakage due to their static design. We introduce GAMA($\gamma$)-Bench, a new framework for evaluating LLMs' Gaming Ability in Multi-Agent environments. It includes eight classical game theory scenarios and a dynamic scoring scheme specially designed to quantitatively assess LLMs' performance. $\gamma$-Bench allows flexible game settings and adapts the scoring system to different game parameters, enabling comprehensive evaluation of robustness, generalizability, and strategies for improvement. Our results indicate that GPT-3.5 demonstrates strong robustness but limited generalizability, which can be enhanced using methods like Chain-of-Thought. We also evaluate 13 LLMs from 6 model families, including GPT-3.5, GPT-4, Gemini, LLaMA-3.1, Mixtral, and Qwen-2. Gemini-1.5-Pro outperforms others, scoring of $69.8$ out of $100$, followed by LLaMA-3.1-70B ($65.9$) and Mixtral-8x22B ($62.4$). Our code and experimental results are publicly available at https://github.com/CUHK-ARISE/GAMABench.
📅 2025-03-06
Large Language Models (LLMs) inevitably acquire harmful information during training on massive datasets. LLM unlearning aims to eliminate the influence of such harmful information while maintaining the model's overall performance. Existing unlearning methods, represented by gradient ascent-based approaches, primarily focus on forgetting target data while overlooking the crucial impact of logically related knowledge on the effectiveness of unlearning. In this paper, through both theoretical and experimental analyses, we first demonstrate that a key reason for the suboptimal unlearning performance is that models can reconstruct the target content through reasoning with logically related knowledge. To address this issue, we propose Unlearning Improvement via Parameter Extrapolation (UIPE), a method that removes knowledge highly correlated with the forgetting targets. Experimental results show that UIPE significantly enhances the performance of various mainstream LLM unlearning methods on the TOFU benchmark.
📅 2025-03-06
The latest reasoning-enhanced large language models (reasoning LLMs), such as DeepSeek-R1 and OpenAI-o3, have demonstrated remarkable success. However, the application of such reasoning enhancements to the highly professional medical domain has not been clearly evaluated, particularly regarding with not only assessing the final generation but also examining the quality of their reasoning processes. In this study, we present MedR-Bench, a reasoning-focused medical evaluation benchmark comprising 1,453 structured patient cases with reasoning references mined from case reports. Our benchmark spans 13 body systems and 10 specialty disorders, encompassing both common and rare diseases. In our evaluation, we introduce a versatile framework consisting of three critical clinical stages: assessment recommendation, diagnostic decision-making, and treatment planning, comprehensively capturing the LLMs' performance across the entire patient journey in healthcare. For metrics, we propose a novel agentic system, Reasoning Evaluator, designed to automate and objectively quantify free-text reasoning responses in a scalable manner from the perspectives of efficiency, factuality, and completeness by dynamically searching and performing cross-referencing checks. As a result, we assess five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and others. Our results reveal that current LLMs can handle relatively simple diagnostic tasks with sufficient critical assessment results, achieving accuracy generally over 85%. However, they still struggle with more complex tasks, such as assessment recommendation and treatment planning. In reasoning, their reasoning processes are generally reliable, with factuality scores exceeding 90%, though they often omit critical reasoning steps. Our study clearly reveals further development directions for current clinical LLMs.
📅 2025-03-06 | 💬 arXiv admin note: substantial text overlap with arXiv:2411.00914
Anomaly detection in complex industrial environments poses unique challenges, particularly in contexts characterized by data sparsity and evolving operational conditions. Predictive maintenance (PdM) in such settings demands methodologies that are adaptive, transferable, and capable of integrating domain-specific knowledge. In this paper, we present RAAD-LLM, a novel framework for adaptive anomaly detection, leveraging large language models (LLMs) integrated with Retrieval-Augmented Generation (RAG). This approach addresses the aforementioned PdM challenges. By effectively utilizing domain-specific knowledge, RAAD-LLM enhances the detection of anomalies in time series data without requiring fine-tuning on specific datasets. The framework's adaptability mechanism enables it to adjust its understanding of normal operating conditions dynamically, thus increasing detection accuracy. We validate this methodology through a real-world application for a plastics manufacturing plant and the Skoltech Anomaly Benchmark (SKAB). Results show significant improvements over our previous model with an accuracy increase from 70.7% to 89.1% on the real-world dataset. By allowing for the enriching of input series data with semantics, RAAD-LLM incorporates multimodal capabilities that facilitate more collaborative decision-making between the model and plant operators. Overall, our findings support RAAD-LLM's ability to revolutionize anomaly detection methodologies in PdM, potentially leading to a paradigm shift in how anomaly detection is implemented across various industries.
📅 2025-03-06 | 💬 Accepted by NAACL 2025
Understanding user satisfaction with conversational systems, known as User Satisfaction Estimation (USE), is essential for assessing dialogue quality and enhancing user experiences. However, existing methods for USE face challenges due to limited understanding of underlying reasons for user dissatisfaction and the high costs of annotating user intentions. To address these challenges, we propose PRAISE (Plan and Retrieval Alignment for Interpretable Satisfaction Estimation), an interpretable framework for effective user satisfaction prediction. PRAISE operates through three key modules. The Strategy Planner develops strategies, which are natural language criteria for classifying user satisfaction. The Feature Retriever then incorporates knowledge on user satisfaction from Large Language Models (LLMs) and retrieves relevance features from utterances. Finally, the Score Analyzer evaluates strategy predictions and classifies user satisfaction. Experimental results demonstrate that PRAISE achieves state-of-the-art performance on three benchmarks for the USE task. Beyond its superior performance, PRAISE offers additional benefits. It enhances interpretability by providing instance-level explanations through effective alignment of utterances with strategies. Moreover, PRAISE operates more efficiently than existing approaches by eliminating the need for LLMs during the inference phase.
📅 2025-03-06 | 💬 Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
An embodied agent assisting humans is often asked to complete new tasks, and there may not be sufficient time or labeled examples to train the agent to perform these new tasks. Large Language Models (LLMs) trained on considerable knowledge across many domains can be used to predict a sequence of abstract actions for completing such tasks, although the agent may not be able to execute this sequence due to task-, agent-, or domain-specific constraints. Our framework addresses these challenges by leveraging the generic predictions provided by LLM and the prior domain knowledge encoded in a Knowledge Graph (KG), enabling an agent to quickly adapt to new tasks. The robot also solicits and uses human input as needed to refine its existing knowledge. Based on experimental evaluation in the context of cooking and cleaning tasks in simulation domains, we demonstrate that the interplay between LLM, KG, and human input leads to substantial performance gains compared with just using the LLM. Project website{\S}: https://sssshivvvv.github.io/adaptbot/
📅 2025-03-06 | 💬 SaTML 2025
LLMs are commonly used in retrieval-augmented applications to execute user instructions based on data from external sources. For example, modern search engines use LLMs to answer queries based on relevant search results; email plugins summarize emails by processing their content through an LLM. However, the potentially untrusted provenance of these data sources can lead to prompt injection attacks, where the LLM is manipulated by natural language instructions embedded in the external data, causing it to deviate from the user's original instruction(s). We define this deviation as task drift. Task drift is a significant concern as it allows attackers to exfiltrate data or influence the LLM's output for other users. We study LLM activations as a solution to detect task drift, showing that activation deltas - the difference in activations before and after processing external data - are strongly correlated with this phenomenon. Through two probing methods, we demonstrate that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set. We evaluate these methods by making minimal assumptions about how users' tasks, system prompts, and attacks can be phrased. We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions, without being trained on any of these attacks. Interestingly, the fact that this solution does not require any modifications to the LLM (e.g., fine-tuning), as well as its compatibility with existing meta-prompting solutions, makes it cost-efficient and easy to deploy. To encourage further research on activation-based task inspection, decoding, and interpretability, we release our large-scale TaskTracker toolkit, featuring a dataset of over 500K instances, representations from six SoTA language models, and a suite of inspection tools.
📅 2025-03-06 | 💬 Accepted by the 1st Workshop on GenAI Watermarking, collocated with ICLR 2025
As open-source large language models (LLMs) like Llama3 become more capable, it is crucial to develop watermarking techniques to detect their potential misuse. Existing watermarking methods either add watermarks during LLM inference, which is unsuitable for open-source LLMs, or primarily target classification LLMs rather than recent generative LLMs. Adapting these watermarks to open-source LLMs for misuse detection remains an open challenge. This work defines two misuse scenarios for open-source LLMs: intellectual property (IP) violation and LLM Usage Violation. Then, we explore the application of inference-time watermark distillation and backdoor watermarking in these contexts. We propose comprehensive evaluation methods to assess the impact of various real-world further fine-tuning scenarios on watermarks and the effect of these watermarks on LLM performance. Our experiments reveal that backdoor watermarking could effectively detect IP Violation, while inference-time watermark distillation is applicable in both scenarios but less robust to further fine-tuning and has a more significant impact on LLM performance compared to backdoor watermarking. Exploring more advanced watermarking methods for open-source LLMs to detect their misuse should be an important future direction.
📅 2025-03-06 | 💬 18 pages, 17 figures
User reviews on e-commerce platforms exhibit dynamic sentiment patterns driven by temporal and contextual factors. Traditional sentiment analysis methods focus on static reviews, failing to capture the evolving temporal relationship between user sentiment rating and textual content. Sentiment analysis on streaming reviews addresses this limitation by modeling and predicting the temporal evolution of user sentiments. However, it suffers from data sparsity, manifesting in temporal, spatial, and combined forms. In this paper, we introduce SynGraph, a novel framework designed to address data sparsity in sentiment analysis on streaming reviews. SynGraph alleviates data sparsity by categorizing users into mid-tail, long-tail, and extreme scenarios and incorporating LLM-augmented enhancements within a dynamic graph-based structure. Experiments on real-world datasets demonstrate its effectiveness in addressing sparsity and improving sentiment modeling in streaming reviews.
📅 2025-03-06 | 💬 30 pages, 4 figures
Response consistency-based, reference-free hallucination detection (RFHD) methods do not depend on internal model states, such as generation probabilities or gradients, which Grey-box models typically rely on but are inaccessible in closed-source LLMs. However, their inability to capture query-response alignment patterns often results in lower detection accuracy. Additionally, the lack of large-scale benchmark datasets spanning diverse domains remains a challenge, as most existing datasets are limited in size and scope. To this end, we propose HalluCounter, a novel reference-free hallucination detection method that utilizes both response-response and query-response consistency and alignment patterns. This enables the training of a classifier that detects hallucinations and provides a confidence score and an optimal response for user queries. Furthermore, we introduce HalluCounterEval, a benchmark dataset comprising both synthetically generated and human-curated samples across multiple domains. Our method outperforms state-of-the-art approaches by a significant margin, achieving over 90\% average confidence in hallucination detection across datasets.
📅 2025-03-06
Large Language Model (LLM) applications, including LLM app stores and autonomous agents, are shaping the future of AI ecosystems. However, platform silos, fragmented hardware integration, and the absence of standardized interfaces limit scalability, interoperability, and resource efficiency. While LLM app stores democratize AI, their closed ecosystems restrict modular AI reuse and cross-platform portability. Meanwhile, agent-based frameworks offer flexibility but often lack seamless integration across diverse environments. This paper envisions the future of LLM applications and proposes a three-layer decoupled architecture grounded in software engineering principles such as layered system design, service-oriented architectures, and hardware-software co-design. This architecture separates application logic, communication protocols, and hardware execution, enhancing modularity, efficiency, and cross-platform compatibility. Beyond architecture, we highlight key security and privacy challenges for safe, scalable AI deployment and outline research directions in software and security engineering. This vision aims to foster open, secure, and interoperable LLM ecosystems, guiding future advancements in AI applications.
📅 2025-03-06
Large language models (LLMs) have demonstrated a remarkable ability to serve as general-purpose tools for various language-based tasks. Recent works have demonstrated that the efficacy of such models can be improved through iterative dialog between multiple models. While these paradigms show promise in improving model efficacy, most works in this area treat collaboration as an emergent behavior, rather than a learned behavior. In doing so, current multi-agent frameworks rely on collaborative behaviors to have been sufficiently trained into off-the-shelf models. To address this limitation, we propose ACC-Collab, an Actor-Critic based learning framework to produce a two-agent team (an actor-agent and a critic-agent) specialized in collaboration. We demonstrate that ACC-Collab outperforms SotA multi-agent techniques on a wide array of benchmarks.
📅 2025-03-06 | 💬 Accepted by ICLR 2025
Probing learned concepts in large language models (LLMs) is crucial for understanding how semantic knowledge is encoded internally. Training linear classifiers on probing tasks is a principle approach to denote the vector of a certain concept in the representation space. However, the single vector identified for a concept varies with both data and training, making it less robust and weakening its effectiveness in real-world applications. To address this challenge, we propose an approach to approximate the subspace representing a specific concept. Built on linear probing classifiers, we extend the concept vectors into Gaussian Concept Subspace (GCS). We demonstrate GCS's effectiveness through measuring its faithfulness and plausibility across multiple LLMs with different sizes and architectures. Additionally, we use representation intervention tasks to showcase its efficacy in real-world applications such as emotion steering. Experimental results indicate that GCS concept vectors have the potential to balance steering performance and maintaining the fluency in natural language generation tasks.
📅 2025-03-06
Despite the rapid development of safety alignment techniques for LLMs, defending against multi-turn jailbreaks is still a challenging task. In this paper, we conduct a comprehensive comparison, revealing that some existing defense methods can improve the robustness of LLMs against multi-turn jailbreaks but compromise usability, i.e., reducing general capabilities or causing the over-refusal problem. From the perspective of mechanism interpretability of LLMs, we discover that these methods fail to establish a boundary that exactly distinguishes safe and harmful feature representations. Therefore, boundary-safe representations close to harmful representations are inevitably disrupted, leading to a decline in usability. To address this issue, we propose X-Boundary to push harmful representations away from boundary-safe representations and obtain an exact distinction boundary. In this way, harmful representations can be precisely erased without disrupting safe ones. Experimental results show that X-Boundary achieves state-of-the-art defense performance against multi-turn jailbreaks, while reducing the over-refusal rate by about 20% and maintaining nearly complete general capability. Furthermore, we theoretically prove and empirically verify that X-Boundary can accelerate the convergence process during training. Please see our code at: https://github.com/AI45Lab/X-Boundary.
📅 2025-03-06
The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. Machine Translation (MT) has been shown to benefit from in-context examples, in particular when they are semantically similar to the sentence to translate. In this paper, we propose a new LLM-based translation paradigm, compositional translation, to replace naive few-shot MT with similarity-based demonstrations. An LLM is used to decompose a sentence into simpler phrases, and then to translate each phrase with the help of retrieved demonstrations. Finally, the LLM is prompted to translate the initial sentence with the help of the self-generated phrase-translation pairs. Our intuition is that this approach should improve translation because these shorter phrases should be intrinsically easier to translate and easier to match with relevant examples. This is especially beneficial in low-resource scenarios, and more generally whenever the selection pool is small or out of domain. We show that compositional translation boosts LLM translation performance on a wide range of popular MT benchmarks, including FLORES 200, NTREX 128 and TICO-19. Code and outputs are available at https://github.com/ArmelRandy/compositional-translation
📅 2025-03-06
SemEval-2025 Task 1 focuses on ranking images based on their alignment with a given nominal compound that may carry idiomatic meaning in both English and Brazilian Portuguese. To address this challenge, this work uses generative large language models (LLMs) and multilingual CLIP models to enhance idiomatic compound representations. LLMs generate idiomatic meanings for potentially idiomatic compounds, enriching their semantic interpretation. These meanings are then encoded using multilingual CLIP models, serving as representations for image ranking. Contrastive learning and data augmentation techniques are applied to fine-tune these embeddings for improved performance. Experimental results show that multimodal representations extracted through this method outperformed those based solely on the original nominal compounds. The fine-tuning approach shows promising outcomes but is less effective than using embeddings without fine-tuning. The source code used in this paper is available at https://github.com/tongwu17/SemEval-2025-Task1-UoR-NCL.
📅 2025-03-06 | 💬 Accepted to the ICBINB Workshop at ICLR'25
Large Language Model (LLM) based judges form the underpinnings of key safety evaluation processes such as offline benchmarking, automated red-teaming, and online guardrailing. This widespread requirement raises the crucial question: can we trust the evaluations of these evaluators? In this paper, we highlight two critical challenges that are typically overlooked: (i) evaluations in the wild where factors like prompt sensitivity and distribution shifts can affect performance and (ii) adversarial attacks that target the judge. We highlight the importance of these through a study of commonly used safety judges, showing that small changes such as the style of the model output can lead to jumps of up to 0.24 in the false negative rate on the same dataset, whereas adversarial attacks on the model generation can fool some judges into misclassifying 100% of harmful generations as safe ones. These findings reveal gaps in commonly used meta-evaluation benchmarks and weaknesses in the robustness of current LLM judges, indicating that low attack success under certain judges could create a false sense of security.
📅 2025-03-06
The need for interpretability in deep learning has driven interest in counterfactual explanations, which identify minimal changes to an instance that change a model's prediction. Current counterfactual (CF) generation methods require task-specific fine-tuning and produce low-quality text. Large Language Models (LLMs), though effective for high-quality text generation, struggle with label-flipping counterfactuals (i.e., counterfactuals that change the prediction) without fine-tuning. We introduce two simple classifier-guided approaches to support counterfactual generation by LLMs, eliminating the need for fine-tuning while preserving the strengths of LLMs. Despite their simplicity, our methods outperform state-of-the-art counterfactual generation methods and are effective across different LLMs, highlighting the benefits of guiding counterfactual generation by LLMs with classifier information. We further show that data augmentation by our generated CFs can improve a classifier's robustness. Our analysis reveals a critical issue in counterfactual generation by LLMs: LLMs rely on parametric knowledge rather than faithfully following the classifier.
📅 2025-03-06 | 💬 To appear at ICLR 2025 Workshop on Foundation Models in the Wild
Recent advances demonstrate that increasing inference-time computation can significantly boost the reasoning capabilities of large language models (LLMs). Although repeated sampling (i.e., generating multiple candidate outputs) is a highly effective strategy, it does not leverage external feedback signals for refinement, which are often available in tasks like coding. In this work, we propose $\textit{Adaptive Branching Monte Carlo Tree Search (AB-MCTS)}$, a novel inference-time framework that generalizes repeated sampling with principled multi-turn exploration and exploitation. At each node in the search tree, AB-MCTS dynamically decides whether to "go wider" by expanding new candidate responses or "go deeper" by revisiting existing ones based on external feedback signals. We evaluate our method on complex coding and engineering tasks using frontier models. Empirical results show that AB-MCTS consistently outperforms both repeated sampling and standard MCTS, underscoring the importance of combining the response diversity of LLMs with multi-turn solution refinement for effective inference-time scaling.
📅 2025-03-06 | 💬 Codes and models are available at https://github.com/d223302/TRACT
The LLM-as-a-judge paradigm uses large language models (LLMs) for automated text evaluation, where a numerical assessment is assigned by an LLM to the input text following scoring rubrics. Existing methods for LLM-as-a-judge use cross-entropy (CE) loss for fine-tuning, which neglects the numeric nature of score prediction. Recent work addresses numerical prediction limitations of LLM fine-tuning through regression-aware fine-tuning, which, however, does not consider chain-of-thought (CoT) reasoning for score prediction. In this paper, we introduce TRACT (Two-stage Regression-Aware fine-tuning with CoT), a method combining CoT reasoning with regression-aware training. TRACT consists of two stages: first, seed LLM is fine-tuned to generate CoTs, which serve as supervision for the second stage fine-tuning. The training objective of TRACT combines the CE loss for learning the CoT reasoning capabilities, and the regression-aware loss for the score prediction. Experiments across four LLM-as-a-judge datasets and two LLMs show that TRACT significantly outperforms existing methods. Extensive ablation studies validate the importance of each component in TRACT.
📅 2025-03-06 | 💬 ICLR 2025 Workshop on Sparsity in LLMs (SLLM)
Pruning assumes a subnetwork exists in the original deep neural network, which can achieve comparative model performance with less computation than the original. However, it is unclear how the model performance varies with the different subnetwork extractions. In this paper, we choose the representation dimension (or embedding dimension, model dimension, the dimension of the residual stream in the relevant literature) as the entry point to this issue. We investigate the linear transformations in the LLM transformer blocks and consider a specific structured pruning approach, SliceGPT, to extract the subnetworks of different representation dimensions. We mechanistically analyse the activation flow during the model forward passes, and find the representation dimension dominates the linear transformations, model predictions, and, finally, the model performance. Explicit analytical relations are given to calculate the pruned model performance (perplexity and accuracy) without actual evaluation, and are empirically validated with Llama-3-8B-Instruct and Phi-3-mini-4k-Instruct.
📅 2025-03-06 | 💬 19 pages;
Large language models (LLMs) have achieved remarkable success in machine translation, demonstrating impressive performance across diverse languages. However, translationese, characterized by overly literal and unnatural translations, remains a persistent challenge in LLM-based translation systems. Despite their pre-training on vast corpora of natural utterances, LLMs exhibit translationese errors and generate unexpected unnatural translations, stemming from biases introduced during supervised fine-tuning (SFT). In this work, we systematically evaluate the prevalence of translationese in LLM-generated translations and investigate its roots during supervised training. We introduce methods to mitigate these biases, including polishing golden references and filtering unnatural training instances. Empirical evaluations demonstrate that these approaches significantly reduce translationese while improving translation naturalness, validated by human evaluations and automatic metrics. Our findings highlight the need for training-aware adjustments to optimize LLM translation outputs, paving the way for more fluent and target-language-consistent translations. We release the data and code at https://github.com/yafuly/LLM_Translationese.
📅 2025-03-06
Previous research has shown that LLMs have potential in multilingual NLG evaluation tasks. However, existing research has not fully explored the differences in the evaluation capabilities of LLMs across different languages. To this end, this study provides a comprehensive analysis of the multilingual evaluation performance of 10 recent LLMs, spanning high-resource and low-resource languages through correlation analysis, perturbation attacks, and fine-tuning. We found that 1) excluding the reference answer from the prompt and using large-parameter LLM-based evaluators leads to better performance across various languages; 2) most LLM-based evaluators show a higher correlation with human judgments in high-resource languages than in low-resource languages; 3) in the languages where they are most sensitive to such attacks, they also tend to exhibit the highest correlation with human judgments; and 4) fine-tuning with data from a particular language yields a broadly consistent enhancement in the model's evaluation performance across diverse languages. Our findings highlight the imbalance in LLMs'evaluation capabilities across different languages and suggest that low-resource language scenarios deserve more attention.
📅 2025-03-06
The rapid evolution of malware attacks calls for the development of innovative detection methods, especially in resource-constrained edge computing. Traditional detection techniques struggle to keep up with modern malware's sophistication and adaptability, prompting a shift towards advanced methodologies like those leveraging Large Language Models (LLMs) for enhanced malware detection. However, deploying LLMs for malware detection directly at edge devices raises several challenges, including ensuring accuracy in constrained environments and addressing edge devices' energy and computational limits. To tackle these challenges, this paper proposes an architecture leveraging lightweight LLMs' strengths while addressing limitations like reduced accuracy and insufficient computational power. To evaluate the effectiveness of the proposed lightweight LLM-based approach for edge computing, we perform an extensive experimental evaluation using several state-of-the-art lightweight LLMs. We test them with several publicly available datasets specifically designed for edge and IoT scenarios and different edge nodes with varying computational power and characteristics.
📅 2025-03-06 | 💬 Published in AAAI 2025
We propose a novel system, MathMistake Checker, designed to automate step-by-step mistake finding in mathematical problems with lengthy answers through a two-stage process. The system aims to simplify grading, increase efficiency, and enhance learning experiences from a pedagogical perspective. It integrates advanced technologies, including computer vision and the chain-of-thought capabilities of the latest large language models (LLMs). Our system supports open-ended grading without reference answers and promotes personalized learning by providing targeted feedback. We demonstrate its effectiveness across various types of math problems, such as calculation and word problems.
📅 2025-03-06 | 💬 4 pages, 1 figure, 3 tables, conference
We study LLM judgments of misinformation expressed with uncertainty. Our experiments study the response of three widely used LLMs (GPT-4o, LlaMA3, DeepSeek-v2) to misinformation propositions that have been verified false and then are transformed into uncertain statements according to an uncertainty typology. Our results show that after transformation, LLMs change their factchecking classification from false to not-false in 25% of the cases. Analysis reveals that the change cannot be explained by predictors to which humans are expected to be sensitive, i.e., modality, linguistic cues, or argumentation strategy. The exception is doxastic transformations, which use linguistic cue phrases such as "It is believed ...".To gain further insight, we prompt the LLM to make another judgment about the transformed misinformation statements that is not related to truth value. Specifically, we study LLM estimates of the frequency with which people make the uncertain statement. We find a small but significant correlation between judgment of fact and estimation of frequency.
📅 2025-03-06 | 💬 11pages, 17 figures
The growing adoption of Large Language Models (LLMs) across various domains has driven the demand for efficient and scalable AI-serving solutions. Deploying LLMs requires optimizations to manage their significant computational and data demands. The prefill stage processes large numbers of input tokens in parallel, increasing computational load, while the decoding stage relies heavily on memory bandwidth due to the auto-regressive nature of LLMs. Current hardware, such as GPUs, often fails to balance these demands, leading to inefficient utilization. While batching improves hardware efficiency, it delays response times, degrading Quality-of-Service (QoS). This disconnect between vendors, who aim to maximize resource efficiency, and users, who prioritize low latency, highlights the need for a better solution. To address this, we propose ADOR, a framework that automatically identifies and recommends hardware architectures tailored to LLM serving. By leveraging predefined architecture templates specialized for heterogeneous dataflows, ADOR optimally balances throughput and latency. It efficiently explores design spaces to suggest architectures that meet the requirements of both vendors and users. ADOR demonstrates substantial performance improvements, achieving 2.51x higher QoS and 4.01x better area efficiency compared to the A100 at high batch sizes, making it a robust solution for scalable and cost-effective LLM serving.
📅 2025-03-06
Modern Large Language Models (LLMs) have shown astounding capabilities of code understanding and synthesis. In order to assess such capabilities, several benchmarks have been devised (e.g., HumanEval). However, most benchmarks focus on code synthesis from natural language instructions. Hence, such benchmarks do not test for other forms of code understanding. Moreover, there have been concerns about contamination and leakage. That is, benchmark problems (or closely related problems) may appear in training set, strongly biasing benchmark results. In this work we investigate whether large language models can correctly predict runtime program behavior. To this end, we introduce ThrowBench, a benchmark consisting of over 2,400 short user-written programs written in four different programming languages. The majority of these programs throw an exception during runtime (due to a bug). LLMs are asked to predict whether a presented program throws an exception and, if so, which one. Evaluating our benchmark on six state-of-the-art code LLMs we see modest performance ranging from 19 to 38% (F1 score). Benchmarking a wider set of code capabilities could improve the assessment of code LLMs and help identify weak points in current models. Moreover, as ground-truth answers have been determined through program execution, leakage is not a concern. We release ThrowBench as well as all of our results together with this work.
📅 2025-03-06
Environment configuration is a critical yet time-consuming step in software development, especially when dealing with unfamiliar code repositories. While Large Language Models (LLMs) demonstrate the potential to accomplish software engineering tasks, existing methods for environment configuration often rely on manual efforts or fragile scripts, leading to inefficiencies and unreliable outcomes. We introduce Repo2Run, the first LLM-based agent designed to fully automate environment configuration and generate executable Dockerfiles for arbitrary Python repositories. We address two major challenges: (1) enabling the LLM agent to configure environments within isolated Docker containers, and (2) ensuring the successful configuration process is recorded and accurately transferred to a Dockerfile without error. To achieve this, we propose atomic configuration synthesis, featuring a dual-environment architecture (internal and external environment) with a rollback mechanism to prevent environment "pollution" from failed commands, guaranteeing atomic execution (execute fully or not at all) and a Dockerfile generator to transfer successful configuration steps into runnable Dockerfiles. We evaluate Repo2Run~on our proposed benchmark of 420 recent Python repositories with unit tests, where it achieves an 86.0% success rate, outperforming the best baseline by 63.9%. Repo2Run is available at https://github.com/bytedance/Repo2Run.
📅 2025-03-06
Large Language Models (LLMs) excel at intuitive, implicit reasoning. Guiding LLMs to construct thought chains can enhance their deliberate reasoning abilities, but also faces challenges such as hallucination. Knowledge Graphs (KGs) can provide explicit structured knowledge for LLMs to alleviate these issues. However, existing KG-enhanced methods often overlook explicit graph learning, making it challenging to efficiently provide precise reasoning chains for LLMs. Following dual-process theory, we propose Dual-Reasoning (DualR), a novel framework that integrates an external system based on Graph Neural Network (GNN) for explicit reasoning on KGs, complementing the implicit reasoning of LLMs through externalized reasoning chains. DualR designs an LLM-empowered GNN module for explicit learning on KGs, efficiently extracting high-quality reasoning chains. These reasoning chains are then refined to a knowledge-enhanced multiple-choice prompt, guiding a frozen LLM to reason thoughtfully for final answer determination. Extensive experiments on three benchmark KGQA datasets demonstrate that DualR achieves state-of-the-art performance while maintaining high efficiency and interpretability.
📅 2025-03-06 | 💬 8 pages, 6 figures, 2 tables (30 pages, 11 figures, 8 tables including references and appendices)
Automatic evaluation methods based on large language models (LLMs) are emerging as the standard tool for assessing the instruction-following abilities of LLM-based agents. The most common method in this paradigm, pairwise comparisons with a baseline model, critically depends on the assumption of transitive preferences. However, the validity of this assumption remains largely unexplored. In this study, we investigate the presence of non-transitivity within the AlpacaEval framework and analyze its effects on model rankings. We find that LLM judges exhibit non-transitive preferences, leading to rankings that are sensitive to the choice of the baseline model. To mitigate this issue, we show that round-robin tournaments combined with Bradley-Terry models of preference can produce more reliable rankings. Notably, our method increases both the Spearman correlation and the Kendall correlation with Chatbot Arena (95.0% -> 96.4% and 82.1% -> 86.3% respectively). To address the computational cost of round-robin tournaments, we propose Swiss-Wise Iterative Matchmaking (Swim) tournaments, using a dynamic matching strategy to capture the benefits of round-robin tournaments while maintaining computational efficiency.
📅 2025-03-06
Recent advances in video-based multimodal large language models (Video-LLMs) have significantly improved video understanding by processing videos as sequences of image frames. However, many existing methods treat frames independently in the vision backbone, lacking explicit temporal modeling, which limits their ability to capture dynamic patterns and efficiently handle long videos. To address these limitations, we introduce STORM (\textbf{S}patiotemporal \textbf{TO}ken \textbf{R}eduction for \textbf{M}ultimodal LLMs), a novel architecture incorporating a dedicated temporal encoder between the image encoder and the LLM. Our temporal encoder leverages the Mamba State Space Model to integrate temporal information into image tokens, generating enriched representations that preserve inter-frame dynamics across the entire video sequence. This enriched encoding not only enhances video reasoning capabilities but also enables effective token reduction strategies, including test-time sampling and training-based temporal and spatial pooling, substantially reducing computational demands on the LLM without sacrificing key temporal information. By integrating these techniques, our approach simultaneously reduces training and inference latency while improving performance, enabling efficient and robust video understanding over extended temporal contexts. Extensive evaluations show that STORM achieves state-of-the-art results across various long video understanding benchmarks (more than 5\% improvement on MLVU and LongVideoBench) while reducing the computation costs by up to $8\times$ and the decoding latency by 2.4-2.9$\times$ for the fixed numbers of input frames. Project page is available at https://research.nvidia.com/labs/lpr/storm
📅 2025-03-06 | 💬 Accepted for NAACL 2025 (Main Conference)
Although multilingual LLMs have achieved remarkable performance across benchmarks, we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin script languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation from both leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval.
📅 2025-03-06 | 💬 Published at ICLR 2025
Humans often rely on subjective natural language to direct language models (LLMs); for example, users might instruct the LLM to write an enthusiastic blogpost, while developers might train models to be helpful and harmless using LLM-based edits. The LLM's operational semantics of such subjective phrases -- how it adjusts its behavior when each phrase is included in the prompt -- thus dictates how aligned it is with human intent. In this work, we uncover instances of misalignment between LLMs' actual operational semantics and what humans expect. Our method, TED (thesaurus error detector), first constructs a thesaurus that captures whether two phrases have similar operational semantics according to the LLM. It then elicits failures by unearthing disagreements between this thesaurus and a human-constructed reference. TED routinely produces surprising instances of misalignment; for example, Mistral 7B Instruct produces more harassing outputs when it edits text to be witty, and Llama 3 8B Instruct produces dishonest articles when instructed to make the articles enthusiastic. Our results demonstrate that humans can uncover unexpected LLM behavior by scrutinizing relationships between abstract concepts, without supervising outputs directly.
📅 2025-03-05 | 💬 11 pages, 5 figures
The software compilation process has a tendency to obscure the original design of the system and makes it difficult both to identify individual components and discern their purpose simply by examining the resulting binary code. Although decompilation techniques attempt to recover higher-level source code from the machine code in question, they are not fully able to restore the semantics of the original functions. Furthermore, binaries are often stripped of metadata, and this makes it challenging to reverse engineer complex binary software. In this paper we show how a combination of binary decomposition techniques, decompilation passes, and LLM-powered function summarization can be used to build an economical engine to identify modules in stripped binaries and associate them with high-level natural language descriptions. We instantiated this technique with three underlying open-source LLMs -- CodeQwen, DeepSeek-Coder and CodeStral -- and measured its effectiveness in identifying modules in robotics firmware. This experimental evaluation involved 467 modules from four devices from the ArduPilot software suite, and showed that CodeStral, the best-performing backend LLM, achieves an average F1-score of 0.68 with an online running time of just a handful of seconds.
📅 2025-03-05
Training AI models is challenging, particularly when crafting behavior instructions. Traditional methods rely on machines (supervised learning) or manual pattern discovery, which results in not interpretable models or time sink. While Large Language Models (LLMs) simplify instruction writing through natural language, articulating intended model behavior still remains difficult. We introduce Visionary Tuning, a human-in-the-loop self-playing followed by automatic self-refinement to improve behavior specification. Our system helps users clarify desired behavior through self-playing and generates prompts through self-improving, Our first evaluation involves user study conducted on a system implementation of Visionary Tuning within the context of chatbot behavior. Our system self-play itself by simulating user interactions to identify patterns and create effective prompts based on the pattern. In a within-subject study (N=12), participants pinpointed more patterns through self-playing and crafted better prompts. Surprisingly, users felt more or less success level in specifying the model behavior. Follow-up crowd studies (N=60) confirmed that the chatbot adhered to instructions without sacrificing quality. Our second evaluation is a case study on a real-world implementation using a movie rating dataset with Visionary Tuning, demonstrating its effectiveness and robustness in modeling a critic's preferences across the spectrum of low to highly rated movies. Together, these results suggest how AI improves the design process of interactive AI systems. Furthermore, they suggest how the benefits of these tools may be non-obvious to end-users. We reflect on these findings and suggest future directions.
📅 2025-03-05 | 💬 Published by Computer Speech & Language (https://doi.org/10.1016/j.csl.2025.101785). Source code and Leaderboard: https://github.com/llcresearch/GenCeption
Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks, which often lag behind the rapidly evolving demands of MLLM evaluation. This paper outlines and validates GenCeption, a novel, annotation-free evaluation method that requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs' tendency to hallucinate. This approach eliminates the need for costly data annotation, minimizes the risk of training data contamination, is expected to result in slower benchmark saturation, and avoids the illusion of emerging abilities. Inspired by the DrawCeption game, GenCeption begins with a non-textual sample and proceeds through iterative description and generation steps. The semantic drift across iterations is quantified using the GC@T metric. While GenCeption is principally applicable to MLLMs across various modalities, this paper focuses on its implementation and validation for Vision LLMs (VLLMs). Based on the GenCeption method, we establish the MMECeption benchmark for evaluating VLLMs, and compare the performance of several popular VLLMs and human annotators. Our empirical results validate GenCeption's effectiveness, demonstrating strong correlations with established VLLM benchmarks. VLLMs still significantly lag behind human performance and struggle especially with text-intensive tasks.
📅 2025-03-05
The deployment of Large Language Models (LLMs) in robotic systems presents unique safety challenges, particularly in unpredictable environments. Although LLMs, leveraging zero-shot learning, enhance human-robot interaction and decision-making capabilities, their inherent probabilistic nature and lack of formal guarantees raise significant concerns for safety-critical applications. Traditional model-based verification approaches often rely on precise system models, which are difficult to obtain for real-world robotic systems and may not be fully trusted due to modeling inaccuracies, unmodeled dynamics, or environmental uncertainties. To address these challenges, this paper introduces a safety assurance framework for LLM-controlled robots based on data-driven reachability analysis, a formal verification technique that ensures all possible system trajectories remain within safe operational limits. Our framework specifically investigates the problem of instructing an LLM to navigate the robot to a specified goal and assesses its ability to generate low-level control actions that successfully guide the robot safely toward that goal. By leveraging historical data to construct reachable sets of states for the robot-LLM system, our approach provides rigorous safety guarantees against unsafe behaviors without relying on explicit analytical models. We validate the framework through experimental case studies in autonomous navigation and task planning, demonstrating its effectiveness in mitigating risks associated with LLM-generated commands. This work advances the integration of formal methods into LLM-based robotics, offering a principled and practical approach to ensuring safety in next-generation autonomous systems.
📅 2025-03-05 | 💬 20 pages, 7 figures
The manufacturing industry is undergoing a transformative shift, driven by cutting-edge technologies like 5G, AI, and cloud computing. Despite these advancements, effective system control, which is crucial for optimizing production efficiency, remains a complex challenge due to the intricate, knowledge-dependent nature of manufacturing processes and the reliance on domain-specific expertise. Conventional control methods often demand heavy customization, considerable computational resources, and lack transparency in decision-making. In this work, we investigate the feasibility of using Large Language Models (LLMs), particularly GPT-4, as a straightforward, adaptable solution for controlling manufacturing systems, specifically, mobile robot scheduling. We introduce an LLM-based control framework to assign mobile robots to different machines in robot assisted serial production lines, evaluating its performance in terms of system throughput. Our proposed framework outperforms traditional scheduling approaches such as First-Come-First-Served (FCFS), Shortest Processing Time (SPT), and Longest Processing Time (LPT). While it achieves performance that is on par with state-of-the-art methods like Multi-Agent Reinforcement Learning (MARL), it offers a distinct advantage by delivering comparable throughput without the need for extensive retraining. These results suggest that the proposed LLM-based solution is well-suited for scenarios where technical expertise, computational resources, and financial investment are limited, while decision transparency and system scalability are critical concerns.
📅 2025-03-05 | 💬 13 pages, 6 figures
Most safety training methods for large language models (LLMs) based on fine-tuning rely on dramatically changing the output distribution of the model when faced with a harmful request, shifting it from an unsafe answer to a refusal to respond. These methods inherently compromise model capabilities and might make auto-regressive models vulnerable to attacks that make likely an initial token of affirmative response. To avoid that, we propose to expand the model's vocabulary with a special token we call red flag token () and propose to fine-tune the model to generate this token at any time harmful content is generated or about to be generated. This novel safety training method effectively augments LLMs into generative classifiers of harmfulness at all times during the conversation. This method offers several advantages: it enables the model to explicitly learn the concept of harmfulness while marginally affecting the generated distribution, thus maintaining the model's utility. It also evaluates each generated answer rather than just the input prompt and provides a stronger defence against sampling-based attacks. In addition, it simplifies the evaluation of the model's robustness and reduces correlated failures when combined with a classifier. We further show an increased robustness to long contexts, and supervised fine-tuning attacks. </details> </div>
📅 2025-03-05 | 💬 16 pages, 6 figures
Understanding the reliability of large language models (LLMs) has recently garnered significant attention. Given LLMs' propensity to hallucinate, as well as their high sensitivity to prompt design, it is already challenging to predict the performance of an individual LLM. However, the problem becomes more complex for compound LLM systems such as cascades, where in addition to each model's standalone performance, we must understand how the error rates of different models interact. In this paper, we present a probabilistic model for the joint performance distribution of a sequence of LLMs, which enables a framework for rationally tuning the confidence thresholds of a LLM cascade using continuous optimization. Compared to selecting confidence thresholds using grid search, our parametric Markov-copula model significantly improves runtime scaling with respect to the length of the cascade and the desired resolution of the cost-error curve, turning them from intractable into low-order polynomial. In addition, the optimal thresholds computed using our continuous optimization-based algorithm increasingly outperform those found via grid search as cascade length grows, improving the area under the cost-error curve by 1.9% on average for cascades consisting of at least three models. Overall, our Markov-copula model provides a rational basis for tuning LLM cascade performance and points to the potential of probabilistic methods in analyzing LLM systems.
📅 2025-03-05
Large Language Models (LLMs) are increasingly deployed across diverse contexts to support decision-making. While existing evaluations effectively probe latent model capabilities, they often overlook the impact of context framing on perceived rational decision-making. In this study, we introduce a novel evaluation framework that systematically varies evaluation instances across key features and procedurally generates vignettes to create highly varied scenarios. By analyzing decision-making patterns across different contexts with the same underlying game structure, we uncover significant contextual variability in LLM responses. Our findings demonstrate that this variability is largely predictable yet highly sensitive to framing effects. Our results underscore the need for dynamic, context-aware evaluation methodologies for real-world deployments.
📅 2025-03-05
With the advancement of conversational large language models (LLMs), several LLM-based Conversational Shopping Agents (CSA) have been developed to help customers answer questions and smooth their shopping journey in e-commerce domain. The primary objective in building a trustworthy CSA is to ensure the agent's responses are accurate and factually grounded, which is essential for building customer trust and encouraging continuous engagement. However, two challenges remain. First, LLMs produce hallucinated or unsupported claims. Such inaccuracies risk spreading misinformation and diminishing customer trust. Second, without providing knowledge source attribution in CSA response, customers struggle to verify LLM-generated information. To address these challenges, we present an easily productionized solution that enables a "citation experience" utilizing In-context Learning (ICL) and Multi-UX-Inference (MUI) to generate responses with citations to attribute its original sources without interfering other existing UX features. With proper UX design, these citation marks can be linked to the related product information and display the source to our customers. In this work, we also build auto-metrics and scalable benchmarks to holistically evaluate LLM's grounding and attribution capabilities. Our experiments demonstrate that incorporating this citation generation paradigm can substantially enhance the grounding of LLM responses by 13.83% on the real-world data. As such, our solution not only addresses the immediate challenges of LLM grounding issues but also adds transparency to conversational AI.
📅 2025-03-05
While Large Language Models (LLMs) are fundamentally next-token prediction systems, their practical applications extend far beyond this basic function. From natural language processing and text generation to conversational assistants and software use, LLMs have numerous use-cases, and have already acquired a significant degree of enterprise adoption. To evaluate such models, static evaluation datasets, consisting of a set of prompts and their corresponding ground truths, are often used to benchmark the efficacy of the model for a particular task. In this paper, we provide the basis for a more comprehensive evaluation framework, based upon a traditional game and tool-based architecture that enables a more overarching measurement of a model's capabilities. For simplicity, we provide a generalized foundation that can be extended, without significant alteration, to numerous scenarios, from specific use cases such as supply chain management or financial reasoning, to abstract measurements such as ethics or safety.
📅 2025-03-05 | 💬 NAACL 2025 Findings
Personalizing large language models (LLMs) is essential for delivering tailored interactions that improve user experience. Many existing personalization methods require fine-tuning LLMs for each user, rendering them prohibitively expensive for widespread adoption. Although retrieval-based approaches offer a more compute-efficient alternative, they still depend on large, high-quality datasets that are not consistently available for all users. To address this challenge, we propose CHAMELEON, a scalable and efficient personalization approach that uses (1) self-generated personal preference data and (2) representation editing to enable quick and cost-effective personalization. Our experiments on various tasks, including those from the LaMP personalization benchmark, show that CHAMELEON efficiently adapts models to personal preferences, improving instruction-tuned models and outperforms two personalization baselines by an average of 40% across two model architectures.
📅 2025-03-05
Data harmonization is an essential task that entails integrating datasets from diverse sources. Despite years of research in this area, it remains a time-consuming and challenging task due to schema mismatches, varying terminologies, and differences in data collection methodologies. This paper presents the case for agentic data harmonization as a means to both empower experts to harmonize their data and to streamline the process. We introduce Harmonia, a system that combines LLM-based reasoning, an interactive user interface, and a library of data harmonization primitives to automate the synthesis of data harmonization pipelines. We demonstrate Harmonia in a clinical data harmonization scenario, where it helps to interactively create reusable pipelines that map datasets to a standard format. Finally, we discuss challenges and open problems, and suggest research directions for advancing our vision.
📅 2025-03-05 | 💬 18 pages and 3 References Pages
In this work, we explore uncertainty estimation as a proxy for correctness in LLM-generated code. To this end, we adapt two state-of-the-art techniques from natural language generation -- one based on entropy and another on mutual information -- to the domain of code generation. Given the distinct semantic properties of code, we introduce modifications, including a semantic equivalence check based on symbolic execution. Our findings indicate a strong correlation between the uncertainty computed through these techniques and correctness, highlighting the potential of uncertainty estimation for quality assessment. Additionally, we propose a simplified version of the entropy-based method that assumes a uniform distribution over the LLM's responses, demonstrating comparable effectiveness. Using these techniques, we develop an abstention policy that prevents the model from making predictions when uncertainty is high, reducing incorrect outputs to near zero. Our evaluation on the LiveCodeBench shows that our approach significantly outperforms a baseline relying solely on LLM-reported log-probabilities.
📅 2025-03-05
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks. Direct preference optimization (DPO), a widely deployed alignment method, exhibits limitations in both experimental and theoretical contexts as its loss function proves suboptimal for refusal learning. Through gradient-based analysis, we identify these shortcomings and propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge. This approach significantly increases LLM robustness against a wide range of jailbreak attacks, including prefilling, suffix, and multi-turn attacks across both in-distribution and out-of-distribution scenarios. Furthermore, we introduce a method to emphasize critical refusal tokens by incorporating a reward-based token-level weighting mechanism for refusal learning, which further improves the robustness against adversarial exploits. Our research also suggests that robustness to jailbreak attacks is correlated with token distribution shifts in the training process and internal representations of refusal and harmful tokens, offering valuable directions for future research in LLM safety alignment. The code is available at https://github.com/wicai24/DOOR-Alignment
📅 2025-03-05
Large language models (LLMs) are trained on enormous documents that contain extensive world knowledge. However, it is still not well-understood how knowledge is acquired via autoregressive pre-training. This lack of understanding greatly hinders effective knowledge learning, especially for continued pretraining on up-to-date information, as this evolving information often lacks diverse repetitions like foundational knowledge. In this paper, we focus on understanding and improving LLM knowledge learning. We found and verified that knowledge learning for LLMs can be deemed as an implicit supervised task hidden in the autoregressive pre-training objective. Our findings suggest that knowledge learning for LLMs would benefit from methods designed to improve generalization ability for supervised tasks. Based on our analysis, we propose the formatting-based data augmentation to grow in-distribution samples, which does not present the risk of altering the facts embedded in documents as text paraphrasing. We also introduce sharpness-aware minimization as an effective optimization algorithm to better improve generalization. Moreover, our analysis and method can be readily extended to instruction tuning. Extensive experiment results validate our findings and demonstrate our methods' effectiveness in both continued pre-training and instruction tuning. This paper offers new perspectives and insights to interpret and design effective strategies for LLM knowledge learning.
📅 2025-03-05
Agents based on large language models (LLMs) have demonstrated strong capabilities in a wide range of complex, real-world applications. However, LLM agents with a compromised memory bank may easily produce harmful outputs when the past records retrieved for demonstration are malicious. In this paper, we propose a novel Memory INJection Attack, MINJA, that enables the injection of malicious records into the memory bank by only interacting with the agent via queries and output observations. These malicious records are designed to elicit a sequence of malicious reasoning steps leading to undesirable agent actions when executing the victim user's query. Specifically, we introduce a sequence of bridging steps to link the victim query to the malicious reasoning steps. During the injection of the malicious record, we propose an indication prompt to guide the agent to autonomously generate our designed bridging steps. We also propose a progressive shortening strategy that gradually removes the indication prompt, such that the malicious record will be easily retrieved when processing the victim query comes after. Our extensive experiments across diverse agents demonstrate the effectiveness of MINJA in compromising agent memory. With minimal requirements for execution, MINJA enables any user to influence agent memory, highlighting practical risks of LLM agents.
📅 2025-03-05 | 💬 26 pages, 7 figures
LLM-based multi-agent systems (MAS) have shown significant potential in tackling diverse tasks. However, to design effective MAS, existing approaches heavily rely on manual configurations or multiple calls of advanced LLMs, resulting in inadaptability and high inference costs. In this paper, we simplify the process of building an MAS by reframing it as a generative language task, where the input is a user query and the output is a corresponding MAS. To address this novel task, we unify the representation of MAS as executable code and propose a consistency-oriented data construction pipeline to create a high-quality dataset comprising coherent and consistent query-MAS pairs. Using this dataset, we train MAS-GPT, an open-source medium-sized LLM that is capable of generating query-adaptive MAS within a single LLM inference. The generated MAS can be seamlessly applied to process user queries and deliver high-quality responses. Extensive experiments on 9 benchmarks and 5 LLMs show that the proposed MAS-GPT consistently outperforms 10+ baseline MAS methods on diverse settings, indicating MAS-GPT's high effectiveness, efficiency and strong generalization ability. Code will be available at https://github.com/rui-ye/MAS-GPT.
📅 2025-03-05 | 💬 Work in progress
While LLMs have demonstrated remarkable potential in time series forecasting, their practical deployment remains constrained by excessive computational demands and memory footprints. Existing LLM-based approaches typically suffer from three critical limitations: Inefficient parameter utilization in handling numerical time series patterns; Modality misalignment between continuous temporal signals and discrete text embeddings; and Inflexibility for real-time expert knowledge integration. We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting. Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through descriptive statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters; And a dynamic mixture-of-experts framework enabled by SLMs' computational efficiency, adaptively combining base predictions with domain-specific models. Extensive evaluations across seven benchmark datasets demonstrate that our 3B-parameter SLM achieves state-of-the-art performance on five primary datasets while maintaining 3.8x faster training and 5.2x lower memory consumption compared to 7B-parameter LLM baselines. Notably, the proposed model exhibits better learning capabilities, achieving 12.3% lower MSE than conventional LLM. Ablation studies validate that our statistical prompting and cross-modal fusion modules respectively contribute 15.7% and 18.2% error reduction in long-horizon forecasting tasks. By redefining the efficiency-accuracy trade-off landscape, this work establishes SLMs as viable alternatives to resource-intensive LLMs for practical time series forecasting. Code and models are available at https://github.com/xiyan1234567/SMETimes.
📅 2025-03-05 | 💬 8 pages, 6 figures
For consumer usage of locally deployed LLMs, the GGUF format and k_quantization are invaluable tools for maintaining the performance of the original model while reducing it to sizes deployable with consumer-grade hardware. The number of bits dedicated to each weight from the original model is reduced based on how important they are thought to be during model inference. This importance is arrived at through the application of an 'importance matrix'-a relatively small text document meant to be representative of the LLM's standard use-cases. In the vast majority of quants available online, this document is primarily written in English. It was therefore an open question whether performance on English language tasks was preserved through the sacrifice of multilingual performance and whether it can be preserved with alternate importance matrices. This article investigates these hypotheses by quantizing Llama3.3 70B on importance matrices written in three languages (English, Norwegian, and Malayalam) and evaluating them on the MixEval dataset in both English and Norwegian. All experiments related to k_quantization yielded non-significant results (In all cases p > 0.237) indicating that current quantization practices do not disproportionately harm multilingual performance.
📅 2025-03-05 | 💬 19 pages
The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical competitions like IMO and have made significant progress. This paper focuses on formal verification, an immediate application scenario of formal reasoning, and breaks it down into sub-tasks. We constructed 18k high-quality instruction-response pairs across five formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) by distilling gpt-4o and evaluated against ten open-sourced LLMs, including recent popular DeepSeek-R1. We also fine-tuned several 7~8B small models to achieve comparable performance with Deepseek-R1-671B. Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding capabilities. Fine-tuned models are released at https: //huggingface.co/fm-universe.