Skip to the content.

llm - 2025_05

Home / Papers / llm

Papers

📅 2025-05-18 | 💬 19 pages
In light of the rapid adoption of AI coding assistants, LLM-assisted development has become increasingly prevalent, creating an urgent need for robust evaluation of generated code quality. Existing benchmarks often require extensive manual effort to create static datasets, rely on indirect or insufficiently challenging tasks, depend on non-scalable ground truth, or neglect critical low-level security evaluations, particularly memory-safety issues. In this work, we introduce OSS-Bench, a benchmark generator that automatically constructs large-scale, live evaluation tasks from real-world open-source software. OSS-Bench replaces functions with LLM-generated code and evaluates them using three natural metrics: compilability, functional correctness, and memory safety, leveraging robust signals like compilation failures, test-suite violations, and sanitizer alerts as ground truth. In our evaluation, the benchmark, instantiated as OSS-Bench(php) and OSS-Bench(sql), profiles 17 diverse LLMs, revealing insights such as intra-family behavioral patterns and inconsistencies between model size and performance. Our results demonstrate that OSS-Bench mitigates overfitting by leveraging the evolving complexity of OSS and highlights LLMs' limited understanding of low-level code security via extended fuzzing experiments. Overall, OSS-Bench offers a practical and scalable framework for benchmarking the real-world coding capabilities of LLMs.
📅 2025-05-18
We present Team asdfo123's submission to the LLMSR@XLLM25 shared task, which evaluates large language models on producing fine-grained, controllable, and interpretable reasoning processes. Systems must extract all problem conditions, decompose a chain of thought into statement-evidence pairs, and verify the logical validity of each pair. Leveraging only the off-the-shelf Meta-Llama-3-8B-Instruct, we craft a concise few-shot, multi-turn prompt that first enumerates all conditions and then guides the model to label, cite, and adjudicate every reasoning step. A lightweight post-processor based on regular expressions normalises spans and enforces the official JSON schema. Without fine-tuning, external retrieval, or ensembling, our method ranks 5th overall, achieving macro F1 scores on par with substantially more complex and resource-consuming pipelines. We conclude by analysing the strengths and limitations of our approach and outlining directions for future research in structural reasoning with LLMs. Our code is available at https://github.com/asdfo123/LLMSR-asdfo123.
📅 2025-05-18 | 💬 18 pages, accepted at the ACL 2025
Large Language Models (LLMs) have become essential for offensive language detection, yet their ability to handle annotation disagreement remains underexplored. Disagreement samples, which arise from subjective interpretations, pose a unique challenge due to their ambiguous nature. Understanding how LLMs process these cases, particularly their confidence levels, can offer insight into their alignment with human annotators. This study systematically evaluates the performance of multiple LLMs in detecting offensive language at varying levels of annotation agreement. We analyze binary classification accuracy, examine the relationship between model confidence and human disagreement, and explore how disagreement samples influence model decision-making during few-shot learning and instruction fine-tuning. Our findings reveal that LLMs struggle with low-agreement samples, often exhibiting overconfidence in these ambiguous cases. However, utilizing disagreement samples in training improves both detection accuracy and model alignment with human judgment. These insights provide a foundation for enhancing LLM-based offensive language detection in real-world moderation tasks.
📅 2025-05-18
Large Language Models (LLMs) exhibit remarkable capabilities across various tasks, yet guiding them to follow desired behaviours during inference remains a significant challenge. Activation steering offers a promising method to control the generation process of LLMs by modifying their internal activations. However, existing methods commonly intervene in the model's behaviour using steering vectors generated by the model itself, which constrains their effectiveness to that specific model and excludes the possibility of leveraging powerful external expert models for steering. To address these limitations, we propose ExpertSteer, a novel approach that leverages arbitrary specialized expert models to generate steering vectors, enabling intervention in any LLMs. ExpertSteer transfers the knowledge from an expert model to a target LLM through a cohesive four-step process: first aligning representation dimensions with auto-encoders to enable cross-model transfer, then identifying intervention layer pairs based on mutual information analysis, next generating steering vectors from the expert model using Recursive Feature Machines, and finally applying these vectors on the identified layers during inference to selectively guide the target LLM without updating model parameters. We conduct comprehensive experiments using three LLMs on 15 popular benchmarks across four distinct domains. Experiments demonstrate that ExpertSteer significantly outperforms established baselines across diverse tasks at minimal cost.
📅 2025-05-18 | 💬 19 pages, 3 tables, 3 figures
LLMs have emerged as powerful evaluators in the LLM-as-a-Judge paradigm, offering significant efficiency and flexibility compared to human judgments. However, previous methods primarily rely on single-point evaluations, overlooking the inherent diversity and uncertainty in human evaluations. This approach leads to information loss and decreases the reliability of evaluations. To address this limitation, we propose a novel training framework that explicitly aligns the LLM-generated judgment distribution with empirical human distributions. Specifically, we propose a distributional alignment objective based on KL divergence, combined with an auxiliary cross-entropy regularization to stabilize the training process. Furthermore, considering that empirical distributions may derive from limited human annotations, we incorporate adversarial training to enhance model robustness against distribution perturbations. Extensive experiments across various LLM backbones and evaluation tasks demonstrate that our framework significantly outperforms existing closed-source LLMs and conventional single-point alignment methods, with improved alignment quality, evaluation accuracy, and robustness.
📅 2025-05-18
Large language models (LLMs) excel at complex tasks thanks to advances in reasoning abilities. However, existing methods overlook the trade-off between reasoning effectiveness and computational efficiency, often encouraging unnecessarily long reasoning chains and wasting tokens. To address this, we propose Learning to Think (L2T), an information-theoretic reinforcement fine-tuning framework for LLMs to make the models achieve optimal reasoning with fewer tokens. Specifically, L2T treats each query-response interaction as a hierarchical session of multiple episodes and proposes a universal dense process reward, i.e., quantifies the episode-wise information gain in parameters, requiring no extra annotations or task-specific evaluators. We propose a method to quickly estimate this reward based on PAC-Bayes bounds and the Fisher information matrix. Theoretical analyses show that it significantly reduces computational complexity with high estimation accuracy. By immediately rewarding each episode's contribution and penalizing excessive updates, L2T optimizes the model via reinforcement learning to maximize the use of each episode and achieve effective updates. Empirical results on various reasoning benchmarks and base models demonstrate the advantage of L2T across different tasks, boosting both reasoning effectiveness and efficiency.
📅 2025-05-18
Large Language Models (LLMs) have seen widespread applications across various domains due to their growing ability to process diverse types of input data, including text, audio, image and video. While LLMs have demonstrated outstanding performance in understanding and generating contexts for different scenarios, they are vulnerable to prompt-based attacks, which are mostly via text input. In this paper, we introduce the first voice-based jailbreak attack against multimodal LLMs, termed as Flanking Attack, which can process different types of input simultaneously towards the multimodal LLMs. Our work is motivated by recent advancements in monolingual voice-driven large language models, which have introduced new attack surfaces beyond traditional text-based vulnerabilities for LLMs. To investigate these risks, we examine the state-of-the-art multimodal LLMs, which can be accessed via different types of inputs such as audio input, focusing on how adversarial prompts can bypass its defense mechanisms. We propose a novel strategy, in which the disallowed prompt is flanked by benign, narrative-driven prompts. It is integrated in the Flanking Attack which attempts to humanizes the interaction context and execute the attack through a fictional setting. Further, to better evaluate the attack performance, we present a semi-automated self-assessment framework for policy violation detection. We demonstrate that Flanking Attack is capable of manipulating state-of-the-art LLMs into generating misaligned and forbidden outputs, which achieves an average attack success rate ranging from 0.67 to 0.93 across seven forbidden scenarios.
📅 2025-05-18
Evaluating machine translation (MT) for low-resource languages poses a persistent challenge, primarily due to the limited availability of high quality reference translations. This issue is further exacerbated in languages with multiple dialects, where linguistic diversity and data scarcity hinder robust evaluation. Large Language Models (LLMs) present a promising solution through reference-free evaluation techniques; however, their effectiveness diminishes in the absence of dialect-specific context and tailored guidance. In this work, we propose a comprehensive framework that enhances LLM-based MT evaluation using a dialect guided approach. We extend the ONUBAD dataset by incorporating Sylheti-English sentence pairs, corresponding machine translations, and Direct Assessment (DA) scores annotated by native speakers. To address the vocabulary gap, we augment the tokenizer vocabulary with dialect-specific terms. We further introduce a regression head to enable scalar score prediction and design a dialect-guided (DG) prompting strategy. Our evaluation across multiple LLMs shows that the proposed pipeline consistently outperforms existing methods, achieving the highest gain of +0.1083 in Spearman correlation, along with improvements across other evaluation settings. The dataset and the code are available at https://github.com/180041123-Atiq/MTEonLowResourceLanguage.
📅 2025-05-18
Large Language Models (LLMs)-based hybrid retrieval uses LLMs to encode queries and documents into low-dimensional dense or high-dimensional sparse vectors. It retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based hybrid retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full-sized LLM on an H800 GPU, our approach achieves over a 1000x speedup for query inference with GPU acceleration, and even a 20x speedup without GPU. Experiments on large-scale retrieval benchmarks demonstrate that our method generalizes well across diverse retrieval tasks, retaining an average of 95% full-sized performance.
📅 2025-05-18
Recent progress in large language models (LLMs) has outpaced the development of effective evaluation methods. Traditional benchmarks rely on task-specific metrics and static datasets, which often suffer from fairness issues, limited scalability, and contamination risks. In this paper, we introduce Teach2Eval, an indirect evaluation framework inspired by the Feynman Technique. Instead of directly testing LLMs on predefined tasks, our method evaluates a model's multiple abilities to teach weaker student models to perform tasks effectively. By converting open-ended tasks into standardized multiple-choice questions (MCQs) through teacher-generated feedback, Teach2Eval enables scalable, automated, and multi-dimensional assessment. Our approach not only avoids data leakage and memorization but also captures a broad range of cognitive abilities that are orthogonal to current benchmarks. Experimental results across 26 leading LLMs show strong alignment with existing human and model-based dynamic rankings, while offering additional interpretability for training guidance.
📅 2025-05-18 | 💬 10 pages
Identifying subtle technical errors within complex scientific and technical documents, especially those requiring multimodal interpretation (e.g., formulas in images), presents a significant hurdle for Large Language Models (LLMs) whose inherent error-correction tendencies can mask inaccuracies. This exploratory proof-of-concept (PoC) study investigates structured LLM context conditioning, informed by Persistent Workflow Prompting (PWP) principles, as a methodological strategy to modulate this LLM behavior at inference time. The approach is designed to enhance the reliability of readily available, general-purpose LLMs (specifically Gemini 2.5 Pro and ChatGPT Plus o3) for precise validation tasks, crucially relying only on their standard chat interfaces without API access or model modifications. To explore this methodology, we focused on validating chemical formulas within a single, complex test paper with known textual and image-based errors. Several prompting strategies were evaluated: while basic prompts proved unreliable, an approach adapting PWP structures to rigorously condition the LLM's analytical mindset appeared to improve textual error identification with both models. Notably, this method also guided Gemini 2.5 Pro to repeatedly identify a subtle image-based formula error previously overlooked during manual review, a task where ChatGPT Plus o3 failed in our tests. These preliminary findings highlight specific LLM operational modes that impede detail-oriented validation and suggest that PWP-informed context conditioning offers a promising and highly accessible technique for developing more robust LLM-driven analytical workflows, particularly for tasks requiring meticulous error detection in scientific and technical documents. Extensive validation beyond this limited PoC is necessary to ascertain broader applicability.
📅 2025-05-18 | 💬 accepted to ACL 2025 main conference
Personalized product search aims to retrieve and rank items that match users' preferences and search intent. Despite their effectiveness, existing approaches typically assume that users' query fully captures their real motivation. However, our analysis of a real-world e-commerce platform reveals that users often engage in relevant consultations before searching, indicating they refine intents through consultations based on motivation and need. The implied motivation in consultations is a key enhancing factor for personalized search. This unexplored area comes with new challenges including aligning contextual motivations with concise queries, bridging the category-text gap, and filtering noise within sequence history. To address these, we propose a Motivation-Aware Personalized Search (MAPS) method. It embeds queries and consultations into a unified semantic space via LLMs, utilizes a Mixture of Attention Experts (MoAE) to prioritize critical semantics, and introduces dual alignment: (1) contrastive learning aligns consultations, reviews, and product features; (2) bidirectional attention integrates motivation-aware embeddings with user preferences. Extensive experiments on real and synthetic data show MAPS outperforms existing methods in both retrieval and ranking tasks.
📅 2025-05-18
The memorization of sensitive and personally identifiable information (PII) by large language models (LLMs) poses growing privacy risks as models scale and are increasingly deployed in real-world applications. Existing efforts to study sensitive and PII data memorization and develop mitigation strategies are hampered by the absence of comprehensive, realistic, and ethically sourced datasets reflecting the diversity of sensitive information found on the web. We introduce PANORAMA - Profile-based Assemblage for Naturalistic Online Representation and Attribute Memorization Analysis, a large-scale synthetic corpus of 384,789 samples derived from 9,674 synthetic profiles designed to closely emulate the distribution, variety, and context of PII and sensitive data as it naturally occurs in online environments. Our data generation pipeline begins with the construction of internally consistent, multi-attribute human profiles using constrained selection to reflect real-world demographics such as education, health attributes, financial status, etc. Using a combination of zero-shot prompting and OpenAI o3-mini, we generate diverse content types - including wiki-style articles, social media posts, forum discussions, online reviews, comments, and marketplace listings - each embedding realistic, contextually appropriate PII and other sensitive information. We validate the utility of PANORAMA by fine-tuning the Mistral-7B model on 1x, 5x, 10x, and 25x data replication rates with a subset of data and measure PII memorization rates - revealing not only consistent increases with repetition but also variation across content types, highlighting PANORAMA's ability to model how memorization risks differ by context. Our dataset and code are publicly available, providing a much-needed resource for privacy risk assessment, model auditing, and the development of privacy-preserving LLMs.
📅 2025-05-18
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable reasoning and generalization capabilities in video understanding; however, their application in video editing remains largely underexplored. This paper presents the first systematic study of LLMs in the context of video editing. To bridge the gap between visual information and language-based reasoning, we introduce L-Storyboard, an intermediate representation that transforms discrete video shots into structured language descriptions suitable for LLM processing. We categorize video editing tasks into Convergent Tasks and Divergent Tasks, focusing on three core tasks: Shot Attributes Classification, Next Shot Selection, and Shot Sequence Ordering. To address the inherent instability of divergent task outputs, we propose the StoryFlow strategy, which converts the divergent multi-path reasoning process into a convergent selection mechanism, effectively enhancing task accuracy and logical coherence. Experimental results demonstrate that L-Storyboard facilitates a more robust mapping between visual information and language descriptions, significantly improving the interpretability and privacy protection of video editing tasks. Furthermore, StoryFlow enhances the logical consistency and output stability in Shot Sequence Ordering, underscoring the substantial potential of LLMs in intelligent video editing.
📅 2025-05-18 | 💬 15 pages
Large Language Models (LLMs) are increasingly adopted for applications in healthcare, reaching the performance of domain experts on tasks such as question answering and document summarisation. Despite their success on these tasks, it is unclear how well LLMs perform on tasks that are traditionally pursued in the biomedical domain, such as structured information extraction. To bridge this gap, in this paper, we systematically benchmark LLM performance in Medical Classification and Named Entity Recognition (NER) tasks. We aim to disentangle the contribution of different factors to the performance, particularly the impact of LLMs' task knowledge and reasoning capabilities, their (parametric) domain knowledge, and addition of external knowledge. To this end, we evaluate various open LLMs - including BioMistral and Llama-2 models - on a diverse set of biomedical datasets, using standard prompting, Chain of-Thought (CoT) and Self Consistency based reasoning as well as Retrieval-Augmented Generation (RAG) with PubMed and Wikipedia corpora. Counter intuitively, our results reveal that standard prompting consistently outperforms more complex techniques across both tasks, laying bare the limitations in the current application of CoT, self-consistency and RAG in the biomedical domain. Our findings suggest that advanced prompting methods developed for knowledge- or reasoning-intensive tasks, such as CoT or RAG, are not easily portable to biomedical tasks where precise structured outputs are required. This highlights the need for more effective integration of external knowledge and reasoning mechanisms in LLMs to enhance their performance in real-world biomedical applications.
📅 2025-05-18 | 💬 15 pages, 4 figures
As large language models (LLMs) become increasingly powerful, traditional evaluation metrics tend to saturate, making it challenging to distinguish between models. We propose a general method to transform existing LLM evaluations into a series of progressively more difficult tasks. These enhanced evaluations emphasize reasoning capabilities and can reveal relative performance differences that are not apparent in the original assessments. To demonstrate the effectiveness of our approach, we create a new multiple-choice test corpus, extend it into a family of evaluations, and assess a collection of LLMs. Our results offer insights into the comparative abilities of these models, particularly highlighting the differences between base LLMs and more recent "reasoning" models.
📅 2025-05-18
Preference alignment methods are increasingly critical for steering large language models (LLMs) to generate outputs consistent with human values. While recent approaches often rely on synthetic data generated by LLMs for scalability and cost-efficiency reasons, this reliance can introduce distribution shifts that undermine the nuanced representation of human preferences needed for desirable outputs. In this paper, we propose a novel distribution-aware optimization framework that improves preference alignment despite such shifts. Our approach first leverages well-learned classifiers to assign a calibration value to each training sample, quantifying its alignment with the target human-preferred distribution. These values are then incorporated into a robust optimization objective that minimizes the worst-case loss over regions of the data space most relevant to human preferences. By explicitly focusing optimization on the target distribution, our approach mitigates the impact of distributional mismatch and improves the generation of responses that better reflect intended values.
📅 2025-05-18
High-quality reward models are crucial for unlocking the reasoning potential of large language models (LLMs), with best-of-N voting demonstrating significant performance gains. However, current reward models, which typically operate on the textual output of LLMs, are computationally expensive and parameter-heavy, limiting their real-world applications. We introduce the Efficient Linear Hidden State Reward (ELHSR) model - a novel, highly parameter-efficient approach that leverages the rich information embedded in LLM hidden states to address these issues. ELHSR systematically outperform baselines with less than 0.005% of the parameters of baselines, requiring only a few samples for training. ELHSR also achieves orders-of-magnitude efficiency improvement with significantly less time and fewer FLOPs per sample than baseline reward models. Moreover, ELHSR exhibits robust performance even when trained only on logits, extending its applicability to some closed-source LLMs. In addition, ELHSR can also be combined with traditional reward models to achieve additional performance gains.
📅 2025-05-18 | 💬 Accepted by ACL 2025 main, 18 pages, 8 figures, 6 tables
Fine-tuning large language models (LLMs) on task-specific data is essential for their effective deployment. As dataset sizes grow, efficiently selecting optimal subsets for training becomes crucial to balancing performance and computational costs. Traditional data selection methods often require fine-tuning a scoring model on the target dataset, which is time-consuming and resource-intensive, or rely on heuristics that fail to fully leverage the model's predictive capabilities. To address these challenges, we propose Data Whisperer, an efficient, training-free, attention-based method that leverages few-shot in-context learning with the model to be fine-tuned. Comprehensive evaluations were conducted on both raw and synthetic datasets across diverse tasks and models. Notably, Data Whisperer achieves superior performance compared to the full GSM8K dataset on the Llama-3-8B-Instruct model, using just 10% of the data, and outperforms existing methods with a 3.1-point improvement and a 7.4$\times$ speedup.
📅 2025-05-18
LLM-as-a-Judge has emerged as a popular evaluation strategy, where advanced large language models assess generation results in alignment with human instructions. While these models serve as a promising alternative to human annotators, their reliability in multilingual evaluation remains uncertain. To bridge this gap, we conduct a comprehensive analysis of multilingual LLM-as-a-Judge. Specifically, we evaluate five models from different model families across five diverse tasks involving 25 languages. Our findings reveal that LLMs struggle to achieve consistent judgment results across languages, with an average Fleiss' Kappa of approximately 0.3, and some models performing even worse. To investigate the cause of inconsistency, we analyze various influencing factors. We observe that consistency varies significantly across languages, with particularly poor performance in low-resource languages. Additionally, we find that neither training on multilingual data nor increasing model scale directly improves judgment consistency. These findings suggest that LLMs are not yet reliable for evaluating multilingual predictions. We finally propose an ensemble strategy which improves the consistency of the multilingual judge in real-world applications.
📅 2025-05-18
Even though high-level synthesis (HLS) tools mitigate the challenges of programming domain-specific accelerators (DSAs) by raising the abstraction level, optimizing hardware directive parameters remains a significant hurdle. Existing heuristic and learning-based methods struggle with adaptability and sample efficiency.We present LLM-DSE, a multi-agent framework designed specifically for optimizing HLS directives. Combining LLM with design space exploration (DSE), our explorer coordinates four agents: Router, Specialists, Arbitrator, and Critic. These multi-agent components interact with various tools to accelerate the optimization process. LLM-DSE leverages essential domain knowledge to identify efficient parameter combinations while maintaining adaptability through verbal learning from online interactions. Evaluations on the HLSyn dataset demonstrate that LLM-DSE achieves substantial $2.55\times$ performance gains over state-of-the-art methods, uncovering novel designs while reducing runtime. Ablation studies validate the effectiveness and necessity of the proposed agent interactions. Our code is open-sourced here: https://github.com/Nozidoali/LLM-DSE.
📅 2025-05-18 | 💬 19 pages, 11 figures
Assessing the programming capabilities of Large Language Models (LLMs) is crucial for their effective use in software engineering. Current evaluations, however, predominantly measure the accuracy of generated code on static benchmarks, neglecting the critical aspect of model robustness during programming tasks. While adversarial attacks offer insights on model robustness, their effectiveness is limited and evaluation could be constrained. Current adversarial attack methods for robustness evaluation yield inconsistent results, struggling to provide a unified evaluation across different LLMs. We introduce EVALOOP, a novel assessment framework that evaluate the robustness from a self-consistency perspective, i.e., leveraging the natural duality inherent in popular software engineering tasks, e.g., code generation and code summarization. EVALOOP initiates a self-contained feedback loop: an LLM generates output (e.g., code) from an input (e.g., natural language specification), and then use the generated output as the input to produce a new output (e.g., summarizes that code into a new specification). EVALOOP repeats the process to assess the effectiveness of EVALOOP in each loop. This cyclical strategy intrinsically evaluates robustness without rely on any external attack setups, providing a unified metric to evaluate LLMs' robustness in programming. We evaluate 16 prominent LLMs (e.g., GPT-4.1, O4-mini) on EVALOOP and found that EVALOOP typically induces a 5.01%-19.31% absolute drop in pass@1 performance within ten loops. Intriguingly, robustness does not always align with initial performance (i.e., one-time query); for instance, GPT-3.5-Turbo, despite superior initial code generation compared to DeepSeek-V2, demonstrated lower robustness over repeated evaluation loop.
📅 2025-05-17 | 💬 work in progress
This paper investigates approaches to enhance the reasoning capabilities of Large Language Model (LLM) agents using Reinforcement Learning (RL). Specifically, we focus on multi-turn tool-use scenarios, which can be naturally modeled as Markov Decision Processes (MDPs). While existing approaches often train multi-turn LLM agents with trajectory-level advantage estimation in bandit settings, they struggle with turn-level credit assignment across multiple decision steps, limiting their performance on multi-turn reasoning tasks. To address this, we introduce a fine-grained turn-level advantage estimation strategy to enable more precise credit assignment in multi-turn agent interactions. The strategy is general and can be incorporated into various RL algorithms such as Group Relative Preference Optimization (GRPO). Our experimental evaluation on multi-turn reasoning and search-based tool-use tasks with GRPO implementations highlights the effectiveness of the MDP framework and the turn-level credit assignment in advancing the multi-turn reasoning capabilities of LLM agents in complex decision-making settings. Our method achieves 100% success in tool execution and 50% accuracy in exact answer matching, significantly outperforming baselines, which fail to invoke tools and achieve only 20-30% exact match accuracy.
📅 2025-05-17
Large Language Models (LLMs) show potential for complex reasoning, yet their capacity for emergent coordination in Multi-Agent Systems (MAS) when operating under strict swarm-like constraints-limited local perception and communication-remains largely unexplored. Existing benchmarks often do not fully capture the unique challenges of decentralized coordination when agents operate with incomplete spatio-temporal information. To bridge this gap, we introduce SwarmBench, a novel benchmark designed to systematically evaluate the swarm intelligence capabilities of LLMs acting as decentralized agents. SwarmBench features five foundational MAS coordination tasks (Pursuit, Synchronization, Foraging, Flocking, Transport) within a configurable 2D grid environment, forcing agents to rely solely on local sensory input ($k\times k$ view) and local communication. We propose metrics for coordination effectiveness and analyze emergent group dynamics. Zero-shot evaluations of leading LLMs (e.g., deepseek-v3, o4-mini) reveal significant task-dependent performance variations. While some rudimentary coordination is observed, our results indicate that current LLMs significantly struggle with robust long-range planning and adaptive strategy formation under the uncertainty inherent in these decentralized scenarios. Assessing LLMs under such swarm-like constraints is crucial for understanding their utility in future decentralized intelligent systems. We release SwarmBench as an open, extensible toolkit-built on a customizable physical system-providing environments, prompts, evaluation scripts, and comprehensive datasets. This aims to foster reproducible research into LLM-based MAS coordination and the theoretical underpinnings of emergent collective behavior under severe informational decentralization. Our code repository is available at https://github.com/x66ccff/swarmbench.
📅 2025-05-17
Optimization plays a vital role in scientific research and practical applications. However, formulating a concrete optimization problem described in natural language into a mathematical form and selecting a suitable solver to solve the problem requires substantial domain expertise. We introduce OptimAI, a framework for solving Optimization problems described in natural language by leveraging LLM-powered AI agents, and achieve superior performance over current state-of-the-art methods. Our framework is built upon the following key roles: (1) a formulator that translates natural language problem descriptions into precise mathematical formulations; (2) a planner that constructs a high-level solution strategy prior to execution; and (3) a coder and a code critic capable of interacting with the environment and reflecting on outcomes to refine future actions. Ablation studies confirm that all roles are essential; removing the planner or code critic results in $5.8\times$ and $3.1\times$ drops in productivity, respectively. Furthermore, we introduce UCB-based debug scheduling to dynamically switch between alternative plans, yielding an additional $3.3\times$ productivity gain. Our design emphasizes multi-agent collaboration, and our experiments confirm that combining diverse models leads to performance gains. Our approach attains 88.1% accuracy on the NLP4LP dataset and 82.3% on the Optibench dataset, reducing error rates by 58% and 52%, respectively, over prior best results.
📅 2025-05-17
This paper focuses on jailbreaking attacks against large language models (LLMs), eliciting them to generate objectionable content in response to harmful user queries. Unlike previous LLM-jailbreak methods that directly orient to LLMs, our approach begins by constructing a multimodal large language model (MLLM) built upon the target LLM. Subsequently, we perform an efficient MLLM jailbreak and obtain a jailbreaking embedding. Finally, we convert the embedding into a textual jailbreaking suffix to carry out the jailbreak of target LLM. Compared to the direct LLM-jailbreak methods, our indirect jailbreaking approach is more efficient, as MLLMs are more vulnerable to jailbreak than pure LLM. Additionally, to improve the attack success rate of jailbreak, we propose an image-text semantic matching scheme to identify a suitable initial input. Extensive experiments demonstrate that our approach surpasses current state-of-the-art jailbreak methods in terms of both efficiency and effectiveness. Moreover, our approach exhibits superior cross-class generalization abilities.
📅 2025-05-17 | 💬 On going work. Codes are released at https://github.com/zyc140345/FedAMoLE
Large-scale instruction data is essential for aligning pretrained Large Language Models (LLMs) with human instructions, but may contain sensitive information that hinders its public sharing. Federated Learning (FL) enables collaborative fine-tuning of LLMs without accessing raw data. However, existing approaches to federated LLM fine-tuning usually adopt a uniform model architecture, making it hard to fit highly heterogeneous client-side data in varying domains and formats. To address this, we propose FedAMoLE, a lightweight personalized FL framework that enables data-driven heterogeneous model architectures. This framework features a heterogeneous mixture of LoRA experts module for aggregating architecturally heterogeneous models and a reverse selection-based expert assignment strategy that optimizes model architectures based on data distributions. Experiments across five scenarios show that FedAMoLE improves client-side performance by an average of 5.14% compared to existing approaches while maintaining scalability.
📅 2025-05-17 | 💬 Accepted at SIGIR'25, Padua, Italy
Social media platforms must filter sexist content in compliance with governmental regulations. Current machine learning approaches can reliably detect sexism based on standardized definitions, but often neglect the subjective nature of sexist language and fail to consider individual users' perspectives. To address this gap, we adopt a perspectivist approach, retaining diverse annotations rather than enforcing gold-standard labels or their aggregations, allowing models to account for personal or group-specific views of sexism. Using demographic data from Twitter, we employ large language models (LLMs) to personalize the identification of sexism.
📅 2025-05-17
We introduce \textbf{LAMP} (\textbf{L}inear \textbf{A}ttribution \textbf{M}apping \textbf{P}robe), a method that shines light onto a black-box language model's decision surface and studies how reliably a model maps its stated reasons to its predictions through a locally linear model approximating the decision surface. LAMP treats the model's own self-reported explanations as a coordinate system and fits a locally linear surrogate that links those weights to the model's output. By doing so, it reveals which stated factors steer the model's decisions, and by how much. We apply LAMP to three tasks: \textit{sentiment analysis}, \textit{controversial-topic detection}, and \textit{safety-prompt auditing}. Across these tasks, LAMP reveals that many LLMs exhibit locally linear decision landscapes. In addition, these surfaces correlate with human judgments on explanation quality and, on a clinical case-file data set, aligns with expert assessments. Since LAMP operates without requiring access to model gradients, logits, or internal activations, it serves as a practical and lightweight framework for auditing proprietary language models, and enabling assessment of whether a model behaves consistently with the explanations it provides.
📅 2025-05-17
Agents powered by advanced large language models (LLMs) have demonstrated impressive capabilities across diverse complex applications. Recently, Multi-Agent Systems (MAS), wherein multiple agents collaborate and communicate with each other, have exhibited enhanced capabilities in complex tasks, such as high-quality code generation and arithmetic reasoning. However, the development of such systems often relies on handcrafted methods, and the literature on systematic design and optimization of LLM-based MAS remains limited. In this work, we introduce OMAC, a general framework designed for holistic optimization of LLM-based MAS. Specifically, we identify five key optimization dimensions for MAS, encompassing both agent functionality and collaboration structure. Building upon these dimensions, we first propose a general algorithm, utilizing two actors termed the Semantic Initializer and the Contrastive Comparator, to optimize any single dimension. Then, we present an algorithm for joint optimization across multiple dimensions. Extensive experiments demonstrate the superior performance of OMAC on code generation, arithmetic reasoning, and general reasoning tasks against state-of-the-art approaches.
📅 2025-05-17 | 💬 Accepted by IJCAI 2025
Large Language Models (LLMs) have achieved remarkable success across various domains. However, they still face significant challenges, including high computational costs for training and limitations in solving complex reasoning problems. Although existing methods have extended the reasoning capabilities of LLMs through structured paradigms, these approaches often rely on task-specific prompts and predefined reasoning processes, which constrain their flexibility and generalizability. To address these limitations, we propose a novel framework that leverages graph learning to enable more flexible and adaptive reasoning capabilities for LLMs. Specifically, this approach models the reasoning process of a problem as a graph and employs LLM-based graph learning to guide the adaptive generation of each reasoning step. To further enhance the adaptability of the model, we introduce a Graph Neural Network (GNN) module to perform representation learning on the generated reasoning process, enabling real-time adjustments to both the model and the prompt. Experimental results demonstrate that this method significantly improves reasoning performance across multiple tasks without requiring additional training or task-specific prompt design. Code can be found in https://github.com/zch65458525/L2T.
📅 2025-05-17 | 💬 under review
Large language models (LLMs) have achieved impressive performance on knowledge-intensive tasks, yet they often struggle with multi-step reasoning due to the unstructured nature of retrieved context. While retrieval-augmented generation (RAG) methods provide external information, the lack of explicit organization among retrieved passages limits their effectiveness, leading to brittle reasoning pathways. Recent interpretability studies highlighting the importance of structured intermediate reasoning further align with this perspective. We propose Retrieval-And-Structuring (RAS), a framework that dynamically constructs query-specific knowledge graphs through iterative retrieval and structured knowledge building. RAS interleaves targeted retrieval planning with incremental graph construction, enabling models to assemble and reason over evolving knowledge structures tailored to each query. On seven knowledge-intensive benchmarks, RAS consistently outperforms strong baselines, achieving up to 6.4% and 7.0% gains with open-source and proprietary LLMs, respectively. Our results demonstrate that dynamic, query-specific knowledge structuring offers a robust path to improving reasoning accuracy and robustness in language model generation. Our data and code can be found at https://github.com/pat-jj/RAS.
📅 2025-05-17 | 💬 9 pages, preprint
Probabilistic reasoning is a key aspect of both human and artificial intelligence that allows for handling uncertainty and ambiguity in decision-making. In this paper, we introduce a new numerical reasoning task under uncertainty for large language models, focusing on estimating the privacy risk of user-generated documents containing privacy-sensitive information. We propose BRANCH, a new LLM methodology that estimates the k-privacy value of a text-the size of the population matching the given information. BRANCH factorizes a joint probability distribution of personal information as random variables. The probability of each factor in a population is estimated separately using a Bayesian network and combined to compute the final k-value. Our experiments show that this method successfully estimates the k-value 73% of the time, a 13% increase compared to o3-mini with chain-of-thought reasoning. We also find that LLM uncertainty is a good indicator for accuracy, as high-variance predictions are 37.47% less accurate on average.
📅 2025-05-17
Assessing the capacity of Large Language Models (LLMs) to plan and reason within the constraints of interactive environments is crucial for developing capable AI agents. We introduce $\textbf{LLM-BabyBench}$, a new benchmark suite designed specifically for this purpose. Built upon a textual adaptation of the procedurally generated BabyAI grid world, this suite evaluates LLMs on three fundamental aspects of grounded intelligence: (1) predicting the consequences of actions on the environment state ($\textbf{Predict}$ task), (2) generating sequences of low-level actions to achieve specified objectives ($\textbf{Plan}$ task), and (3) decomposing high-level instructions into coherent subgoal sequences ($\textbf{Decompose}$ task). We detail the methodology for generating the three corresponding datasets ($\texttt{LLM-BabyBench-Predict}$, $\texttt{-Plan}$, $\texttt{-Decompose}$) by extracting structured information from an expert agent operating within the text-based environment. Furthermore, we provide a standardized evaluation harness and metrics, including environment interaction for validating generated plans, to facilitate reproducible assessment of diverse LLMs. Initial baseline results highlight the challenges posed by these grounded reasoning tasks. The benchmark suite, datasets, data generation code, and evaluation code are made publicly available ($\href{https://github.com/choukrani/llm-babybench}{\text{GitHub}}$, $\href{https://huggingface.co/datasets/salem-mbzuai/LLM-BabyBench}{\text{HuggingFace}}$).
📅 2025-05-17 | 💬 25 pages, 2 figures, Preprint in review
This paper investigates code LLMs' capability of static analysis during code intelligence tasks such as code summarization and generation. Code LLMs are now household names for their abilities to do some programming tasks that have heretofore required people. The process that people follow to do programming tasks has long been understood to require static analysis. For example, human programmers navigate the call graph of large programs to comprehend the different parts of those programs. Education in programming includes static analysis under the assumption that better static analysis skills beget better programming. Yet while popular culture is replete with anthropomorphic references such as LLM "reasoning", in fact code LLMs could exhibit a wholly alien thought process to humans. This paper studies the specific question of static analysis by code LLMs. We use three different static analysis tasks (callgraph generation, AST generation, and dataflow generation) and three different code intelligence tasks (code generation, summarization, and translation) with two different open-source models (Gemini and GPT-4o) and closed-source models (CodeLlaMA and Jam) as our experiments. We found that LLMs show poor performance on static analysis tasks and that pretraining on the static analysis tasks does not generalize to better performance on the code intelligence tasks.
📅 2025-05-17 | 💬 Accepted to AsiaCCS'25
Modern organizations are persistently targeted by phishing emails. Despite advances in detection systems and widespread employee training, attackers continue to innovate, posing ongoing threats. Two emerging vectors stand out in the current landscape: QR-code baits and LLM-enabled pretexting. Yet, little is known about the effectiveness of current defenses against these attacks, particularly when it comes to real-world impact on employees. This gap leaves uncertainty around to what extent related countermeasures are justified or needed. Our work addresses this issue. We conduct three phishing simulations across organizations of varying sizes -- from small-medium businesses to a multinational enterprise. In total, we send over 71k emails targeting employees, including: a "traditional" phishing email with a click-through button; a nearly-identical "quishing" email with a QR code instead; and a phishing email written with the assistance of an LLM and open-source intelligence. Our results show that quishing emails have the same effectiveness as traditional phishing emails at luring users to the landing webpage -- which is worrying, given that quishing emails are much harder to identify even by operational detectors. We also find that LLMs can be very good "social engineers": in one company, over 30% of the emails opened led to visiting the landing webpage -- a rate exceeding some prior benchmarks. Finally, we complement our study by conducting a survey across the organizations' employees, measuring their "perceived" phishing awareness. Our findings suggest a correlation between higher self-reported awareness and organizational resilience to phishing attempts.
📅 2025-05-17
Large Language Models (LLMs) push the bound-aries in natural language processing and generative AI, driving progress across various aspects of modern society. Unfortunately, the pervasive issue of bias in LLMs responses (i.e., predictions) poses a significant and open challenge, hindering their application in tasks involving ethical sensitivity and responsible decision-making. In this work, we propose a straightforward, user-friendly and practical method to mitigate such biases, enhancing the reliability and trustworthiness of LLMs. Our method creates multiple variations of a given sentence by modifying specific attributes and evaluates the corresponding prediction behavior compared to the original, unaltered, prediction/sentence. The idea behind this process is that critical ethical predictions often exhibit notable inconsistencies, indicating the presence of bias. Unlike previous approaches, our method relies solely on forward passes (i.e., testing-time adversaries), eliminating the need for training, fine-tuning, or prior knowledge of the training data distribution. Through extensive experiments on the popular Llama family, we demonstrate the effectiveness of our method in improving various fairness metrics, focusing on the reduction of disparities in how the model treats individuals from different racial groups. Specifically, using standard metrics, we improve the fairness in Llama3 in up to 27 percentage points. Overall, our approach significantly enhances fairness, equity, and reliability in LLM-generated results without parameter tuning or training data modifications, confirming its effectiveness in practical scenarios. We believe our work establishes an important step toward enabling the use of LLMs in tasks that require ethical considerations and responsible decision-making.
📅 2025-05-17
While large language models (LLMs) have demonstrated remarkable general performance, enabling smaller models to achieve capabilities comparable to their larger counterparts remains a critical challenge. For humans, iterative refinement of problem analysis and responses is a common strategy to enhance answer quality. However, we observe that existing LLMs exhibit limited ability to refine their outputs for quality improvement. In this paper, we first investigate mechanisms to unlock and progressively enhance self-refinement ability in smaller models within an iterative preference optimization framework, aiming to bridge the performance gap with larger models. To this end, we propose EVOLVE, a novel post-training and inference framework that iteratively integrates preference training with self-refinement-driven data collection. During training, EVOLVE strengthens the model's direct question-answering ability while simultaneously unlocking its self-refinement potential. At inference, the framework leverages this capability to generate progressively refined responses, which are filtered to construct datasets for subsequent rounds of preference training. Experiments demonstrate EVOLVE's exceptional performance: when applied to Llama-3.1-8B base model and under the self-refinement setting, it surpasses state-of-the-art models including Llama-3.1-405B-Instruct and GPT-4o, achieving a 62.3% length-controlled win rate and 63.3% raw win rate on AlpacaEval 2, along with a 50.3% win rate on Arena-Hard. Furthermore, EVOLVE consistently enhances performance on mathematical reasoning tasks like GSM8K and MATH.
📅 2025-05-17
Multiple previous studies have reported suboptimal performance of LLMs in biomedical text mining. By analyzing failure patterns in these evaluations, we identified three primary challenges for LLMs in biomedical corpora: (1) LLMs fail to learn implicit dataset-specific nuances from supervised data, (2) The common formatting requirements of discriminative tasks limit the reasoning capabilities of LLMs particularly for LLMs that lack test-time compute, and (3) LLMs struggle to adhere to annotation guidelines and match exact schemas, which hinders their ability to understand detailed annotation requirements which is essential in biomedical annotation workflow. We experimented with prompt engineering techniques targeted to the above issues, and developed a pipeline that dynamically extracts instructions from annotation guidelines. Our results show that frontier LLMs can approach or surpass the performance of SOTA BERT-based models with minimal reliance on manually annotated data and without fine-tuning. Furthermore, we performed model distillation on a closed-source LLM, demonstrating that a BERT model trained exclusively on synthetic data annotated by LLMs can also achieve a practical performance. Based on these findings, we explored the feasibility of partially replacing manual annotation with LLMs in production scenarios for biomedical text mining.
📅 2025-05-17
LLMs are transforming software development, yet current code generation and code repair benchmarks mainly assess syntactic and functional correctness in simple, single-error cases. LLMs' capabilities to autonomously find and fix runtime logical errors in complex data science code remain largely unexplored. To address this gap, we introduce DSDBench: the Data Science Debugging Benchmark, the first benchmark for systematic evaluation of LLMs on multi-hop error tracing and multi-bug detection in data science code debugging. DSDBench adapts datasets from existing data science task benchmarks, such as DABench and MatPlotBench, featuring realistic data science debugging tasks with automatically synthesized multi-hop, multi-bug code snippets. DSDBench includes 1,117 annotated samples with 741 cause-effect error pairs and runtime error messages. Evaluations of state-of-the-art LLMs on DSDBench show significant performance gaps, highlighting challenges in debugging logical runtime errors in data science code. DSDBench offers a crucial resource to evaluate and improve LLMs' debugging and reasoning capabilities, enabling more reliable AI-assisted data science in the future. DSDBench is publicly available at github.com/KevinCL16/DSDBench.
📅 2025-05-17 | 💬 Acccepted by ACL 2025 Findings, 21 pages, 9 figures, 14 tables
Large Language Models (LLMs) have shown impressive capabilities across various tasks but remain vulnerable to meticulously crafted jailbreak attacks. In this paper, we identify a critical safety gap: while LLMs are adept at detecting jailbreak prompts, they often produce unsafe responses when directly processing these inputs. Inspired by this insight, we propose SAGE (Self-Aware Guard Enhancement), a training-free defense strategy designed to align LLMs' strong safety discrimination performance with their relatively weaker safety generation ability. SAGE consists of two core components: a Discriminative Analysis Module and a Discriminative Response Module, enhancing resilience against sophisticated jailbreak attempts through flexible safety discrimination instructions. Extensive experiments demonstrate SAGE's effectiveness and robustness across various open-source and closed-source LLMs of different sizes and architectures, achieving an average 99% defense success rate against numerous complex and covert jailbreak methods while maintaining helpfulness on general benchmarks. We further conduct mechanistic interpretability analysis through hidden states and attention distributions, revealing the underlying mechanisms of this detection-generation discrepancy. Our work thus contributes to developing future LLMs with coherent safety awareness and generation behavior. Our code and datasets are publicly available at https://github.com/NJUNLP/SAGE.
📅 2025-05-17 | 💬 28 pages, 7 figures, 3 tables. Includes expanded appendix & full score matrices. Dataset & code: HF Hub + GitHub + Pypi links in abstract. Core data and code Apache-2.0; synthetic packs eval-only
Tiny QA Benchmark++ (TQB++) presents an ultra-lightweight, multilingual smoke-test suite designed to give large-language-model (LLM) pipelines a unit-test style safety net dataset that runs in seconds with minimal cost. Born out of the tight feedback-loop demands building the Comet Opik prompt-optimization SDK, where waiting on heavyweight benchmarks breaks developer flow. TQB++ couples a 52-item English gold set (less than 20 kB) with a tiny synthetic-data generator pypi package built on provider-agnostic LiteLLM. The generator lets practitioners mint their own tiny packs in any language, domain, or difficulty, while ten ready-made packs already cover Arabic, Chinese, French, German, Japanese, Korean, Portuguese, Russian, Spanish, and Turkish. Every dataset ships with Croissant metadata and plug-and-play files for OpenAI-Evals, LangChain, and standard CI tools, so teams can drop deterministic micro-benchmarks directly into pull-request gates, prompt-engineering loops, and production dashboards without touching GPU budgets. A complete TQB++ run adds only a few seconds to pipeline latency yet reliably flags prompt-template errors, tokenizer drift, and fine-tuning side-effects long before full-scale suites like MMLU or BIG-Bench would finish configuring. The entire framework is released to accelerate continuous, resource-efficient quality assurance across the generative-AI ecosystem.
📅 2025-05-17
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet principled explanations for their underlying mechanisms and several phenomena, such as scaling laws, hallucinations, and related behaviors, remain elusive. In this work, we revisit the classical relationship between compression and prediction, grounded in Kolmogorov complexity and Shannon information theory, to provide deeper insights into LLM behaviors. By leveraging the Kolmogorov Structure Function and interpreting LLM compression as a two-part coding process, we offer a detailed view of how LLMs acquire and store information across increasing model and data scales -- from pervasive syntactic patterns to progressively rarer knowledge elements. Motivated by this theoretical perspective and natural assumptions inspired by Heap's and Zipf's laws, we introduce a simplified yet representative hierarchical data-generation framework called the Syntax-Knowledge model. Under the Bayesian setting, we show that prediction and compression within this model naturally lead to diverse learning and scaling behaviors of LLMs. In particular, our theoretical analysis offers intuitive and principled explanations for both data and model scaling laws, the dynamics of knowledge acquisition during training and fine-tuning, factual knowledge hallucinations in LLMs. The experimental results validate our theoretical predictions.
📅 2025-05-17
We present GenderBench -- a comprehensive evaluation suite designed to measure gender biases in LLMs. GenderBench includes 14 probes that quantify 19 gender-related harmful behaviors exhibited by LLMs. We release GenderBench as an open-source and extensible library to improve the reproducibility and robustness of benchmarking across the field. We also publish our evaluation of 12 LLMs. Our measurements reveal consistent patterns in their behavior. We show that LLMs struggle with stereotypical reasoning, equitable gender representation in generated texts, and occasionally also with discriminatory behavior in high-stakes scenarios, such as hiring.
📅 2025-05-17 | 💬 12 pages, 2 figures
Although LLMs perform well in general tasks, domain-specific applications suffer from hallucinations and accuracy limitations. CPT approaches encounter two key issues: (1) domain-biased data degrades general language skills, and (2) improper corpus-mixture ratios limit effective adaptation. To address these, we propose a novel framework, Mixture of Losses (MoL), which decouples optimization objectives for domain-specific and general corpora. Specifically, cross-entropy (CE) loss is applied to domain data to ensure knowledge acquisition, while Kullback-Leibler (KL) divergence aligns general-corpus training with the base model's foundational capabilities. This dual-loss architecture preserves universal skills while enhancing domain expertise, avoiding catastrophic forgetting. Empirically, we validate that a 1:1 domain-to-general corpus ratio optimally balances training and overfitting without the need for extensive tuning or resource-intensive experiments. Furthermore, our experiments demonstrate significant performance gains compared to traditional CPT approaches, which often suffer from degradation in general language capabilities; our model achieves 27.9% higher accuracy on the Math-500 benchmark in the non-think reasoning mode, and an impressive 83.3% improvement on the challenging AIME25 subset in the think mode, underscoring the effectiveness of our approach.
📅 2025-05-17 | 💬 ICML 2025 Camera Ready
Large language models (LLMs) have shown great potential as general-purpose AI assistants across various domains. To fully leverage this potential in specific applications, many companies provide fine-tuning API services, enabling users to upload their own data for LLM customization. However, fine-tuning services introduce a new safety threat: user-uploaded data, whether harmful or benign, can break the model's alignment, leading to unsafe outputs. Moreover, existing defense methods struggle to address the diversity of fine-tuning datasets (e.g., varying sizes, tasks), often sacrificing utility for safety or vice versa. To address this issue, we propose Safe Delta, a safety-aware post-training defense method that adjusts the delta parameters (i.e., the parameter change before and after fine-tuning). Specifically, Safe Delta estimates the safety degradation, selects delta parameters to maximize utility while limiting overall safety loss, and applies a safety compensation vector to mitigate residual safety loss. Through extensive experiments on four diverse datasets with varying settings, our approach consistently preserves safety while ensuring that the utility gain from benign datasets remains unaffected.
📅 2025-05-17 | 💬 20 pages
Recent advancements in large language models (LLMs) have sparked considerable interest in automated theorem proving and a prominent line of research integrates stepwise LLM-based provers into tree search. In this paper, we introduce a novel proof-state exploration approach for training data synthesis, designed to produce diverse tactics across a wide range of intermediate proof states, thereby facilitating effective one-shot fine-tuning of LLM as the policy model. We also propose an adaptive beam size strategy, which effectively takes advantage of our data synthesis method and achieves a trade-off between exploration and exploitation during tree search. Evaluations on the MiniF2F and ProofNet benchmarks demonstrate that our method outperforms strong baselines under the stringent Pass@1 metric, attaining an average pass rate of $60.74\%$ on MiniF2F and $21.18\%$ on ProofNet. These results underscore the impact of large-scale synthetic data in advancing automated theorem proving.
📅 2025-05-17 | 💬 Project webpage: https://chen-judge.github.io/SPC/
Evaluating the step-by-step reliability of large language model (LLM) reasoning, such as Chain-of-Thought, remains challenging due to the difficulty and cost of obtaining high-quality step-level supervision. In this paper, we introduce Self-Play Critic (SPC), a novel approach where a critic model evolves its ability to assess reasoning steps through adversarial self-play games, eliminating the need for manual step-level annotation. SPC involves fine-tuning two copies of a base model to play two roles, namely a "sneaky generator" that deliberately produces erroneous steps designed to be difficult to detect, and a "critic" that analyzes the correctness of reasoning steps. These two models engage in an adversarial game in which the generator aims to fool the critic, while the critic model seeks to identify the generator's errors. Using reinforcement learning based on the game outcomes, the models iteratively improve; the winner of each confrontation receives a positive reward and the loser receives a negative reward, driving continuous self-evolution. Experiments on three reasoning process benchmarks (ProcessBench, PRM800K, DeltaBench) demonstrate that our SPC progressively enhances its error detection capabilities (e.g., accuracy increases from 70.8% to 77.7% on ProcessBench) and surpasses strong baselines, including distilled R1 model. Furthermore, SPC can guide the test-time search of diverse LLMs and significantly improve their mathematical reasoning performance on MATH500 and AIME2024, surpassing those guided by state-of-the-art process reward models.
📅 2025-05-17
As large language models (LLMs) are increasingly used in multi-agent systems, questions of fairness should extend beyond resource distribution and procedural design to include the fairness of how agents communicate. Drawing from organizational psychology, we introduce a novel framework for evaluating Interactional fairness encompassing Interpersonal fairness (IF) and Informational fairness (InfF) in LLM-based multi-agent systems (LLM-MAS). We extend the theoretical grounding of Interactional Fairness to non-sentient agents, reframing fairness as a socially interpretable signal rather than a subjective experience. We then adapt established tools from organizational justice research, including Colquitt's Organizational Justice Scale and the Critical Incident Technique, to measure fairness as a behavioral property of agent interaction. We validate our framework through a pilot study using controlled simulations of a resource negotiation task. We systematically manipulate tone, explanation quality, outcome inequality, and task framing (collaborative vs. competitive) to assess how IF influences agent behavior. Results show that tone and justification quality significantly affect acceptance decisions even when objective outcomes are held constant. In addition, the influence of IF vs. InfF varies with context. This work lays the foundation for fairness auditing and norm-sensitive alignment in LLM-MAS.
📅 2025-05-17 | 💬 SIGIR 2025
Considering the inherent limitations of parametric knowledge in large language models (LLMs), retrieval-augmented generation (RAG) is widely employed to expand their knowledge scope. Since RAG has shown promise in knowledge-intensive tasks like open-domain question answering, its broader application to complex tasks and intelligent assistants has further advanced its utility. Despite this progress, the underlying knowledge utilization mechanisms of LLM-based RAG remain underexplored. In this paper, we present a systematic investigation of the intrinsic mechanisms by which LLMs integrate internal (parametric) and external (retrieved) knowledge in RAG scenarios. Specially, we employ knowledge stream analysis at the macroscopic level, and investigate the function of individual modules at the microscopic level. Drawing on knowledge streaming analyses, we decompose the knowledge utilization process into four distinct stages within LLM layers: knowledge refinement, knowledge elicitation, knowledge expression, and knowledge contestation. We further demonstrate that the relevance of passages guides the streaming of knowledge through these stages. At the module level, we introduce a new method, knowledge activation probability entropy (KAPE) for neuron identification associated with either internal or external knowledge. By selectively deactivating these neurons, we achieve targeted shifts in the LLM's reliance on one knowledge source over the other. Moreover, we discern complementary roles for multi-head attention and multi-layer perceptron layers during knowledge formation. These insights offer a foundation for improving interpretability and reliability in retrieval-augmented LLMs, paving the way for more robust and transparent generative solutions in knowledge-intensive domains.
📅 2025-05-17 | 💬 This paper has been submitted to IEEE JSAC
Despite significant advancements in terrestrial networks, inherent limitations persist in providing reliable coverage to remote areas and maintaining resilience during natural disasters. Multi-tier networks with low Earth orbit (LEO) satellites and high-altitude platforms (HAPs) offer promising solutions, but face challenges from high mobility and dynamic channel conditions that cause unstable connections and frequent handovers. In this paper, we design a three-tier network architecture that integrates LEO satellites, HAPs, and ground terminals with hybrid free-space optical (FSO) and radio frequency (RF) links to maximize coverage while maintaining connectivity reliability. This hybrid approach leverages the high bandwidth of FSO for satellite-to-HAP links and the weather resilience of RF for HAP-to-ground links. We formulate a joint optimization problem to simultaneously balance downlink transmission rate and handover frequency by optimizing network configuration and satellite handover decisions. The problem is highly dynamic and non-convex with time-coupled constraints. To address these challenges, we propose a novel large language model (LLM)-guided truncated quantile critics algorithm with dynamic action masking (LTQC-DAM) that utilizes dynamic action masking to eliminate unnecessary exploration and employs LLMs to adaptively tune hyperparameters. Simulation results demonstrate that the proposed LTQC-DAM algorithm outperforms baseline algorithms in terms of convergence, downlink transmission rate, and handover frequency. We also reveal that compared to other state-of-the-art LLMs, DeepSeek delivers the best performance through gradual, contextually-aware parameter adjustments.
📅 2025-05-17 | 💬 18 pages, 3 figures, 4 tables, accepted at IAS 2025
PDDL-based symbolic task planning remains pivotal for robot autonomy yet struggles with dynamic human-robot collaboration due to scalability, re-planning demands, and delayed plan availability. Although a few neurosymbolic frameworks have previously leveraged LLMs such as GPT-3 to address these challenges, reliance on closed-source, remote models with limited context introduced critical constraints: third-party dependency, inconsistent response times, restricted plan length and complexity, and multi-domain scalability issues. We present Gideon, a novel framework that enables the transition to modern, smaller, local LLMs with extended context length. Gideon integrates a novel problem generator to systematically generate large-scale datasets of realistic domain-problem-plan tuples for any domain, and adapts neurosymbolic planning for local LLMs, enabling on-device execution and extended context for multi-domain support. Preliminary experiments in single-domain scenarios performed on Qwen-2.5 1.5B and trained on 8k-32k samples, demonstrate a valid plan percentage of 66.1% (32k model) and show that the figure can be further scaled through additional data. Multi-domain tests on 16k samples yield an even higher 70.6% planning validity rate, proving extensibility across domains and signaling that data variety can have a positive effect on learning efficiency. Although long-horizon planning and reduced model size make Gideon training much less efficient than baseline models based on larger LLMs, the results are still significant considering that the trained model is about 120x smaller than baseline and that significant advantages can be achieved in inference efficiency, scalability, and multi-domain adaptability, all critical factors in human-robot collaboration. Training inefficiency can be mitigated by Gideon's streamlined data generation pipeline.
📅 2025-05-17
Loss reweighting has shown significant benefits for machine unlearning with large language models (LLMs). However, their exact functionalities are left unclear and the optimal strategy remains an open question, thus impeding the understanding and improvement of existing methodologies. In this paper, we identify two distinct goals of loss reweighting, namely, Saturation and Importance -- the former indicates that those insufficiently optimized data should be emphasized, while the latter stresses some critical data that are most influential for loss minimization. To study their usefulness, we design specific reweighting strategies for each goal and evaluate their respective effects on unlearning. We conduct extensive empirical analyses on well-established benchmarks, and summarize some important observations as follows: (i) Saturation enhances efficacy more than importance-based reweighting, and their combination can yield additional improvements. (ii) Saturation typically allocates lower weights to data with lower likelihoods, whereas importance-based reweighting does the opposite. (iii) The efficacy of unlearning is also largely influenced by the smoothness and granularity of the weight distributions. Based on these findings, we propose SatImp, a simple reweighting method that combines the advantages of both saturation and importance. Empirical results on extensive datasets validate the efficacy of our method, potentially bridging existing research gaps and indicating directions for future research. Our code is available at https://github.com/Puning97/SatImp-for-LLM-Unlearning.
📅 2025-05-17
Lifelong learning is essential for intelligent agents operating in dynamic environments. Current large language model (LLM)-based agents, however, remain stateless and unable to accumulate or transfer knowledge over time. Existing benchmarks treat agents as static systems and fail to evaluate lifelong learning capabilities. We present LifelongAgentBench, the first unified benchmark designed to systematically assess the lifelong learning ability of LLM agents. It provides skill-grounded, interdependent tasks across three interactive environments, Database, Operating System, and Knowledge Graph, with automatic label verification, reproducibility, and modular extensibility. Extensive experiments reveal that conventional experience replay has limited effectiveness for LLM agents due to irrelevant information and context length constraints. We further introduce a group self-consistency mechanism that significantly improves lifelong learning performance. We hope LifelongAgentBench will advance the development of adaptive, memory-capable LLM agents.
📅 2025-05-17
Existing large language models (LLMs) serving systems typically employ Prefill-Decode disaggregated architecture to prevent computational interference between the prefill and decode phases. However, real-world LLM serving scenarios often exhibit significant fluctuations in request input/output lengths, causing traditional static prefill/decode node configuration ratio to result in imbalanced computational loads between these two nodes, consequently preventing efficient utilization of computing resources to improve the system's goodput. To address this challenge, we design and implement Arrow, an adaptive scheduler that leverages stateless instances and elastic instance pools to achieve efficient adaptive request and instance scheduling. Arrow dynamically adjusts the number of instances handling prefill and decode tasks based on real-time cluster performance metrics, significantly enhancing the system's capability to handle traffic spikes and load variations. Our evaluation under diverse real-world workloads shows that Arrow achieves up to $5.62 \times$ and $7.78 \times$ higher request serving rates compared to state-of-the-art PD-colocated and PD-disaggregated serving systems respectively.
📅 2025-05-17
As cyber threats continue to grow in scale and sophistication, blue team defenders increasingly require advanced tools to proactively detect and mitigate risks. Large Language Models (LLMs) offer promising capabilities for enhancing threat analysis. However, their effectiveness in real-world blue team threat-hunting scenarios remains insufficiently explored. In this paper, we present CYBERTEAM, a benchmark designed to guide LLMs in blue teaming practice. CYBERTEAM constructs an embodied environment in two stages. First, it models realistic threat-hunting workflows by capturing the dependencies among analytical tasks from threat attribution to incident response. Next, each task is addressed through a set of embodied functions tailored to its specific analytical requirements. This transforms the overall threat-hunting process into a structured sequence of function-driven operations, where each node represents a discrete function and edges define the execution order. Guided by this framework, LLMs are directed to perform threat-hunting tasks through modular steps. Overall, CYBERTEAM integrates 30 tasks and 9 embodied functions, guiding LLMs through pipelined threat analysis. We evaluate leading LLMs and state-of-the-art cybersecurity agents, comparing CYBERTEAM's embodied function-calling against fundamental elicitation strategies. Our results offer valuable insights into the current capabilities and limitations of LLMs in threat hunting, laying the foundation for the practical adoption in real-world cybersecurity applications.
📅 2025-05-17
Accurately forecasting electricity price volatility is crucial for effective risk management and decision-making. Traditional forecasting models often fall short in capturing the complex, non-linear dynamics of electricity markets, particularly when external factors like weather conditions and market volatility are involved. These limitations hinder their ability to provide reliable predictions in markets with high volatility, such as the New South Wales (NSW) electricity market. To address these challenges, we introduce FAEP, a Feature-Augmented Electricity Price Prediction framework. FAEP leverages Large Language Models (LLMs) combined with advanced feature engineering to enhance prediction accuracy. By incorporating external features such as weather data and price volatility jumps, and utilizing Retrieval-Augmented Generation (RAG) for effective feature extraction, FAEP overcomes the shortcomings of traditional approaches. A hybrid XGBoost-LSTM model in FAEP further refines these augmented features, resulting in a more robust prediction framework. Experimental results demonstrate that FAEP achieves state-of-art (SOTA) performance compared to other electricity price prediction models in the Australian New South Wale electricity market, showcasing the efficiency of LLM-enhanced feature engineering and hybrid machine learning architectures.
📅 2025-05-17
Interacting with a significant number of individuals on a daily basis is commonplace for many professionals, which can lead to challenges in recalling specific details: Who is this person? What did we talk about last time? The advant of augmented reality (AR) glasses, equipped with visual and auditory data capture capabilities, presents a solution. In our work, we implemented an AR Secretary Agent with advanced Large Language Models (LLMs) and Computer Vision technologies. This system could discreetly provide real-time information to the wearer, identifying who they are conversing with and summarizing previous discussions. To verify AR Secretary, we conducted a user study with 13 participants and showed that our technique can efficiently help users to memorize events by up to 20\% memory enhancement on our study.
📅 2025-05-17
Large Language Models (LLMs) demonstrate remarkable capabilities at the cost of high compute requirements. Recent studies have demonstrated that intermediate layers in LLMs can be removed or reordered without substantial accuracy loss; however, this insight has not yet been exploited to improve inference efficiency. Leveraging observed layer independence, we propose a novel method that groups consecutive layers into pairs evaluated in parallel, effectively restructuring the computational graph to enhance parallelism. Without requiring retraining or fine-tuning, this approach achieves an inference throughput improvement of 1.05x-1.20x on standard benchmarks, retaining 95\%-99\% of the original model accuracy. Empirical results demonstrate the practicality of this method in significantly reducing inference cost for large-scale LLM deployment. Additionally, we demonstrate that modest performance degradation can be substantially mitigated through lightweight fine-tuning, further enhancing the method's applicability.
📅 2025-05-17
Modern large language model (LLM) applications exhibit diverse service-level objectives (SLOs), from low-latency requirements in interactive coding assistants to more relaxed constraints in data wrangling tasks. Existing LLM serving systems, which rely on uniform batching and scheduling strategies, often fail to meet these heterogeneous SLOs concurrently. We present AdaServe, the first LLM serving system designed to support efficient multi-SLO serving through SLO-customized speculative decoding. AdaServe formulates multi-SLO serving as a constrained optimization problem and introduces a hardware-aware algorithm that constructs a speculation tree tailored to each request's latency target. It features a speculate-select-verify pipeline that enables fine-grained control over decoding speed while maximizing system throughput. AdaServe further adapts to workload variation by dynamically adjusting speculation parameters. Evaluations across diverse workloads show that AdaServe reduces SLO violations by up to 4.3$\times$ and improves goodput by up to 1.9$\times$ compared to the best performing baselines, highlighting its effectiveness in multi-SLO serving.
📅 2025-05-17 | 💬 33 pages, 27 figures
The current focus of AI research is shifting from emphasizing model training towards enhancing evaluation quality, a transition that is crucial for driving further advancements in AI systems. Traditional evaluation methods typically rely on reward models assigning scalar preference scores to outputs. Although effective, such approaches lack interpretability, leaving users often uncertain about why a reward model rates a particular response as high or low. The advent of LLM-as-a-Judge provides a more scalable and interpretable method of supervision, offering insights into the decision-making process. Moreover, with the emergence of large reasoning models, which consume more tokens for deeper thinking and answer refinement, scaling test-time computation in the LLM-as-a-Judge paradigm presents an avenue for further boosting performance and providing more interpretability through reasoning traces. In this paper, we introduce $\textbf{J1-7B}$, which is first supervised fine-tuned on reflection-enhanced datasets collected via rejection-sampling and subsequently trained using Reinforcement Learning (RL) with verifiable rewards. At inference time, we apply Simple Test-Time Scaling (STTS) strategies for additional performance improvement. Experimental results demonstrate that $\textbf{J1-7B}$ surpasses the previous state-of-the-art LLM-as-a-Judge by $ \textbf{4.8}$\% and exhibits a $ \textbf{5.1}$\% stronger scaling trend under STTS. Additionally, we present three key findings: (1) Existing LLM-as-a-Judge does not inherently exhibit such scaling trend. (2) Model simply fine-tuned on reflection-enhanced datasets continues to demonstrate similarly weak scaling behavior. (3) Significant scaling trend emerges primarily during the RL phase, suggesting that effective STTS capability is acquired predominantly through RL training.
📅 2025-05-17 | 💬 under review
Human preference plays a crucial role in the refinement of large language models (LLMs). However, collecting human preference feedback is costly and most existing datasets neglect the correlation between personalization and preferences. To address this issue, we introduce Fair-PP, a synthetic dataset of personalized preferences targeting social equity, derived from real-world social survey data, which includes 28 social groups, 98 equity topics, and 5 personal preference dimensions. Leveraging GPT-4o-mini, we engage in role-playing based on seven representative persona portrayals guided by existing social survey data, yielding a total of 238,623 preference records. Through Fair-PP, we also contribute (i) An automated framework for generating preference data, along with a more fine-grained dataset of personalized preferences; (ii) analysis of the positioning of the existing mainstream LLMs across five major global regions within the personalized preference space; and (iii) a sample reweighting method for personalized preference alignment, enabling alignment with a target persona while maximizing the divergence from other personas. Empirical experiments show our method outperforms the baselines.
📅 2025-05-17
Large Language Models (LLMs) have demonstrated exceptional performance in general knowledge and reasoning tasks across various domains. However, their effectiveness in specialized scientific fields like Chemical and Biological Engineering (CBE) remains underexplored. Addressing this gap requires robust evaluation benchmarks that assess both knowledge and reasoning capabilities in these niche areas, which are currently lacking. To bridge this divide, we present a comprehensive empirical analysis of LLM reasoning capabilities in CBE, with a focus on Ionic Liquids (ILs) for carbon sequestration - an emerging solution for mitigating global warming. We develop and release an expert - curated dataset of 5,920 examples designed to benchmark LLMs' reasoning in this domain. The dataset incorporates varying levels of difficulty, balancing linguistic complexity and domain-specific knowledge. Using this dataset, we evaluate three open-source LLMs with fewer than 10 billion parameters. Our findings reveal that while smaller general-purpose LLMs exhibit basic knowledge of ILs, they lack the specialized reasoning skills necessary for advanced applications. Building on these results, we discuss strategies to enhance the utility of LLMs for carbon capture research, particularly using ILs. Given the significant carbon footprint of LLMs, aligning their development with IL research presents a unique opportunity to foster mutual progress in both fields and advance global efforts toward achieving carbon neutrality by 2050.
📅 2025-05-17
Counterfactual reasoning has emerged as a crucial technique for generalizing the reasoning capabilities of large language models (LLMs). By generating and analyzing counterfactual scenarios, researchers can assess the adaptability and reliability of model decision-making. Although prior work has shown that LLMs often struggle with counterfactual reasoning, it remains unclear which factors most significantly impede their performance across different tasks and modalities. In this paper, we propose a decompositional strategy that breaks down the counterfactual generation from causality construction to the reasoning over counterfactual interventions. To support decompositional analysis, we investigate 11 datasets spanning diverse tasks, including natural language understanding, mathematics, programming, and vision-language tasks. Through extensive evaluations, we characterize LLM behavior across each decompositional stage and identify how modality type and intermediate reasoning influence performance. By establishing a structured framework for analyzing counterfactual reasoning, this work contributes to the development of more reliable LLM-based reasoning systems and informs future elicitation strategies.
📅 2025-05-17
The security issue of large language models (LLMs) has gained wide attention recently, with various defense mechanisms developed to prevent harmful output, among which safeguards based on text embedding models serve as a fundamental defense. Through testing, we discover that the output distribution of text embedding models is severely biased with a large mean. Inspired by this observation, we propose novel, efficient methods to search for **universal magic words** that attack text embedding models. Universal magic words as suffixes can shift the embedding of any text towards the bias direction, thus manipulating the similarity of any text pair and misleading safeguards. Attackers can jailbreak the safeguards by appending magic words to user prompts and requiring LLMs to end answers with magic words. Experiments show that magic word attacks significantly degrade safeguard performance on JailbreakBench, cause real-world chatbots to produce harmful outputs in full-pipeline attacks, and generalize across input/output texts, models, and languages. To eradicate this security risk, we also propose defense methods against such attacks, which can correct the bias of text embeddings and improve downstream performance in a train-free manner.
📅 2025-05-17 | 💬 In progress
Compressing long chain-of-thought (CoT) from large language models (LLMs) is an emerging strategy to improve the reasoning efficiency of LLMs. Despite its promising benefits, existing studies equally compress all thoughts within a long CoT, hindering more concise and effective reasoning. To this end, we first investigate the importance of different thoughts by examining their effectiveness and efficiency in contributing to reasoning through automatic long CoT chunking and Monte Carlo rollouts. Building upon the insights, we propose a theoretically bounded metric to jointly measure the effectiveness and efficiency of different thoughts. We then propose Long$\otimes$Short, an efficient reasoning framework that enables two LLMs to collaboratively solve the problem: a long-thought LLM for more effectively generating important thoughts, while a short-thought LLM for efficiently generating remaining thoughts. Specifically, we begin by synthesizing a small amount of cold-start data to fine-tune LLMs for long-thought and short-thought reasoning styles, respectively. Furthermore, we propose a synergizing-oriented multi-turn reinforcement learning, focusing on the model self-evolution and collaboration between long-thought and short-thought LLMs. Experimental results show that our method enables Qwen2.5-7B and Llama3.1-8B to achieve comparable performance compared to DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B, while reducing token length by over 80% across the MATH500, AIME24/25, AMC23, and GPQA Diamond benchmarks. Our data and code are available at https://github.com/yasNing/Long-otimes-Short/.
📅 2025-05-17
While large language models (LLMs) excel in many domains, their complexity and scale challenge deployment in resource-limited environments. Current compression techniques, such as parameter pruning, often fail to effectively utilize the knowledge from pruned parameters. To address these challenges, we propose Manifold-Based Knowledge Alignment and Layer Merging Compression (MKA), a novel approach that uses manifold learning and the Normalized Pairwise Information Bottleneck (NPIB) measure to merge similar layers, reducing model size while preserving essential performance. We evaluate MKA on multiple benchmark datasets and various LLMs. Our findings show that MKA not only preserves model performance but also achieves substantial compression ratios, outperforming traditional pruning methods. Moreover, when coupled with quantization, MKA delivers even greater compression. Specifically, on the MMLU dataset using the Llama3-8B model, MKA achieves a compression ratio of 43.75% with a minimal performance decrease of only 2.82\%. The proposed MKA method offers a resource-efficient and performance-preserving model compression technique for LLMs.
📅 2025-05-16
We argue that Large language models (LLMs) will soon alter the economics of cyberattacks. Instead of attacking the most commonly used software and monetizing exploits by targeting the lowest common denominator among victims, LLMs enable adversaries to launch tailored attacks on a user-by-user basis. On the exploitation front, instead of human attackers manually searching for one difficult-to-identify bug in a product with millions of users, LLMs can find thousands of easy-to-identify bugs in products with thousands of users. And on the monetization front, instead of generic ransomware that always performs the same attack (encrypt all your data and request payment to decrypt), an LLM-driven ransomware attack could tailor the ransom demand based on the particular content of each exploited device. We show that these two attacks (and several others) are imminently practical using state-of-the-art LLMs. For example, we show that without any human intervention, an LLM finds highly sensitive personal information in the Enron email dataset (e.g., an executive having an affair with another employee) that could be used for blackmail. While some of our attacks are still too expensive to scale widely today, the incentives to implement these attacks will only increase as LLMs get cheaper. Thus, we argue that LLMs create a need for new defense-in-depth approaches.
📅 2025-05-16
Large language models (LLMs) are increasingly deployed in medical contexts, raising critical concerns about safety, alignment, and susceptibility to adversarial manipulation. While prior benchmarks assess model refusal capabilities for harmful prompts, they often lack clinical specificity, graded harmfulness levels, and coverage of jailbreak-style attacks. We introduce CARES (Clinical Adversarial Robustness and Evaluation of Safety), a benchmark for evaluating LLM safety in healthcare. CARES includes over 18,000 prompts spanning eight medical safety principles, four harm levels, and four prompting styles: direct, indirect, obfuscated, and role-play, to simulate both malicious and benign use cases. We propose a three-way response evaluation protocol (Accept, Caution, Refuse) and a fine-grained Safety Score metric to assess model behavior. Our analysis reveals that many state-of-the-art LLMs remain vulnerable to jailbreaks that subtly rephrase harmful prompts, while also over-refusing safe but atypically phrased queries. Finally, we propose a mitigation strategy using a lightweight classifier to detect jailbreak attempts and steer models toward safer behavior via reminder-based conditioning. CARES provides a rigorous framework for testing and improving medical LLM safety under adversarial and ambiguous conditions.
📅 2025-05-16 | 💬 43 pages, 3 figures, 4 tables (1 in appendix), includes appendix. Preprint only
This study proposes and implements the first LLM agents based agentic pipeline for multi task public opinion analysis. Unlike traditional methods, it offers an end-to-end, fully automated analytical workflow without requiring domain specific training data, manual annotation, or local deployment. The pipeline integrates advanced LLM capabilities into a low-cost, user-friendly framework suitable for resource constrained environments. It enables timely, integrated public opinion analysis through a single natural language query, making it accessible to non-expert users. To validate its effectiveness, the pipeline was applied to a real world case study of the 2025 U.S. China tariff dispute, where it analyzed 1,572 Weibo posts and generated a structured, multi part analytical report. The results demonstrate some relationships between public opinion and governmental decision-making. These contributions represent a novel advancement in applying generative AI to public governance, bridging the gap between technical sophistication and practical usability in public opinion monitoring.
📅 2025-05-16
Verifying the provenance of content is crucial to the function of many organizations, e.g., educational institutions, social media platforms, firms, etc. This problem is becoming increasingly challenging as text generated by Large Language Models (LLMs) becomes almost indistinguishable from human-generated content. In addition, many institutions utilize in-house LLMs and want to ensure that external, non-sanctioned LLMs do not produce content within the institution. In this paper, we answer the following question: Given a piece of text, can we identify whether it was produced by a particular LLM or not? We model LLM-generated text as a sequential stochastic process with complete dependence on history. We then design zero-shot statistical tests to (i) distinguish between text generated by two different known sets of LLMs $A$ (non-sanctioned) and $B$ (in-house), and (ii) identify whether text was generated by a known LLM or generated by any unknown model, e.g., a human or some other language generation process. We prove that the type I and type II errors of our test decrease exponentially with the length of the text. For that, we show that if $B$ generates the text, then except with an exponentially small probability in string length, the log-perplexity of the string under $A$ converges to the average cross-entropy of $B$ and $A$. We then present experiments using LLMs with white-box access to support our theoretical results and empirically examine the robustness of our results to black-box settings and adversarial attacks. In the black-box setting, our method achieves an average TPR of 82.5\% at a fixed FPR of 5\%. Under adversarial perturbations, our minimum TPR is 48.6\% at the same FPR threshold. Both results outperform all non-commercial baselines. See https://github.com/TaraRadvand74/llm-text-detection for code, data, and an online demo of the project.
📅 2025-05-16 | 💬 Findings of ACL 2025 and WWW2025@HCRS
Traditional recommender systems usually take the user-platform paradigm, where users are directly exposed under the control of the platform's recommendation algorithms. However, the defect of recommendation algorithms may put users in very vulnerable positions under this paradigm. First, many sophisticated models are often designed with commercial objectives in mind, focusing on the platform's benefits, which may hinder their ability to protect and capture users' true interests. Second, these models are typically optimized using data from all users, which may overlook individual user's preferences. Due to these shortcomings, users may experience several disadvantages under the traditional user-platform direct exposure paradigm, such as lack of control over the recommender system, potential manipulation by the platform, echo chamber effects, or lack of personalization for less active users due to the dominance of active users during collaborative learning. Therefore, there is an urgent need to develop a new paradigm to protect user interests and alleviate these issues. Recently, some researchers have introduced LLM agents to simulate user behaviors, these approaches primarily aim to optimize platform-side performance, leaving core issues in recommender systems unresolved. To address these limitations, we propose a new user-agent-platform paradigm, where agent serves as the protective shield between user and recommender system that enables indirect exposure.
📅 2025-05-16 | 💬 30 pages, 27 figures
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
📅 2025-05-16 | 💬 ACL 2025 Main Conference
Large language models (LLMs) have been widely deployed as autonomous agents capable of following user instructions and making decisions in real-world applications. Previous studies have made notable progress in benchmarking the instruction following capabilities of LLMs in general domains, with a primary focus on their inherent commonsense knowledge. Recently, LLMs have been increasingly deployed as domain-oriented agents, which rely on domain-oriented guidelines that may conflict with their commonsense knowledge. These guidelines exhibit two key characteristics: they consist of a wide range of domain-oriented rules and are subject to frequent updates. Despite these challenges, the absence of comprehensive benchmarks for evaluating the domain-oriented guideline following capabilities of LLMs presents a significant obstacle to their effective assessment and further development. In this paper, we introduce GuideBench, a comprehensive benchmark designed to evaluate guideline following performance of LLMs. GuideBench evaluates LLMs on three critical aspects: (i) adherence to diverse rules, (ii) robustness to rule updates, and (iii) alignment with human preferences. Experimental results on a range of LLMs indicate substantial opportunities for improving their ability to follow domain-oriented guidelines.
📅 2025-05-16 | 💬 33 pages, 7 figures, 10 tables
We investigate the use of large language models (LLMs) to simulate human responses to survey questions, and perform uncertainty quantification to gain reliable insights. Our approach converts imperfect LLM-simulated responses into confidence sets for population parameters of human responses, addressing the distribution shift between the simulated and real populations. A key innovation lies in determining the optimal number of simulated responses: too many produce overly narrow confidence sets with poor coverage, while too few yield excessively loose estimates. To resolve this, our method adaptively selects the simulation sample size, ensuring valid average-case coverage guarantees. It is broadly applicable to any LLM, irrespective of its fidelity, and any procedure for constructing confidence sets. Additionally, the selected sample size quantifies the degree of misalignment between the LLM and the target human population. We illustrate our method on real datasets and LLMs.
📅 2025-05-16
Recently, large-scale pre-trained speech encoders and Large Language Models (LLMs) have been released, which show state-of-the-art performance on a range of spoken language processing tasks including Automatic Speech Recognition (ASR). To effectively combine both models for better performance, continuous speech prompts, and ASR error correction have been adopted. However, these methods are prone to suboptimal performance or are inflexible. In this paper, we propose a new paradigm, LegoSLM, that bridges speech encoders and LLMs using the ASR posterior matrices. The speech encoder is trained to generate Connectionist Temporal Classification (CTC) posteriors over the LLM vocabulary, which are used to reconstruct pseudo-audio embeddings by computing a weighted sum of the LLM input embeddings. These embeddings are concatenated with text embeddings in the LLM input space. Using the well-performing USM and Gemma models as an example, we demonstrate that our proposed LegoSLM method yields good performance on both ASR and speech translation tasks. By connecting USM with Gemma models, we can get an average of 49% WERR over the USM-CTC baseline on 8 MLS testsets. The trained model also exhibits modularity in a range of settings -- after fine-tuning the Gemma model weights, the speech encoder can be switched and combined with the LLM in a zero-shot fashion. Additionally, we propose to control the decode-time influence of the USM and LLM using a softmax temperature, which shows effectiveness in domain adaptation.
📅 2025-05-16
We propose \emph{LumosCore} to build high-bandwidth and large-scale data center networks for LLM jobs. By replacing the core-layer electrical packet switches by optical circuit switches, \emph{LumosCore} could achieves $2\times$ increase in bandwidth or $8\times$ increase in network size. We offer the detailed design of \emph{LumosCore} at both deployment stage and running stage. At deployment stage, we propose Cross Wiring, which is compatible with all possible logical topologies. At running stage, we design polynomial-time algorithms for GPU placement, logical topology generating and OCS reconfiguration to minimize network contention and reduce impact to scheduled jobs. We evaluate \emph{LumosCore} using both testbed experiments and large-scale simulation. Compared to traditional hybrid optical/electrical architectures, \emph{LumosCore} increases the end-to-end training throughput by up to 39.5\% on a 128-node testbed. Compared to the state-of-art Clos architectures, \emph{LumosCore} reduces the average job completion time by up to 34.1\% in a 16k simulation platform.
📅 2025-05-16 | 💬 preprint
Despite the growing adoption of large language models (LLMs) in academic workflows, their capabilities remain limited when it comes to supporting high-quality scientific writing. Most existing systems are designed for general-purpose scientific text generation and fail to meet the sophisticated demands of research communication beyond surface-level polishing, such as conceptual coherence across sections. Furthermore, academic writing is inherently iterative and revision-driven, a process not well supported by direct prompting-based paradigms. To address these scenarios, we propose a human-AI collaboration framework for academic paper revision. We first introduce a comprehensive dataset of 7,040 research papers from top-tier venues annotated with over 140,000 instruction-response pairs that reflect realistic, section-level scientific revisions. Building on the dataset, we develop XtraGPT, the first suite of open-source LLMs, designed to provide context-aware, instruction-guided writing assistance, ranging from 1.5B to 14B parameters. Extensive experiments validate that XtraGPT significantly outperforms same-scale baselines and approaches the quality of proprietary systems. Both automated preference assessments and human evaluations confirm the effectiveness of our models in improving scientific drafts.
📅 2025-05-16 | 💬 18 pages, 15 figures
LLMs have shown preliminary promise in some security tasks and CTF challenges. Real cyberattacks are often multi-host network attacks, which involve executing a number of steps across multiple hosts such as conducting reconnaissance, exploiting vulnerabilities, and using compromised hosts to exfiltrate data. To date, the extent to which LLMs can autonomously execute multi-host network attacks} is not well understood. To this end, our first contribution is MHBench, an open-source multi-host attack benchmark with 10 realistic emulated networks (from 25 to 50 hosts). We find that popular LLMs including modern reasoning models (e.g., GPT4o, Gemini 2.5 Pro, Sonnet 3.7 Thinking) with state-of-art security-relevant prompting strategies (e.g., PentestGPT, CyberSecEval3) cannot autonomously execute multi-host network attacks. To enable LLMs to autonomously execute such attacks, our second contribution is Incalmo, an high-level abstraction layer. Incalmo enables LLMs to specify high-level actions (e.g., infect a host, scan a network). Incalmo's translation layer converts these actions into lower-level primitives (e.g., commands to exploit tools) through expert agents. In 9 out of 10 networks in MHBench, LLMs using Incalmo achieve at least some of the attack goals. Even smaller LLMs (e.g., Haiku 3.5, Gemini 2 Flash) equipped with Incalmo achieve all goals in 5 of 10 environments. We also validate the key role of high-level actions in Incalmo's abstraction in enabling LLMs to autonomously execute such attacks.
📅 2025-05-16 | 💬 13 pages, 15 figures
Distributed inference of large language models (LLMs) can introduce overheads of up to 20% even over GPUs connected via high-speed interconnects such as NVLINK. Multiple techniques have been proposed to mitigate these overheads by decomposing computations into finer-grained tasks and overlapping communication with sub-tasks as they complete. However, fine-grained decomposition of a large computation into many smaller computations on GPUs results in overheads. Further, the communication itself uses many streaming multiprocessors (SMs), adding to the overhead. We present TokenWeave to address these challenges. TokenWeave proposes a Token-Splitting technique that divides the tokens in the inference batch into two approximately equal subsets in a wave-aware manner. The computation of one subset is then overlapped with the communication of the other. In addition, TokenWeave optimizes the order of the layer normalization computation with respect to communication operations and implements a novel fused AllReduce-RMSNorm kernel carefully leveraging Multimem instruction support available on NVIDIA Hopper GPUs. These optimizations allow TokenWeave to perform communication and RMSNorm using only 2-8 SMs. Moreover, our kernel enables the memory bound RMSNorm to be overlapped with the other batch's computation, providing additional gains. Our evaluations demonstrate up to 29% latency gains and up to 26% throughput gains across multiple models and workloads. In several settings, TokenWeave results in better performance compared to an equivalent model with all communication removed.
📅 2025-05-16
Large language models have demonstrated impressive reasoning capabilities but are inherently limited by their knowledge reservoir. Retrieval-augmented reasoning mitigates this limitation by allowing LLMs to query external resources, but existing methods often retrieve irrelevant or noisy information, hindering accurate reasoning. In this paper, we propose AutoRefine, a reinforcement learning post-training framework that adopts a new ``search-and-refine-during-think'' paradigm. AutoRefine introduces explicit knowledge refinement steps between successive search calls, enabling the model to iteratively filter, distill, and organize evidence before generating an answer. Furthermore, we incorporate tailored retrieval-specific rewards alongside answer correctness rewards using group relative policy optimization. Experiments on single-hop and multi-hop QA benchmarks demonstrate that AutoRefine significantly outperforms existing approaches, particularly in complex, multi-hop reasoning scenarios. Detailed analysis shows that AutoRefine issues frequent, higher-quality searches and synthesizes evidence effectively.
📅 2025-05-16
Effective information searching is essential for enhancing the reasoning and generation capabilities of large language models (LLMs). Recent research has explored using reinforcement learning (RL) to improve LLMs' search capabilities by interacting with live search engines in real-world environments. While these approaches show promising results, they face two major challenges: (1) Uncontrolled Document Quality: The quality of documents returned by search engines is often unpredictable, introducing noise and instability into the training process. (2) Prohibitively High API Costs: RL training requires frequent rollouts, potentially involving hundreds of thousands of search requests, which incur substantial API expenses and severely constrain scalability. To address these challenges, we introduce ZeroSearch, a novel RL framework that incentivizes the capabilities of LLMs to use a real search engine with simulated searches during training. Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both useful and noisy documents in response to a query. During RL training, we employ a curriculum-based rollout strategy that incrementally degrades the quality of generated documents, progressively eliciting the model's reasoning ability by exposing it to increasingly challenging retrieval scenarios. Extensive experiments demonstrate that ZeroSearch effectively incentivizes the search capabilities of LLMs using a 3B LLM as the retrieval module. Remarkably, a 7B retrieval module achieves comparable performance to the real search engine, while a 14B retrieval module even surpasses it. Furthermore, it generalizes well across both base and instruction-tuned models of various parameter sizes and is compatible with a wide range of RL algorithms.
📅 2025-05-16 | 💬 13 pages, 5 figures
Ensuring the safety and robustness of autonomous driving systems necessitates a comprehensive evaluation in safety-critical scenarios. However, these safety-critical scenarios are rare and difficult to collect from real-world driving data, posing significant challenges to effectively assessing the performance of autonomous vehicles. Typical existing methods often suffer from limited controllability and lack user-friendliness, as extensive expert knowledge is essentially required. To address these challenges, we propose LD-Scene, a novel framework that integrates Large Language Models (LLMs) with Latent Diffusion Models (LDMs) for user-controllable adversarial scenario generation through natural language. Our approach comprises an LDM that captures realistic driving trajectory distributions and an LLM-based guidance module that translates user queries into adversarial loss functions, facilitating the generation of scenarios aligned with user queries. The guidance module integrates an LLM-based Chain-of-Thought (CoT) code generator and an LLM-based code debugger, enhancing the controllability and robustness in generating guidance functions. Extensive experiments conducted on the nuScenes dataset demonstrate that LD-Scene achieves state-of-the-art performance in generating realistic, diverse, and effective adversarial scenarios. Furthermore, our framework provides fine-grained control over adversarial behaviors, thereby facilitating more effective testing tailored to specific driving scenarios.
📅 2025-05-16
The development of reasoning capabilities represents a critical frontier in large language models (LLMs) research, where reinforcement learning (RL) and process reward models (PRMs) have emerged as predominant methodological frameworks. Contrary to conventional wisdom, empirical evidence from DeepSeek-R1 demonstrates that pure RL training focused on mathematical problem-solving can progressively enhance reasoning abilities without PRM integration, challenging the perceived necessity of process supervision. In this study, we conduct a systematic investigation of the relationship between RL training and PRM capabilities. Our findings demonstrate that problem-solving proficiency and process supervision capabilities represent complementary dimensions of reasoning that co-evolve synergistically during pure RL training. In particular, current PRMs underperform simple baselines like majority voting when applied to state-of-the-art models such as DeepSeek-R1 and QwQ-32B. To address this limitation, we propose Self-PRM, an introspective framework in which models autonomously evaluate and rerank their generated solutions through self-reward mechanisms. Although Self-PRM consistently improves the accuracy of the benchmark (particularly with larger sample sizes), analysis exposes persistent challenges: The approach exhibits low precision (<10\%) on difficult problems, frequently misclassifying flawed solutions as valid. These analyses underscore the need for continued RL scaling to improve reward alignment and introspective accuracy. Overall, our findings suggest that PRM may not be essential for enhancing complex reasoning, as pure RL not only improves problem-solving skills but also inherently fosters robust PRM capabilities. We hope these findings provide actionable insights for building more reliable and self-aware complex reasoning models.
📅 2025-05-16
AI-based systems, including Large Language Models (LLM), impact millions by supporting diverse tasks but face issues like misinformation, bias, and misuse. AI ethics is crucial as new technologies and concerns emerge, but objective, practical guidance remains debated. This study examines the use of LLMs for AI ethics in practice, assessing how LLM trustworthiness-enhancing techniques affect software development in this context. Using the Design Science Research (DSR) method, we identify techniques for LLM trustworthiness: multi-agents, distinct roles, structured communication, and multiple rounds of debate. We design a multi-agent prototype LLM-MAS, where agents engage in structured discussions on real-world AI ethics issues from the AI Incident Database. We evaluate the prototype across three case scenarios using thematic analysis, hierarchical clustering, comparative (baseline) studies, and running source code. The system generates approximately 2,000 lines of code per case, compared to only 80 lines in baseline trials. Discussions reveal terms like bias detection, transparency, accountability, user consent, GDPR compliance, fairness evaluation, and EU AI Act compliance, showing this prototype ability to generate extensive source code and documentation addressing often overlooked AI ethics issues. However, practical challenges in source code integration and dependency management may limit its use by practitioners.
📅 2025-05-16
Generative AI systems can help spread information but also misinformation and biases, potentially undermining the UN Sustainable Development Goals (SDGs). Explainable AI (XAI) aims to reveal the inner workings of AI systems and expose misbehaviours or biases. However, current XAI tools, built for simpler models, struggle to handle the non-numerical nature of large language models (LLMs). This paper examines the effectiveness of global XAI methods, such as rule-extraction algorithms and SHAP, in detecting bias in LLMs. To do so, we first show a text-to-ordinal mapping strategy to convert non-numerical inputs/outputs into numerical features, enabling these tools to identify (some) misinformation-related biases in LLM-generated content. Then, we inject non-linear biases of varying complexity (univariate, conjunctive, and non-convex) into widespread LLMs like ChatGPT and Llama via system instructions, using global XAI methods to detect them. This way, we found that RuleFit struggles with conjunctive and non-convex biases, while SHAP can approximate conjunctive biases but cannot express them as actionable rules. Hence, we introduce RuleSHAP, a global rule extraction algorithm combining SHAP and RuleFit to detect more non-univariate biases, improving injected bias detection over RuleFit by +94% (MRR@1) on average.
📅 2025-05-16
Recent advances in long-text understanding have pushed the context length of large language models (LLMs) up to one million tokens. It boosts LLMs's accuracy and reasoning capacity but causes exorbitant computational costs and unsatisfactory Time to First Token (TTFT). KV cache reuse, which reuses the exact same KV cache of prefixes and templates or shares similar ones but with extra selective recomputation, offers a promising way to tackle this issue. However, prior studies overlook the cross-request KV reuse and the attention deviations introduced by new tokens during the decoding stage. In this paper, we present a KV cache management module that shares the KV cache across requests under multi-tenant scenarios without sacrificing model accuracy. Our system, KVShare, enables accurate and efficient LLM serving by 1) a Dual-Stage High Deviation algorithm (DHD) that conditionally selects a small portion of KV cache to be recomputed during both prefill and decode phases, and 2) a cache-aware scheduler that prioritizes requests based on their KV cache hit rates and orchestrates continuous batching to achieve enhanced system efficiency and faster TTFT. Multi-task experiments conducted on models such as Qwen2.5-7B,Llama3.1-8B and Yi1.5-9B demonstrate that KVShare reduces TTFT by up to 9.39x and increases 1.2x of the throughput compared to the full KV recompute. Moreover, KVShare achieves 20.38% boost in terms of accuracy compared to SOTA methods.
📅 2025-05-16 | 💬 23 pages
Probabilistic next-token prediction trained using cross-entropy loss is the basis of most large language models. Given a sequence of previous values, next-token prediction assigns a probability to each possible next value in the vocabulary. There are many ways to use next-token prediction to output token sequences. This paper examines a few of these algorithms (greedy, lookahead, random sampling, and temperature-scaled random sampling) and studies their consistency with respect to various goals encoded as loss functions. Although consistency of surrogate losses with respect to a target loss function is a well researched topic, we are the first to study it in the context of LLMs (to the best of our knowledge). We find that, so long as next-token prediction converges to its true probability distribution, random sampling is consistent with outputting sequences that mimic sampling from the true probability distribution. For the other goals, such as minimizing the 0-1 loss on the entire sequence, we show no polynomial-time algorithm is optimal for all probability distributions and all decoding algorithms studied are only optimal for a subset of probability distributions. When analyzing these results, we see that there is a dichotomy created between the goals of information retrieval and creative generation for the decoding algorithms. This shows that choosing the correct decoding algorithm based on the desired goal is extremely important and many of the ones used are lacking theoretical grounding in numerous scenarios.
📅 2025-05-16
Despite advances in pretraining with extended context lengths, large language models (LLMs) still face challenges in effectively utilizing real-world long-context information, primarily due to insufficient long-context alignment caused by data quality issues, training inefficiencies, and the lack of well-designed optimization objectives. To address these limitations, we propose a framework named $\textbf{S}$h$\textbf{o}$rt-to-$\textbf{Lo}$ng $\textbf{P}$reference $\textbf{O}$ptimization ($\textbf{SoLoPO}$), decoupling long-context preference optimization (PO) into two components: short-context PO and short-to-long reward alignment (SoLo-RA), supported by both theoretical and empirical evidence. Specifically, short-context PO leverages preference pairs sampled from short contexts to enhance the model's contextual knowledge utilization ability. Meanwhile, SoLo-RA explicitly encourages reward score consistency utilization for the responses when conditioned on both short and long contexts that contain identical task-relevant information. This facilitates transferring the model's ability to handle short contexts into long-context scenarios. SoLoPO is compatible with mainstream preference optimization algorithms, while substantially improving the efficiency of data construction and training processes. Experimental results show that SoLoPO enhances all these algorithms with respect to stronger length and domain generalization abilities across various long-context benchmarks, while achieving notable improvements in both computational and memory efficiency.
📅 2025-05-16
Large Language Models (LLMs) have achieved impressive performance in diverse natural language processing tasks, but specialized domains such as Web3 present new challenges and require more tailored evaluation. Despite the significant user base and capital flows in Web3, encompassing smart contracts, decentralized finance (DeFi), non-fungible tokens (NFTs), decentralized autonomous organizations (DAOs), on-chain governance, and novel token-economics, no comprehensive benchmark has systematically assessed LLM performance in this domain. To address this gap, we introduce the DMind Benchmark, a holistic Web3-oriented evaluation suite covering nine critical subfields: fundamental blockchain concepts, blockchain infrastructure, smart contract, DeFi mechanisms, DAOs, NFTs, token economics, meme concept, and security vulnerabilities. Beyond multiple-choice questions, DMind Benchmark features domain-specific tasks such as contract debugging and on-chain numeric reasoning, mirroring real-world scenarios. We evaluated 26 models, including ChatGPT, Claude, DeepSeek, Gemini, Grok, and Qwen, uncovering notable performance gaps in specialized areas like token economics and security-critical contract analysis. While some models excel in blockchain infrastructure tasks, advanced subfields remain challenging. Our benchmark dataset and evaluation pipeline are open-sourced on https://huggingface.co/datasets/DMindAI/DMind_Benchmark, reaching number one in Hugging Face's trending dataset charts within a week of release.
📅 2025-05-16 | 💬 31 pages, 1 figure
Analyzing texts such as open-ended responses, headlines, or social media posts is a time- and labor-intensive process highly susceptible to bias. LLMs are promising tools for text analysis, using either a predefined (top-down) or a data-driven (bottom-up) taxonomy, without sacrificing quality. Here we present a step-by-step tutorial to efficiently develop, test, and apply taxonomies for analyzing unstructured data through an iterative and collaborative process between researchers and LLMs. Using personal goals provided by participants as an example, we demonstrate how to write prompts to review datasets and generate a taxonomy of life domains, evaluate and refine the taxonomy through prompt and direct modifications, test the taxonomy and assess intercoder agreements, and apply the taxonomy to categorize an entire dataset with high intercoder reliability. We discuss the possibilities and limitations of using LLMs for text analysis.
📅 2025-05-16 | 💬 30 pages
Alpha factor mining is pivotal in quantitative investment for identifying predictive signals from complex financial data. While traditional formulaic alpha mining relies on human expertise, contemporary automated methods, such as those based on genetic programming or reinforcement learning, often suffer from search inefficiency or yield poorly interpretable alpha factors. This paper introduces a novel framework that integrates Large Language Models (LLMs) with Monte Carlo Tree Search (MCTS) to overcome these limitations. Our approach leverages the LLM's instruction-following and reasoning capability to iteratively generate and refine symbolic alpha formulas within an MCTS-driven exploration. A key innovation is the guidance of MCTS exploration by rich, quantitative feedback from financial backtesting of each candidate factor, enabling efficient navigation of the vast search space. Furthermore, a frequent subtree avoidance mechanism is introduced to bolster search efficiency and alpha factor performance. Experimental results on real-world stock market data demonstrate that our LLM-based framework outperforms existing methods by mining alphas with superior predictive accuracy, trading performance, and improved interpretability, while offering a more efficient solution for formulaic alpha mining.
📅 2025-05-16 | 💬 This is an extended journal version based on our previous conference paper accepted at the 2025 IEEE International Conference on Communications (ICC), with additional sections and new results
Federated fine-tuning of pre-trained Large Language Models (LLMs) enables task-specific adaptation across diverse datasets while preserving privacy. However, challenges such as high computational and memory demands, heterogeneous client resources, bandwidth constraints, and ineffective global aggregation hinder its efficiency. To address these issues, we propose HAFLQ (Heterogeneous Adaptive Federated Low-Rank Adaptation Fine-tuned LLM with Quantization), a novel framework for efficient and scalable federated fine-tuning of LLMs in heterogeneous environments. To reduce memory and computation demands, we propose a salience-driven adaptive LLM quantization framework that evaluates the importance of transformer blocks using a salience metric and applies adaptive block-wise quantization accordingly. To handle heterogeneous computational capabilities, we propose an importance-based parameter truncation and freezing scheme. To address communication bottlenecks, we propose an importance-aware bandwidth-adaptive quantization method, which dynamically adjusts parameter precision based on importance and bandwidth constraints. To improve global model aggregation, we propose an adaptive rank-1 matrix-level aggregation strategy, which prevents information dilution and accelerates convergence by aggregating only updated rank-1 matrices from clients. Experimental results on the text classification task demonstrate that HAFLQ reduces memory usage by 31%, lowers communication cost by 49%, improves accuracy by 50%, and achieves faster convergence compared to the baseline method.
📅 2025-05-16
The fine-tuning of pre-trained large language models (LLMs) using reinforcement learning (RL) is generally formulated as direct policy optimization. This approach was naturally favored as it efficiently improves a pretrained LLM, seen as an initial policy. Another RL paradigm, Q-learning methods, has received far less attention in the LLM community while demonstrating major success in various non-LLM RL tasks. In particular, Q-learning effectiveness comes from its sample efficiency and ability to learn offline, which is particularly valuable given the high computational cost of sampling with LLMs. However, naively applying a Q-learning-style update to the model's logits is ineffective due to the specificity of LLMs. Our core contribution is to derive theoretically grounded loss functions from Bellman equations to adapt Q-learning methods to LLMs. To do so, we carefully adapt insights from the RL literature to account for LLM-specific characteristics, ensuring that the logits become reliable Q-value estimates. We then use this loss to build a practical algorithm, ShiQ for Shifted-Q, that supports off-policy, token-wise learning while remaining simple to implement. Finally, we evaluate ShiQ on both synthetic data and real-world benchmarks, e.g., UltraFeedback and BFCL-V3, demonstrating its effectiveness in both single-turn and multi-turn LLM settings
📅 2025-05-16
Motivated by Smart Manufacturing and Industry 4.0, we introduce a framework for synthesizing Abstraction-Based Controller Design (ABCD) for reach-avoid problems from Natural Language (NL) specifications using Large Language Models (LLMs). A Code Agent interprets an NL description of the control problem and translates it into a formal language interpretable by state-of-the-art symbolic control software, while a Checker Agent verifies the correctness of the generated code and enhances safety by identifying specification mismatches. Evaluations show that the system handles linguistic variability and improves robustness over direct planning with LLMs. The proposed approach lowers the barrier to formal control synthesis by enabling intuitive, NL-based task definition while maintaining safety guarantees through automated validation.
📅 2025-05-16
Machine-learning technologies are seeing increased deployment in real-world market scenarios. In this work, we explore the strategic behaviors of large language models (LLMs) when deployed as autonomous agents in multi-commodity markets, specifically within Cournot competition frameworks. We examine whether LLMs can independently engage in anti-competitive practices such as collusion or, more specifically, market division. Our findings demonstrate that LLMs can effectively monopolize specific commodities by dynamically adjusting their pricing and resource allocation strategies, thereby maximizing profitability without direct human input or explicit collusion commands. These results pose unique challenges and opportunities for businesses looking to integrate AI into strategic roles and for regulatory bodies tasked with maintaining fair and competitive markets. The study provides a foundation for further exploration into the ramifications of deferring high-stakes decisions to LLM-based agents.
📅 2025-05-16 | 💬 Accepted to ACL 2025 (main)
Large Language Models (LLMs) excel in various domains but pose inherent privacy risks. Existing methods to evaluate privacy leakage in LLMs often use memorized prefixes or simple instructions to extract data, both of which well-alignment models can easily block. Meanwhile, Jailbreak attacks bypass LLM safety mechanisms to generate harmful content, but their role in privacy scenarios remains underexplored. In this paper, we examine the effectiveness of jailbreak attacks in extracting sensitive information, bridging privacy leakage and jailbreak attacks in LLMs. Moreover, we propose PIG, a novel framework targeting Personally Identifiable Information (PII) and addressing the limitations of current jailbreak methods. Specifically, PIG identifies PII entities and their types in privacy queries, uses in-context learning to build a privacy context, and iteratively updates it with three gradient-based strategies to elicit target PII. We evaluate PIG and existing jailbreak methods using two privacy-related datasets. Experiments on four white-box and two black-box LLMs show that PIG outperforms baseline methods and achieves state-of-the-art (SoTA) results. The results underscore significant privacy risks in LLMs, emphasizing the need for stronger safeguards. Our code is availble at https://github.com/redwyd/PrivacyJailbreak.
📅 2025-05-16
As Large Language Models (LLMs) integrate into our social and economic interactions, we need to deepen our understanding of how humans respond to LLMs opponents in strategic settings. We present the results of the first controlled monetarily-incentivised laboratory experiment looking at differences in human behaviour in a multi-player p-beauty contest against other humans and LLMs. We use a within-subject design in order to compare behaviour at the individual level. We show that, in this environment, human subjects choose significantly lower numbers when playing against LLMs than humans, which is mainly driven by the increased prevalence of `zero' Nash-equilibrium choices. This shift is mainly driven by subjects with high strategic reasoning ability. Subjects who play the zero Nash-equilibrium choice motivate their strategy by appealing to perceived LLM's reasoning ability and, unexpectedly, propensity towards cooperation. Our findings provide foundational insights into the multi-player human-LLM interaction in simultaneous choice games, uncover heterogeneities in both subjects' behaviour and beliefs about LLM's play when playing against them, and suggest important implications for mechanism design in mixed human-LLM systems.
📅 2025-05-16 | 💬 ACL 2025 Main
Recently, scaling test-time compute on Large Language Models (LLM) has garnered wide attention. However, there has been limited investigation of how various reasoning prompting strategies perform as scaling. In this paper, we focus on a standard and realistic scaling setting: majority voting. We systematically conduct experiments on 6 LLMs $\times$ 8 prompting strategies $\times$ 6 benchmarks. Experiment results consistently show that as the sampling time and computational overhead increase, complicated prompting strategies with superior initial performance gradually fall behind simple Chain-of-Thought. We analyze this phenomenon and provide theoretical proofs. Additionally, we propose a method according to probability theory to quickly and accurately predict the scaling performance and select the best strategy under large sampling times without extra resource-intensive inference in practice. It can serve as the test-time scaling law for majority voting. Furthermore, we introduce two ways derived from our theoretical analysis to significantly improve the scaling performance. We hope that our research can promote to re-examine the role of complicated prompting, unleash the potential of simple prompting strategies, and provide new insights for enhancing test-time scaling performance.
📅 2025-05-16 | 💬 Preprint
Recent advances in group-based reinforcement learning (RL) have driven frontier large language models (LLMs) in single-turn tasks like mathematical reasoning. However, their scalability to long-horizon LLM agent training remains limited. Unlike static tasks, agent-environment interactions unfold over many steps and often yield sparse or delayed rewards, making credit assignment across individual steps significantly more challenging. In this work, we propose Group-in-Group Policy Optimization (GiGPO), a novel RL algorithm that achieves fine-grained credit assignment for LLM agents while preserving the appealing properties of group-based RL: critic-free, low memory, and stable convergence. GiGPO introduces a two-level structure for estimating relative advantage: (i) At the episode-level, GiGPO computes macro relative advantages based on groups of complete trajectories; (ii) At the step-level, GiGPO introduces an anchor state grouping mechanism that retroactively constructs step-level groups by identifying repeated environment states across trajectories. Actions stemming from the same state are grouped together, enabling micro relative advantage estimation. This hierarchical structure effectively captures both global trajectory quality and local step effectiveness without relying on auxiliary models or additional rollouts. We evaluate GiGPO on two challenging agent benchmarks, ALFWorld and WebShop, using Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct. Crucially, GiGPO delivers fine-grained per-step credit signals and achieves performance gains of > 12\% on ALFWorld and > 9\% on WebShop over the GRPO baseline: all while maintaining the same GPU memory overhead, identical LLM rollout, and incurring little to no additional time cost.