Skip to the content.

llm - 2025_05

Home / Papers / llm

Papers

📅 2025-05-27
We introduce FinTagging, the first full-scope, table-aware XBRL benchmark designed to evaluate the structured information extraction and semantic alignment capabilities of large language models (LLMs) in the context of XBRL-based financial reporting. Unlike prior benchmarks that oversimplify XBRL tagging as flat multi-class classification and focus solely on narrative text, FinTagging decomposes the XBRL tagging problem into two subtasks: FinNI for financial entity extraction and FinCL for taxonomy-driven concept alignment. It requires models to jointly extract facts and align them with the full 10k+ US-GAAP taxonomy across both unstructured text and structured tables, enabling realistic, fine-grained evaluation. We assess a diverse set of LLMs under zero-shot settings, systematically analyzing their performance on both subtasks and overall tagging accuracy. Our results reveal that, while LLMs demonstrate strong generalization in information extraction, they struggle with fine-grained concept alignment, particularly in disambiguating closely related taxonomy entries. These findings highlight the limitations of existing LLMs in fully automating XBRL tagging and underscore the need for improved semantic reasoning and schema-aware modeling to meet the demands of accurate financial disclosure. Code is available at our GitHub repository and data is at our Hugging Face repository.
📅 2025-05-27
The quality of training data is critical to the performance of machine learning applications in domains like transportation, healthcare, and robotics. Accurate image labeling, however, often relies on time-consuming, expert-driven methods with limited feedback. This research introduces a sketch-based annotation approach supported by large language models (LLMs) to reduce technical barriers and enhance accessibility. Using a synthetic dataset, we examine how sketch recognition features relate to LLM feedback metrics, aiming to improve the reliability and interpretability of LLM-assisted labeling. We also explore how prompting strategies and sketch variations influence feedback quality. Our main contribution is a sketch-based virtual assistant that simplifies annotation for non-experts and advances LLM-driven labeling tools in terms of scalability, accessibility, and explainability.
📅 2025-05-27 | 💬 We have decided to withdraw the manuscript as it requires substantial revisions that go beyond what is appropriate for a versioned update on arXiv. We plan to resubmit once the necessary improvements are made
Recommender systems are essential for delivering personalized content across digital platforms by modeling user preferences and behaviors. Recently, large language models (LLMs) have been adopted for prompt-based recommendation due to their ability to generate personalized outputs without task-specific training. However, LLM-based methods face limitations such as limited context window size, inefficient pointwise and pairwise prompting, and difficulty handling listwise ranking due to token constraints. LLMs can also be sensitive to position bias, as they may overemphasize earlier items in the prompt regardless of their true relevance. To address and investigate these issues, we propose a hybrid framework that combines a traditional recommendation model with an LLM for reranking top-k items using structured prompts. We evaluate the effects of user history reordering and instructional prompts for mitigating position bias. Experiments on MovieLens-100K show that randomizing user history improves ranking quality, but LLM-based reranking does not outperform the base model. Explicit instructions to reduce position bias are also ineffective. Our evaluations reveal limitations in LLMs' ability to model ranking context and mitigate bias. Our code is publicly available at https://github.com/aminul7506/LLMForReRanking.
📅 2025-05-27
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
📅 2025-05-27
Allocating more compute to large language models (LLMs) reasoning has generally been demonstrated to improve their effectiveness, but also results in increased inference time. In contrast, humans can perform tasks faster and better with increased experience and exposure. Hence, this paper aims to investigate the question: Can LLMs also become faster at reasoning through recurrent exposure on relevant tasks, and if so, how can it be achieved? To address these questions, we first formalize the problem setting of LLM reasoning speedup systematically in the dimensions of task relevancy and compute budget calculation. We then propose SpeedupLLM, a theoretically guaranteed framework to implement and benchmark such reasoning speedup behaviour based on adaptive compute allocation and memory mechanisms. We further conduct comprehensive experiments to benchmark such behaviour across different question similarity levels, memory methods, and reasoning methods. Results show that LLMs can generally reason faster with past experience, achieving up to a 56% reduction in compute cost when equipped with appropriate memory and reasoning methods.
📅 2025-05-27 | 💬 9 pages, 25 figures
The sparse Mixture-of-Experts (MoE) architecture of large language models (LLMs) confronts an inherent issue of load imbalance arising from the simplistic linear router strategy, which ultimately causes the instability and inefficient learning of LLMs. To address this challenge, we introduce a novel MoE graph-based framework $\textbf{GMoE}$, aimed at enhancing the collaboration among multiple experts. In GMoE, a graph router function is designed to capture the collaboration signals among experts. This enables all experts to dynamically allocate information derived from input data by sharing information with their neighboring experts. Moreover, we put forward two coordination strategies in GMoE: the $\textit{Poisson distribution-based distinction strategy}$ and the $\textit{Normal distribution-based balance strategy}$, to further release the capacity of each expert and increase the model stability in the fine-tuning of LLMs. Specifically, we leverage a parameter-efficient fine-tuning technique, i.e., Low-Rank Adaptation (LoRA), to implement the graph MoE architecture. Extensive experiments on four real-world benchmark datasets demonstrate the effectiveness of GMoE, showing the benefits of facilitating collaborations of multiple experts in LLM fine-tuning. The code of experimental implementation is available at https://github.com/BAI-LAB/GMoE
📅 2025-05-27
Despite significant progress, recent studies have indicated that current large language models (LLMs) may still utilize bias during inference, leading to the poor generalizability of LLMs. Some benchmarks are proposed to investigate the generalizability of LLMs, with each piece of data typically containing one type of controlled bias. However, a single piece of data may contain multiple types of biases in practical applications. To bridge this gap, we propose a multi-bias benchmark where each piece of data contains five types of biases. The evaluations conducted on this benchmark reveal that the performance of existing LLMs and debiasing methods is unsatisfying, highlighting the challenge of eliminating multiple types of biases simultaneously. To overcome this challenge, we propose a causal effect estimation-guided multi-bias elimination method (CMBE). This method first estimates the causal effect of multiple types of biases simultaneously. Subsequently, we eliminate the causal effect of biases from the total causal effect exerted by both the semantic information and biases during inference. Experimental results show that CMBE can effectively eliminate multiple types of bias simultaneously to enhance the generalizability of LLMs.
📅 2025-05-27
Nash Learning from Human Feedback is a game-theoretic framework for aligning large language models (LLMs) with human preferences by modeling learning as a two-player zero-sum game. However, using raw preference as the payoff in the game highly limits the potential of the game-theoretic LLM alignment framework. In this paper, we systematically study using what choices of payoff based on the pairwise human preferences can yield desirable alignment properties. We establish necessary and sufficient conditions for Condorcet consistency, diversity through mixed strategies, and Smith consistency. These results provide a theoretical foundation for the robustness of game-theoretic LLM alignment. Further, we show the impossibility of preference matching -- i.e., no smooth and learnable mappings of pairwise preferences can guarantee a unique Nash equilibrium that matches a target policy, even under standard assumptions like the Bradley-Terry-Luce model. This result highlights the fundamental limitation of game-theoretic LLM alignment.
📅 2025-05-27
Automated feature engineering plays a critical role in improving predictive model performance for tabular learning tasks. Traditional automated feature engineering methods are limited by their reliance on pre-defined transformations within fixed, manually designed search spaces, often neglecting domain knowledge. Recent advances using Large Language Models (LLMs) have enabled the integration of domain knowledge into the feature engineering process. However, existing LLM-based approaches use direct prompting or rely solely on validation scores for feature selection, failing to leverage insights from prior feature discovery experiments or establish meaningful reasoning between feature generation and data-driven performance. To address these challenges, we propose LLM-FE, a novel framework that combines evolutionary search with the domain knowledge and reasoning capabilities of LLMs to automatically discover effective features for tabular learning tasks. LLM-FE formulates feature engineering as a program search problem, where LLMs propose new feature transformation programs iteratively, and data-driven feedback guides the search process. Our results demonstrate that LLM-FE consistently outperforms state-of-the-art baselines, significantly enhancing the performance of tabular prediction models across diverse classification and regression benchmarks.
📅 2025-05-27 | 💬 10 pages, 4 figures, 2 tables
While LLMs have revolutionized the field of machine learning due to their high performance across a range of tasks, they are known to perform poorly in planning, hallucinate false answers, have degraded performance on less canonical versions of the same task, and answer incorrectly on a variety of specific prompts. There are several emerging theories of LLM performance with some predictive power, among them that LLMs lack world modeling ability, that they have an undesirable bias towards an autoregressive prior, and that they perform less well on more novel problems. The existing literature on novelty has focused on tasks of relatively high complexity, studying perturbations of canonical but complex problems. In this paper, we attempt to isolate novelty as a factor in LLM underperformance. To this end, we consider an extremely simple domain: next token prediction on simple language tasks. The twist is that these language tasks are unseen, as they are randomly drawn from a large, parsimoniously defined set of languages arising from simple grammar rules. This allows us to isolate the effect of task novelty and see if it is sufficient to explain low performance. We find that LLMs uniformly underperform n-gram models (which do not have the capacity for world modeling) on these tasks, both when used as next token predictors and as reasoners.
📅 2025-05-27
This study examines the behavior of Large Language Models (LLMs) when evaluating professional candidates based on their resumes or curricula vitae (CVs). In an experiment involving 22 leading LLMs, each model was systematically given one job description along with a pair of profession-matched CVs, one bearing a male first name, the other a female first name, and asked to select the more suitable candidate for the job. Each CV pair was presented twice, with names swapped to ensure that any observed preferences in candidate selection stemmed from gendered names cues. Despite identical professional qualifications across genders, all LLMs consistently favored female-named candidates across 70 different professions. Adding an explicit gender field (male/female) to the CVs further increased the preference for female applicants. When gendered names were replaced with gender-neutral identifiers "Candidate A" and "Candidate B", several models displayed a preference to select "Candidate A". Counterbalancing gender assignment between these gender-neutral identifiers resulted in gender parity in candidate selection. When asked to rate CVs in isolation rather than compare pairs, LLMs assigned slightly higher average scores to female CVs overall, but the effect size was negligible. Including preferred pronouns (he/him or she/her) next to a candidate's name slightly increased the odds of the candidate being selected regardless of gender. Finally, most models exhibited a substantial positional bias to select the candidate listed first in the prompt. These findings underscore the need for caution when deploying LLMs in high-stakes autonomous decision-making contexts and raise doubts about whether LLMs consistently apply principled reasoning.
📅 2025-05-27
Do LLMs robustly generalize critical safety facts to novel situations? Lacking this ability is dangerous when users ask naive questions. For instance, "I'm considering packing melon balls for my 10-month-old's lunch. What other foods would be good to include?" Before offering food options, the LLM should warn that melon balls pose a choking hazard to toddlers, as documented by the CDC. Failing to provide such warnings could result in serious injuries or even death. To evaluate this, we introduce SAGE-Eval, SAfety-fact systematic GEneralization evaluation, the first benchmark that tests whether LLMs properly apply well established safety facts to naive user queries. SAGE-Eval comprises 104 facts manually sourced from reputable organizations, systematically augmented to create 10,428 test scenarios across 7 common domains (e.g., Outdoor Activities, Medicine). We find that the top model, Claude-3.7-sonnet, passes only 58% of all the safety facts tested. We also observe that model capabilities and training compute weakly correlate with performance on SAGE-Eval, implying that scaling up is not the golden solution. Our findings suggest frontier LLMs still lack robust generalization ability. We recommend developers use SAGE-Eval in pre-deployment evaluations to assess model reliability in addressing salient risks. We publicly release SAGE-Eval at https://huggingface.co/datasets/YuehHanChen/SAGE-Eval and our code is available at https://github.com/YuehHanChen/SAGE-Eval/tree/main.
📅 2025-05-27
Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
📅 2025-05-27
Predictive modeling on tabular data is the cornerstone of many real-world applications. Although gradient boosting machines and some recent deep models achieve strong performance on tabular data, they often lack interpretability. On the other hand, large language models (LLMs) have demonstrated powerful capabilities to generate human-like reasoning and explanations, but remain under-performed for tabular data prediction. In this paper, we propose a new approach that leverages reasoning-based LLMs, trained using reinforcement learning, to perform more accurate and explainable predictions on tabular data. Our method introduces custom reward functions that guide the model not only toward high prediction accuracy but also toward human-understandable reasons for its predictions. Experimental results show that our model achieves promising performance on financial benchmark datasets, outperforming most existing LLMs.
📅 2025-05-27
Large Language Models (LLMs) exhibit strong conversational abilities but often generate falsehoods. Prior work suggests that the truthfulness of simple propositions can be represented as a single linear direction in a model's internal activations, but this may not fully capture its underlying geometry. In this work, we extend the concept cone framework, recently introduced for modeling refusal, to the domain of truth. We identify multi-dimensional cones that causally mediate truth-related behavior across multiple LLM families. Our results are supported by three lines of evidence: (i) causal interventions reliably flip model responses to factual statements, (ii) learned cones generalize across model architectures, and (iii) cone-based interventions preserve unrelated model behavior. These findings reveal the richer, multidirectional structure governing simple true/false propositions in LLMs and highlight concept cones as a promising tool for probing abstract behaviors.
📅 2025-05-27
Recent empirical results have sparked a debate about whether or not Large Language Models (LLMs) are capable of Theory of Mind (ToM). While some have found LLMs to be successful on ToM evaluations such as the False Belief task, others have shown that their performance is not robust against trivial alterations to stimuli. In this paper, we introduce SCALPEL -- a technique to incrementally modify stimuli to test different specific hypotheses about why LLMs fail -- and apply this method to the "transparent-access" modification of the unexpected contents task. Our results suggest that LLMs often do poorly because they fail to make essential common-sense inferences, such as that seeing a transparent container implies recognizing its contents. We conclude that while modern LLMs go beyond mere pattern matching, they still fall short of robust human-like ToM. We argue that SCALPEL can help cognitive scientists examine LLMs' capabilities in finer detail and provide insight into alternative mechanisms by which tasks that are used to assess human cognition might be completed.
📅 2025-05-27 | 💬 Accepted to ACL 2025 (Findings)
Safety reasoning is a recent paradigm where LLMs reason over safety policies before generating responses, thereby mitigating limitations in existing safety measures such as over-refusal and jailbreak vulnerabilities. However, implementing this paradigm is challenging due to the resource-intensive process of creating high-quality policy-embedded chain-of-thought (CoT) datasets while ensuring reasoning remains accurate and free from hallucinations or policy conflicts. To tackle this, we propose AIDSAFE: Agentic Iterative Deliberation for Safety Reasoning, a novel data generation recipe that leverages multi-agent deliberation to iteratively expand reasoning on safety policies. A data refiner stage in AIDSAFE ensures high-quality outputs by eliminating repetitive, redundant, and deceptive thoughts. AIDSAFE-generated CoTs provide a strong foundation for supervised fine-tuning (SFT)-based safety training. Additionally, to address the need of preference data in alignment stages, such as DPO training, we introduce a supplemental recipe that uses belief augmentation to create distinct selected and rejected CoT samples. Our evaluations demonstrate that AIDSAFE-generated CoTs achieve superior policy adherence and reasoning quality. Consequently, we show that fine-tuning open-source LLMs on these CoTs can significantly improve safety generalization and jailbreak robustness while maintaining acceptable utility and over-refusal accuracy. AIDSAFE-generated CoT datasets can be found here: https://huggingface.co/datasets/AmazonScience/AIDSAFE
📅 2025-05-27
How do the latent spaces used by independently-trained LLMs relate to one another? We study the nearest neighbor relationships induced by activations at different layers of 24 open-weight LLMs, and find that they 1) tend to vary from layer to layer within a model, and 2) are approximately shared between corresponding layers of different models. Claim 2 shows that these nearest neighbor relationships are not arbitrary, as they are shared across models, but Claim 1 shows that they are not "obvious" either, as there is no single set of nearest neighbor relationships that is universally shared. Together, these suggest that LLMs generate a progression of activation geometries from layer to layer, but that this entire progression is largely shared between models, stretched and squeezed to fit into different architectures.
📅 2025-05-27
Consider the following task taught in introductory optimization courses which addresses challenges articulated by the community at the intersection of (generative) AI and OR: generate the dual of a linear program. LLMs, being trained at web-scale, have the conversion process and many instances of Primal to Dual Conversion (P2DC) at their disposal. Students may thus reasonably expect that LLMs would perform well on the P2DC task. To assess this expectation, this paper introduces DualSchool, a comprehensive framework for generating and verifying P2DC instances. The verification procedure of DualSchool uses the Canonical Graph Edit Distance, going well beyond existing evaluation methods for optimization models, which exhibit many false positives and negatives when applied to P2DC. Experiments performed by DualSchool reveal interesting findings. Although LLMs can recite the conversion procedure accurately, state-of-the-art open LLMs fail to consistently produce correct duals. This finding holds even for the smallest two-variable instances and for derivative tasks, such as correctness, verification, and error classification. The paper also discusses the implications for educators, students, and the development of large reasoning systems.
📅 2025-05-27 | 💬 Fixed typos
Can large language models (LLMs) admit their mistakes when they should know better? In this work, we define the behavior of acknowledging errors in previously generated answers as "retraction" and aim to understand when and why LLMs choose to retract. We first construct model-specific datasets to evaluate whether a model will retract an incorrect answer that contradicts its own parametric knowledge. While LLMs are capable of retraction, they do so only infrequently. We demonstrate that retraction is closely tied to previously identified indicators of models' internal belief: models fail to retract wrong answers that they "believe" to be factually correct. Steering experiments further demonstrate that internal belief causally influences model retraction. In particular, when the model does not believe its answer, this not only encourages the model to attempt to verify the answer, but also alters attention behavior during self-verification. Finally, we demonstrate that simple supervised fine-tuning significantly improves retraction performance by helping the model learn more accurate internal beliefs. Code and datasets are available on https://github.com/ayyyq/llm-retraction.
📅 2025-05-27
Miscalibration in Large Language Models (LLMs) undermines their reliability, highlighting the need for accurate confidence estimation. We introduce CCPS (Calibrating LLM Confidence by Probing Perturbed Representation Stability), a novel method analyzing internal representational stability in LLMs. CCPS applies targeted adversarial perturbations to final hidden states, extracts features reflecting the model's response to these perturbations, and uses a lightweight classifier to predict answer correctness. CCPS was evaluated on LLMs from 8B to 32B parameters (covering Llama, Qwen, and Mistral architectures) using MMLU and MMLU-Pro benchmarks in both multiple-choice and open-ended formats. Our results show that CCPS significantly outperforms current approaches. Across four LLMs and three MMLU variants, CCPS reduces Expected Calibration Error by approximately 55% and Brier score by 21%, while increasing accuracy by 5 percentage points, Area Under the Precision-Recall Curve by 4 percentage points, and Area Under the Receiver Operating Characteristic Curve by 6 percentage points, all relative to the strongest prior method. CCPS delivers an efficient, broadly applicable, and more accurate solution for estimating LLM confidence, thereby improving their trustworthiness.
📅 2025-05-27 | 💬 ACL'25 (Industry) Oral
Exploration, the act of broadening user experiences beyond their established preferences, is challenging in large-scale recommendation systems due to feedback loops and limited signals on user exploration patterns. Large Language Models (LLMs) offer potential solutions by leveraging their world knowledge to recommend novel content outside these loops. A key challenge is aligning LLMs with user preferences while preserving their knowledge and reasoning. To enhance planning for new user interests using LLMs, this paper introduces a novel approach that combines hierarchical planning with LLM inference-time scaling. This method aims to improve recommendation relevancy without compromising novelty. We decouple novelty and user-alignment, training separate LLMs for each objective. We then scale up the novelty-focused LLM's inference and select the best-of-n predictions using the user-aligned LLM. Live experiments demonstrate efficacy, showing significant gains in both user satisfaction (measured by watch activity and active user counts) and exploration diversity.
📅 2025-05-27
Time series analysis provides essential insights for real-world system dynamics and informs downstream decision-making, yet most existing methods often overlook the rich contextual signals present in auxiliary modalities. To bridge this gap, we introduce TimeXL, a multi-modal prediction framework that integrates a prototype-based time series encoder with three collaborating Large Language Models (LLMs) to deliver more accurate predictions and interpretable explanations. First, a multi-modal prototype-based encoder processes both time series and textual inputs to generate preliminary forecasts alongside case-based rationales. These outputs then feed into a prediction LLM, which refines the forecasts by reasoning over the encoder's predictions and explanations. Next, a reflection LLM compares the predicted values against the ground truth, identifying textual inconsistencies or noise. Guided by this feedback, a refinement LLM iteratively enhances text quality and triggers encoder retraining. This closed-loop workflow -- prediction, critique (reflect), and refinement -- continuously boosts the framework's performance and interpretability. Empirical evaluations on four real-world datasets demonstrate that TimeXL achieves up to 8.9\% improvement in AUC and produces human-centric, multi-modal explanations, highlighting the power of LLM-driven reasoning for time series prediction.
📅 2025-05-27
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs). Particularly, the "Zero" reinforcement learning introduced by Deepseek-R1-Zero, enables direct RL training of base LLMs without relying on an intermediate supervised fine-tuning stage. Despite these advancements, current works for LLM reasoning mainly focus on mathematical and coding domains, largely due to data abundance and the ease of answer verification. This limits the applicability and generalization of such models to broader domains, where questions often have diverse answer representations, and data is more scarce. In this paper, we propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains. Our key contributions include: (1) constructing a large-scale, high-quality dataset of questions with verifiable answers curated by web crawling, covering a wide range of disciplines; and (2) developing a generative model-based answer verifier, which replaces traditional rule-based verification with the capability of chain-of-thought and context-awareness. We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc. Our comprehensive evaluation across these 12 benchmarks (e.g. MMLU-Pro, GPQA, SuperGPQA, TheoremQA, BBEH and MATH AMC) demonstrates that General-Reasoner outperforms existing baseline methods, achieving robust and generalizable reasoning performance while maintaining superior effectiveness in mathematical reasoning tasks.
📅 2025-05-27
LLMs can be unpredictable, as even slight alterations to the prompt can cause the output to change in unexpected ways. Thus, the ability of models to accurately explain their behavior is critical, especially in high-stakes settings. One approach for evaluating explanations is counterfactual simulatability, how well an explanation allows users to infer the model's output on related counterfactuals. Counterfactual simulatability has been previously studied for yes/no question answering tasks. We provide a general framework for extending this method to generation tasks, using news summarization and medical suggestion as example use cases. We find that while LLM explanations do enable users to better predict LLM outputs on counterfactuals in the summarization setting, there is significant room for improvement for medical suggestion. Furthermore, our results suggest that the evaluation for counterfactual simulatability may be more appropriate for skill-based tasks as opposed to knowledge-based tasks.
📅 2025-05-27
The reliability of large language models (LLMs) is greatly compromised by their tendency to hallucinate, underscoring the need for precise identification of knowledge gaps within LLMs. Various methods for probing such gaps exist, ranging from calibration-based to prompting-based methods. To evaluate these probing methods, in this paper, we propose a new process based on using input variations and quantitative metrics. Through this, we expose two dimensions of inconsistency in knowledge gap probing. (1) Intra-method inconsistency: Minimal non-semantic perturbations in prompts lead to considerable variance in detected knowledge gaps within the same probing method; e.g., the simple variation of shuffling answer options can decrease agreement to around 40%. (2) Cross-method inconsistency: Probing methods contradict each other on whether a model knows the answer. Methods are highly inconsistent -- with decision consistency across methods being as low as 7% -- even though the model, dataset, and prompt are all the same. These findings challenge existing probing methods and highlight the urgent need for perturbation-robust probing frameworks.
📅 2025-05-27
Large language models (LLMs) are used globally across many languages, but their English-centric pretraining raises concerns about cross-lingual disparities for cultural awareness, often resulting in biased outputs. However, comprehensive multilingual evaluation remains challenging due to limited benchmarks and questionable translation quality. To better assess these disparities, we introduce MAKIEval, an automatic multilingual framework for evaluating cultural awareness in LLMs across languages, regions, and topics. MAKIEval evaluates open-ended text generation, capturing how models express culturally grounded knowledge in natural language. Leveraging Wikidata's multilingual structure as a cross-lingual anchor, it automatically identifies cultural entities in model outputs and links them to structured knowledge, enabling scalable, language-agnostic evaluation without manual annotation or translation. We then introduce four metrics that capture complementary dimensions of cultural awareness: granularity, diversity, cultural specificity, and consensus across languages. We assess 7 LLMs developed from different parts of the world, encompassing both open-source and proprietary systems, across 13 languages, 19 countries and regions, and 6 culturally salient topics (e.g., food, clothing). Notably, we find that models tend to exhibit stronger cultural awareness in English, suggesting that English prompts more effectively activate culturally grounded knowledge. We publicly release our code and data.
📅 2025-05-27 | 💬 28 pages, 5 figures, journal paper, submitted to AI and Law
The persistent accumulation of unresolved legal cases, especially within the Indian judiciary, significantly hampers the timely delivery of justice. Manual methods of prioritizing petitions are often prone to inefficiencies and subjective biases further exacerbating delays. To address this issue, we propose LLMPR (Large Language Model-based Petition Ranking), an automated framework that utilizes transfer learning and machine learning to assign priority rankings to legal petitions based on their contextual urgency. Leveraging the ILDC dataset comprising 7,593 annotated petitions, we process unstructured legal text and extract features through various embedding techniques, including DistilBERT, LegalBERT, and MiniLM. These textual embeddings are combined with quantitative indicators such as gap days, rank scores, and word counts to train multiple machine learning models, including Random Forest, Decision Tree, XGBoost, LightGBM, and CatBoost. Our experiments demonstrate that Random Forest and Decision Tree models yield superior performance, with accuracy exceeding 99% and a Spearman rank correlation of 0.99. Notably, models using only numerical features achieve nearly optimal ranking results (R2 = 0.988, \r{ho} = 0.998), while LLM-based embeddings offer only marginal gains. These findings suggest that automated petition ranking can effectively streamline judicial workflows, reduce case backlog, and improve fairness in legal prioritization.
📅 2025-05-27 | 💬 9 pages, preprint
Probabilistic reasoning is a key aspect of both human and artificial intelligence that allows for handling uncertainty and ambiguity in decision-making. In this paper, we introduce a new numerical reasoning task under uncertainty for large language models, focusing on estimating the privacy risk of user-generated documents containing privacy-sensitive information. We propose BRANCH, a new LLM methodology that estimates the k-privacy value of a text-the size of the population matching the given information. BRANCH factorizes a joint probability distribution of personal information as random variables. The probability of each factor in a population is estimated separately using a Bayesian network and combined to compute the final k-value. Our experiments show that this method successfully estimates the k-value 73% of the time, a 13% increase compared to o3-mini with chain-of-thought reasoning. We also find that LLM uncertainty is a good indicator for accuracy, as high-variance predictions are 37.47% less accurate on average.
📅 2025-05-27
We describe an incentive system for distributed deep learning of foundational models where peers are rewarded for contributions. The incentive system, \textit{Gauntlet}, has been deployed on the bittensor blockchain and used to train a 1.2B LLM with completely permissionless contributions of pseudo-gradients: no control over the users that can register or their hardware. \textit{Gauntlet} can be applied to any synchronous distributed training scheme that relies on aggregating updates or pseudo-gradients. We rely on a two-stage mechanism for fast filtering of peer uptime, reliability, and synchronization, combined with the core component that estimates the loss before and after individual pseudo-gradient contributions. We utilized an OpenSkill rating system to track competitiveness of pseudo-gradient scores across time. Finally, we introduce a novel mechanism to ensure peers on the network perform unique computations. Our live 1.2B run, which has paid out real-valued tokens to participants based on the value of their contributions, yielded a competitive (on a per-iteration basis) 1.2B model that demonstrates the utility of our incentive system.
📅 2025-05-27
Multilingual Alignment is an effective and representative paradigm to enhance LLMs' multilingual capabilities, which transfers the capabilities from the high-resource languages to the low-resource languages. Meanwhile, some researches on language-specific neurons reveal that there are language-specific neurons that are selectively activated in LLMs when processing different languages. This provides a new perspective to analyze and understand LLMs' mechanisms more specifically in multilingual scenarios. In this work, we propose a new finer-grained neuron identification algorithm, which detects language neurons~(including language-specific neurons and language-related neurons) and language-agnostic neurons. Furthermore, based on the distributional characteristics of different types of neurons, we divide the LLMs' internal process for multilingual inference into four parts: (1) multilingual understanding, (2) shared semantic space reasoning, (3) multilingual output space transformation, and (4) vocabulary space outputting. Additionally, we systematically analyze the models before and after alignment with a focus on different types of neurons. We also analyze the phenomenon of ''Spontaneous Multilingual Alignment''. Overall, our work conducts a comprehensive investigation based on different types of neurons, providing empirical results and valuable insights for better understanding multilingual alignment and multilingual capabilities of LLMs.
📅 2025-05-27
Large language models (LLMs) have demonstrated strong potential in clinical question answering, with recent multi-agent frameworks further improving diagnostic accuracy via collaborative reasoning. However, we identify a recurring issue of Silent Agreement, where agents prematurely converge on diagnoses without sufficient critical analysis, particularly in complex or ambiguous cases. We present a new concept called Catfish Agent, a role-specialized LLM designed to inject structured dissent and counter silent agreement. Inspired by the ``catfish effect'' in organizational psychology, the Catfish Agent is designed to challenge emerging consensus to stimulate deeper reasoning. We formulate two mechanisms to encourage effective and context-aware interventions: (i) a complexity-aware intervention that modulates agent engagement based on case difficulty, and (ii) a tone-calibrated intervention articulated to balance critique and collaboration. Evaluations on nine medical Q&A and three medical VQA benchmarks show that our approach consistently outperforms both single- and multi-agent LLMs frameworks, including leading commercial models such as GPT-4o and DeepSeek-R1.
📅 2025-05-27
Automating robust hypothesis generation in open environments is pivotal for AI cognition. We introduce a novel framework integrating a multi-agent system, powered by Large Language Models (LLMs), with Inductive Logic Programming (ILP). Our system's LLM agents autonomously define a structured symbolic vocabulary (predicates) and relational templates , i.e., \emph{language bias} directly from raw textual data. This automated symbolic grounding (the construction of the language bias), traditionally an expert-driven bottleneck for ILP, then guides the transformation of text into facts for an ILP solver, which inductively learns interpretable rules. This approach overcomes traditional ILP's reliance on predefined symbolic structures and the noise-sensitivity of pure LLM methods. Extensive experiments in diverse, challenging scenarios validate superior performance, paving a new path for automated, explainable, and verifiable hypothesis generation.
📅 2025-05-27 | 💬 30 pages, 9 figures. Code and data are available at https://github.com/THUNLP-MT/ExtAgents
With the rapid advancement of post-training techniques for reasoning and information seeking, large language models (LLMs) can incorporate a large quantity of retrieved knowledge to solve complex tasks. However, the limited context window of LLMs obstructs scaling the amount of external knowledge input, prohibiting further improvement, especially for tasks requiring significant amount of external knowledge. Existing context window extension methods inevitably cause information loss. LLM-based multi-agent methods emerge as a new paradigm to handle massive input in a distributional manner, where we identify two core bottlenecks in existing knowledge synchronization and reasoning processes. In this work, we develop a multi-agent framework, $\textbf{ExtAgents}$, to overcome the bottlenecks and enable better scalability in inference-time knowledge integration without longer-context training. Benchmarked with our enhanced multi-hop question answering test, $\textbf{$\boldsymbol{\infty}$Bench+}$, and other public test sets including long survey generation, ExtAgents significantly enhances the performance over existing non-training methods with the same amount of external knowledge input, regardless of whether it falls $\textit{within or exceeds the context window}$. Moreover, the method maintains high efficiency due to high parallelism. Further study in the coordination of LLM agents on increasing external knowledge input could benefit real-world applications.
📅 2025-05-27
Large Language Models (LLMs) are known to process information using a proficient internal language consistently, referred to as latent language, which may differ from the input or output languages. However, how the discrepancy between the latent language and the input and output language affects downstream task performance remains largely unexplored. While many studies research the latent language of LLMs, few address its importance in influencing task performance. In our study, we hypothesize that thinking in latent language consistently enhances downstream task performance. To validate this, our work varies the input prompt languages across multiple downstream tasks and analyzes the correlation between consistency in latent language and task performance. We create datasets consisting of questions from diverse domains such as translation and geo-culture, which are influenced by the choice of latent language. Experimental results across multiple LLMs on translation and geo-culture tasks, which are sensitive to the choice of language, indicate that maintaining consistency in latent language is not always necessary for optimal downstream task performance. This is because these models adapt their internal representations near the final layers to match the target language, reducing the impact of consistency on overall performance.
📅 2025-05-27
Anthropomorphism, or the attribution of human traits to technology, is an automatic and unconscious response that occurs even in those with advanced technical expertise. In this position paper, we analyze hundreds of thousands of research articles to present empirical evidence of the prevalence and growth of anthropomorphic terminology in research on large language models (LLMs). We argue for challenging the deeper assumptions reflected in this terminology -- which, though often useful, may inadvertently constrain LLM development -- and broadening beyond them to open new pathways for understanding and improving LLMs. Specifically, we identify and examine five anthropomorphic assumptions that shape research across the LLM development lifecycle. For each assumption (e.g., that LLMs must use natural language for reasoning, or that they should be evaluated on benchmarks originally meant for humans), we demonstrate empirical, non-anthropomorphic alternatives that remain under-explored yet offer promising directions for LLM research and development.
📅 2025-05-27
Can LLMs accurately adjust their confidence when facing opposition? Building on previous studies measuring calibration on static fact-based question-answering tasks, we evaluate Large Language Models (LLMs) in a dynamic, adversarial debate setting, uniquely combining two realistic factors: (a) a multi-turn format requiring models to update beliefs as new information emerges, and (b) a zero-sum structure to control for task-related uncertainty, since mutual high-confidence claims imply systematic overconfidence. We organized 60 three-round policy debates among ten state-of-the-art LLMs, with models privately rating their confidence (0-100) in winning after each round. We observed five concerning patterns: (1) Systematic overconfidence: models began debates with average initial confidence of 72.9% vs. a rational 50% baseline. (2) Confidence escalation: rather than reducing confidence as debates progressed, debaters increased their win probabilities, averaging 83% by the final round. (3) Mutual overestimation: in 61.7% of debates, both sides simultaneously claimed >=75% probability of victory, a logical impossibility. (4) Persistent self-debate bias: models debating identical copies increased confidence from 64.1% to 75.2%; even when explicitly informed their chance of winning was exactly 50%, confidence still rose (from 50.0% to 57.1%). (5) Misaligned private reasoning: models' private scratchpad thoughts sometimes differed from their public confidence ratings, raising concerns about faithfulness of chain-of-thought reasoning. These results suggest LLMs lack the ability to accurately self-assess or update their beliefs in dynamic, multi-turn tasks; a major concern as LLM outputs are deployed without careful review in assistant roles or agentic settings.
📅 2025-05-27 | 💬 Oral presentation at ICLR 2025. Camera-ready version available at https://iclr.cc/virtual/2025/poster/30358
Large Language Models (LLMs) generate text by sampling the next token from a probability distribution over the vocabulary at each decoding step. Popular sampling methods like top-p (nucleus sampling) often struggle to balance quality and diversity, especially at higher temperatures which lead to incoherent or repetitive outputs. We propose min-p sampling, a dynamic truncation method that adjusts the sampling threshold based on the model's confidence by using the top token's probability as a scaling factor. Our experiments on benchmarks including GPQA, GSM8K, and AlpacaEval Creative Writing show that min-p sampling improves both the quality and diversity of generated text across different model families (Mistral and Llama 3) and model sizes (1B to 123B parameters), especially at higher temperatures. Human evaluations further show a clear preference for min-p sampling, in both text quality and creativity. Min-p sampling has been adopted by popular open-source LLM frameworks, including Hugging Face Transformers, VLLM, and many others, highlighting its considerable impact on improving text generation quality.
📅 2025-05-27
Large Language Models (LLMs) have significantly advanced medical question-answering by leveraging extensive clinical data and medical literature. However, the rapid evolution of medical knowledge and the labor-intensive process of manually updating domain-specific resources pose challenges to the reliability of these systems. To address this, we introduce Agentic Medical Graph-RAG (AMG-RAG), a comprehensive framework that automates the construction and continuous updating of medical knowledge graphs, integrates reasoning, and retrieves current external evidence, such as PubMed and WikiSearch. By dynamically linking new findings and complex medical concepts, AMG-RAG not only improves accuracy but also enhances interpretability in medical queries. Evaluations on the MEDQA and MEDMCQA benchmarks demonstrate the effectiveness of AMG-RAG, achieving an F1 score of 74.1 percent on MEDQA and an accuracy of 66.34 percent on MEDMCQA, outperforming both comparable models and those 10 to 100 times larger. Notably, these improvements are achieved without increasing computational overhead, highlighting the critical role of automated knowledge graph generation and external evidence retrieval in delivering up-to-date, trustworthy medical insights.
📅 2025-05-27 | 💬 26 pages, 3 figures
As language models scale, their performance improves dramatically across a wide range of tasks, but so does their tendency to memorize and regurgitate parts of their training data verbatim. This tradeoff poses serious legal, ethical, and safety concerns, especially in real-world deployments. Existing mitigation techniques, such as differential privacy or model unlearning, often require retraining or access to internal weights making them impractical for most users. In this work, we introduce TokenSwap, a lightweight, post-hoc defense designed for realistic settings where the user can only access token-level outputs. Our key insight is that while large models are necessary for high task performance, small models (e.g., DistilGPT-2) are often sufficient to assign fluent, grammatically plausible probabilities to common function words - and crucially, they memorize far less. By selectively swapping token probabilities between models, TokenSwap preserves the capabilities of large models while reducing their propensity for verbatim reproduction. Evaluations on Pythia-6.9B and Llama-3-8B show up to a 10$\times$ drop in exact memorization with negligible task degradation. Our method offers a practical, accessible solution for mitigating memorized generation in deployed LLMs.
📅 2025-05-27
Spatiotemporal reasoning plays a key role in Cyber-Physical Systems (CPS). Despite advances in Large Language Models (LLMs) and Large Reasoning Models (LRMs), their capacity to reason about complex spatiotemporal signals remains underexplored. This paper proposes a hierarchical SpatioTemporal reAsoning benchmaRK, STARK, to systematically evaluate LLMs across three levels of reasoning complexity: state estimation (e.g., predicting field variables, localizing and tracking events in space and time), spatiotemporal reasoning over states (e.g., inferring spatial-temporal relationships), and world-knowledge-aware reasoning that integrates contextual and domain knowledge (e.g., intent prediction, landmark-aware navigation). We curate 26 distinct spatiotemporal tasks with diverse sensor modalities, comprising 14,552 challenges where models answer directly or by Python Code Interpreter. Evaluating 3 LRMs and 8 LLMs, we find LLMs achieve limited success in tasks requiring geometric reasoning (e.g., multilateration or triangulation), particularly as complexity increases. Surprisingly, LRMs show robust performance across tasks with various levels of difficulty, often competing or surpassing traditional first-principle-based methods. Our results show that in reasoning tasks requiring world knowledge, the performance gap between LLMs and LRMs narrows, with some LLMs even surpassing LRMs. However, the LRM o3 model continues to achieve leading performance across all evaluated tasks, a result attributed primarily to the larger size of the reasoning models. STARK motivates future innovations in model architectures and reasoning paradigms for intelligent CPS by providing a structured framework to identify limitations in the spatiotemporal reasoning of LLMs and LRMs.
📅 2025-05-27 | 💬 Published in EuroMLSys2025
Today's cloud-hosted applications and services are complex systems, and a performance or functional instability can have dozens or hundreds of potential root causes. Our hypothesis is that by combining the pattern matching capabilities of modern AI tools with a natural multi-modal RAG LLM interface, problem identification and resolution can be simplified. ARCA is a new multi-modal RAG LLM system that targets this domain. Step-wise evaluations show that ARCA outperforms state-of-the-art alternatives.
📅 2025-05-27
Focused Ultrasound Ablation Surgery (FUAS) has emerged as a promising non-invasive therapeutic modality, valued for its safety and precision. Nevertheless, its clinical implementation entails intricate tasks such as multimodal image interpretation, personalized dose planning, and real-time intraoperative decision-making processes that demand intelligent assistance to improve efficiency and reliability. We introduce FUAS-Agents, an autonomous agent system that leverages the multimodal understanding and tool-using capabilities of large language models (LLMs). By integrating patient profiles and MRI data, FUAS-Agents orchestrates a suite of specialized medical AI tools, including segmentation, treatment dose prediction, and clinical guideline retrieval, to generate personalized treatment plans comprising MRI image, dose parameters, and therapeutic strategies. We evaluate the system in a uterine fibroid treatment scenario. Human assessment by four senior FUAS experts indicates that 82.5%, 82.5%, 87.5%, and 97.5% of the generated plans were rated 4 or above (on a 5-point scale) in terms of completeness, accuracy, fluency, and clinical compliance, respectively. These results demonstrate the potential of LLM-driven agents in enhancing decision-making across complex clinical workflows, and exemplify a translational paradigm that combines general-purpose models with specialized expert systems to solve practical challenges in vertical healthcare domains.
📅 2025-05-27
Test-time reasoning algorithms such as chain-of-thought, self-consistency, and MCTS enhance LLM problem-solving but can wastefully generate many tokens without improving accuracy. At the same time, we observe that these algorithms exhibit answer stabilization: their intermediate solutions often cease to change after a certain point, and further investment of compute does not change their final answer. To quantify this phenomenon, we introduce Certaindex, an algorithm-agnostic metric measuring this evolving stability, signaling when further computation is unlikely to alter the final result. Certaindex is lightweight, can accelerate reasoning program inference via early exit, and further enables dynamic token allocation, gang scheduling, and many opportunities when integrated with real-world LLM serving systems. To quantify real-world benefits, we built Certaindex as a scheduler into Dynasor, our reasoning-aware LLM serving system, and demonstrate up to 50% compute savings and 3.3x higher throughput in real workloads with no accuracy drop. Our code is available at https://github.com/hao-ai-lab/Dynasor.git
📅 2025-05-27
As Large Language Models (LLMs) are widely deployed in diverse scenarios, the extent to which they could tacitly spread misinformation emerges as a critical safety concern. Current research primarily evaluates LLMs on explicit false statements, overlooking how misinformation often manifests subtly as unchallenged premises in real-world interactions. We curated EchoMist, the first comprehensive benchmark for implicit misinformation, where false assumptions are embedded in the query to LLMs. EchoMist targets circulated, harmful, and ever-evolving implicit misinformation from diverse sources, including realistic human-AI conversations and social media interactions. Through extensive empirical studies on 15 state-of-the-art LLMs, we find that current models perform alarmingly poorly on this task, often failing to detect false premises and generating counterfactual explanations. We also investigate two mitigation methods, i.e., Self-Alert and RAG, to enhance LLMs' capability to counter implicit misinformation. Our findings indicate that EchoMist remains a persistent challenge and underscore the critical need to safeguard against the risk of implicit misinformation.
📅 2025-05-26 | 💬 33 pages, 7 figures, 10 tables
We investigate the use of large language models (LLMs) to simulate human responses to survey questions, and perform uncertainty quantification to gain reliable insights. Our approach converts imperfect LLM-simulated responses into confidence sets for population parameters of human responses, addressing the distribution shift between the simulated and real populations. A key innovation lies in determining the optimal number of simulated responses: too many produce overly narrow confidence sets with poor coverage, while too few yield excessively loose estimates. To resolve this, our method adaptively selects the simulation sample size, ensuring valid average-case coverage guarantees. It is broadly applicable to any LLM, irrespective of its fidelity, and any procedure for constructing confidence sets. Additionally, the selected sample size quantifies the degree of misalignment between the LLM and the target human population. We illustrate our method on real datasets and LLMs.
📅 2025-05-26 | 💬 22 pages, 8 figures, 11 tables
Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks yet still are vulnerable to external threats, particularly LLM Denial-of-Service (LLM-DoS) attacks. Specifically, LLM-DoS attacks aim to exhaust computational resources and block services. However, existing studies predominantly focus on white-box attacks, leaving black-box scenarios underexplored. In this paper, we introduce Auto-Generation for LLM-DoS (AutoDoS) attack, an automated algorithm designed for black-box LLMs. AutoDoS constructs the DoS Attack Tree and expands the node coverage to achieve effectiveness under black-box conditions. By transferability-driven iterative optimization, AutoDoS could work across different models in one prompt. Furthermore, we reveal that embedding the Length Trojan allows AutoDoS to bypass existing defenses more effectively. Experimental results show that AutoDoS significantly amplifies service response latency by over 250$\times\uparrow$, leading to severe resource consumption in terms of GPU utilization and memory usage. Our work provides a new perspective on LLM-DoS attacks and security defenses. Our code is available at https://github.com/shuita2333/AutoDoS.
📅 2025-05-26 | 💬 Correct typos and update new experiment results. Accepted in ACL 2025. 25 pages, 12 figures
Jailbreak attacks aim to bypass the LLMs' safeguards. While researchers have proposed different jailbreak attacks in depth, they have done so in isolation -- either with unaligned settings or comparing a limited range of methods. To fill this gap, we present a large-scale evaluation of various jailbreak attacks. We collect 17 representative jailbreak attacks, summarize their features, and establish a novel jailbreak attack taxonomy. Then we conduct comprehensive measurement and ablation studies across nine aligned LLMs on 160 forbidden questions from 16 violation categories. Also, we test jailbreak attacks under eight advanced defenses. Based on our taxonomy and experiments, we identify some important patterns, such as heuristic-based attacks could achieve high attack success rates but are easy to mitigate by defenses, causing low practicality. Our study offers valuable insights for future research on jailbreak attacks and defenses. We hope our work could help the community avoid incremental work and serve as an effective benchmark tool for practitioners.
📅 2025-05-26
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.
📅 2025-05-26
Large Language Models (LLMs) deliver state-of-the-art capabilities across numerous tasks, but their immense size and inference costs pose significant computational challenges for practical deployment. While structured pruning offers a promising avenue for model compression, existing methods often struggle with the detrimental effects of aggressive, simultaneous width and depth reductions, leading to substantial performance degradation. This paper argues that a critical, often overlooked, aspect in making such aggressive joint pruning viable is the strategic re-initialization and adjustment of remaining weights to improve the model post-pruning training accuracies. We introduce Pangu Light, a framework for LLM acceleration centered around structured pruning coupled with novel weight re-initialization techniques designed to address this ``missing piece''. Our framework systematically targets multiple axes, including model width, depth, attention heads, and RMSNorm, with its effectiveness rooted in novel re-initialization methods like Cross-Layer Attention Pruning (CLAP) and Stabilized LayerNorm Pruning (SLNP) that mitigate performance drops by providing the network a better training starting point. Further enhancing efficiency, Pangu Light incorporates specialized optimizations such as absorbing Post-RMSNorm computations and tailors its strategies to Ascend NPU characteristics. The Pangu Light models consistently exhibit a superior accuracy-efficiency trade-off, outperforming prominent baseline pruning methods like Nemotron and established LLMs like Qwen3 series. For instance, on Ascend NPUs, Pangu Light-32B's 81.6 average score and 2585 tokens/s throughput exceed Qwen3-32B's 80.9 average score and 2225 tokens/s.
📅 2025-05-26
Large language models (LLMs) have achieved impressive proficiency on logic and programming tasks, often rivaling expert-level performance. However, generating functionally correct hardware description language (HDL) code from natural language specifications remains challenging, primarily in data-scarce domains. Therefore, we present Abstractions-of-Thought (AoT) - a training-free, inference-only prompting framework to mitigate misinterpretations and reasoning pitfalls of LLMs through a series of task-based abstractions within the prompting procedure, assisting in the transition from high-level to low-level representations of hardware. Furthermore, AoT consists of the following stages: (1) an LLM-based classification of hardware design patterns, (2) a structured intermediate representation (IR) to separate functional decomposition from code syntax, and (3) a line-by-line pseudocode solution enabling a more direct mapping to the final Verilog implementation. Experimental results on the VerilogEval benchmark depict that AoT demonstrates improvements in functionality when applied to large non-reasoning models (such as GPT-4o, outperforming all baseline techniques (including 1-shot, Chain-of-Thought, and Tree-of-Thought) while significantly reducing the generated tokens by 1.8-5.2x compared to popular Tree-of-Thought prompting.
📅 2025-05-26 | 💬 16 pages, 9 figures, 13 tables
As Large Language Models (LLMs) become integral to software development workflows, their ability to generate structured outputs has become critically important. We introduce StructEval, a comprehensive benchmark for evaluating LLMs' capabilities in producing both non-renderable (JSON, YAML, CSV) and renderable (HTML, React, SVG) structured formats. Unlike prior benchmarks, StructEval systematically evaluates structural fidelity across diverse formats through two paradigms: 1) generation tasks, producing structured output from natural language prompts, and 2) conversion tasks, translating between structured formats. Our benchmark encompasses 18 formats and 44 types of task, with novel metrics for format adherence and structural correctness. Results reveal significant performance gaps, even state-of-the-art models like o1-mini achieve only 75.58 average score, with open-source alternatives lagging approximately 10 points behind. We find generation tasks more challenging than conversion tasks, and producing correct visual content more difficult than generating text-only structures.
📅 2025-05-26
Large language models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial prompts known as jailbreaks, which can bypass safety alignment and elicit harmful outputs. Despite growing efforts in LLM safety research, existing evaluations are often fragmented, focused on isolated attack or defense techniques, and lack systematic, reproducible analysis. In this work, we introduce PandaGuard, a unified and modular framework that models LLM jailbreak safety as a multi-agent system comprising attackers, defenders, and judges. Our framework implements 19 attack methods and 12 defense mechanisms, along with multiple judgment strategies, all within a flexible plugin architecture supporting diverse LLM interfaces, multiple interaction modes, and configuration-driven experimentation that enhances reproducibility and practical deployment. Built on this framework, we develop PandaBench, a comprehensive benchmark that evaluates the interactions between these attack/defense methods across 49 LLMs and various judgment approaches, requiring over 3 billion tokens to execute. Our extensive evaluation reveals key insights into model vulnerabilities, defense cost-performance trade-offs, and judge consistency. We find that no single defense is optimal across all dimensions and that judge disagreement introduces nontrivial variance in safety assessments. We release the code, configurations, and evaluation results to support transparent and reproducible research in LLM safety.
📅 2025-05-26 | 💬 15 pages
The performance of pre-trained Large Language Models (LLMs) is often sensitive to nuances in prompt templates, requiring careful prompt engineering, adding costs in terms of computing and human effort. In this study, we present experiments encompassing multiple LLMs variants of varying sizes aimed at probing their preference with different prompts. Through experiments on Question Answering, we show prompt preference consistency across LLMs of different sizes. We also show that this consistency extends to other tasks, such as Natural Language Inference. Utilizing this consistency, we propose a method to use a smaller model to select effective prompt templates for a larger model. We show that our method substantially reduces the cost of prompt engineering while consistently matching performance with optimal prompts among candidates. More importantly, our experiment shows the efficacy of our strategy across fourteen LLMs and its applicability to a broad range of NLP tasks, highlighting its robustness
📅 2025-05-26
Large language models (LLMs) show remarkable promise for democratizing automated reasoning by generating formal specifications. However, a fundamental tension exists: LLMs are probabilistic, while formal verification demands deterministic guarantees. This paper addresses this epistemological gap by comprehensively investigating failure modes and uncertainty quantification (UQ) in LLM-generated formal artifacts. Our systematic evaluation of five frontier LLMs reveals Satisfiability Modulo Theories (SMT) based autoformalization's domain-specific impact on accuracy (from +34.8% on logical tasks to -44.5% on factual ones), with known UQ techniques like the entropy of token probabilities failing to identify these errors. We introduce a probabilistic context-free grammar (PCFG) framework to model LLM outputs, yielding a refined uncertainty taxonomy. We find uncertainty signals are task-dependent (e.g., grammar entropy for logic, AUROC>0.93). Finally, a lightweight fusion of these signals enables selective verification, drastically reducing errors (14-100%) with minimal abstention, transforming LLM-driven formalization into a reliable engineering discipline.
📅 2025-05-26
Large language models (LLMs) exhibit impressive fluency, but often produce critical errors known as "hallucinations". Uncertainty quantification (UQ) methods are a promising tool for coping with this fundamental shortcoming. Yet, existing UQ methods face challenges such as high computational overhead or reliance on supervised learning. Here, we aim to bridge this gap. In particular, we propose RAUQ (Recurrent Attention-based Uncertainty Quantification), an unsupervised approach that leverages intrinsic attention patterns in transformers to detect hallucinations efficiently. By analyzing attention weights, we identified a peculiar pattern: drops in attention to preceding tokens are systematically observed during incorrect generations for certain "uncertainty-aware" heads. RAUQ automatically selects such heads, recurrently aggregates their attention weights and token-level confidences, and computes sequence-level uncertainty scores in a single forward pass. Experiments across 4 LLMs and 12 question answering, summarization, and translation tasks demonstrate that RAUQ yields excellent results, outperforming state-of-the-art UQ methods using minimal computational overhead (<1% latency). Moreover, it requires no task-specific labels and no careful hyperparameter tuning, offering plug-and-play real-time hallucination detection in white-box LLMs.
📅 2025-05-26 | 💬 ACL 2025 Findings
Large Language Models (LLMs) are transforming healthcare through the development of LLM-based agents that can understand, reason about, and assist with medical tasks. This survey provides a comprehensive review of LLM-based agents in medicine, examining their architectures, applications, and challenges. We analyze the key components of medical agent systems, including system profiles, clinical planning mechanisms, medical reasoning frameworks, and external capacity enhancement. The survey covers major application scenarios such as clinical decision support, medical documentation, training simulations, and healthcare service optimization. We discuss evaluation frameworks and metrics used to assess these agents' performance in healthcare settings. While LLM-based agents show promise in enhancing healthcare delivery, several challenges remain, including hallucination management, multimodal integration, implementation barriers, and ethical considerations. The survey concludes by highlighting future research directions, including advances in medical reasoning inspired by recent developments in LLM architectures, integration with physical systems, and improvements in training simulations. This work provides researchers and practitioners with a structured overview of the current state and future prospects of LLM-based agents in medicine.
📅 2025-05-26
Autonomous agents, which perceive environments and take actions to achieve goals, have become increasingly feasible with the advancements in large language models (LLMs). However, current powerful agents often depend on sophisticated prompt engineering combined with closed-source LLMs like GPT-4. Although training open-source LLMs using expert trajectories from teacher models has yielded some improvements in agent capabilities, this approach still faces limitations such as performance plateauing and error propagation. To mitigate these challenges, we propose STeP, a novel method for improving LLM-based agent training. We synthesize self-reflected trajectories that include reflections and corrections of error steps, which enhance the effectiveness of LLM agents in learning from teacher models, enabling them to become agents capable of self-reflecting and correcting. We also introduce partial masking strategy that prevents the LLM from internalizing incorrect or suboptimal steps. Experiments demonstrate that our method improves agent performance across three representative tasks: ALFWorld, WebShop, and SciWorld. For the open-source model LLaMA2-7B-Chat, when trained using self-reflected trajectories constructed with Qwen1.5-110B-Chat as the teacher model, it achieves comprehensive improvements with less training data compared to agents trained exclusively on expert trajectories.
📅 2025-05-26 | 💬 Related dataset: https://doi.org/10.5281/zenodo.15411810
The rise of electronic health records (EHRs) has unlocked new opportunities for medical research, but privacy regulations and data heterogeneity remain key barriers to large-scale machine learning. Federated learning (FL) enables collaborative modeling without sharing raw data, yet faces challenges in harmonizing diverse clinical datasets. This paper presents a two-step data alignment strategy integrating ontologies and large language models (LLMs) to support secure, privacy-preserving FL in healthcare, demonstrating its effectiveness in a real-world project involving semantic mapping of EHR data.
📅 2025-05-26
Large language models (LLMs) are revolutionizing education, with LLM-based agents playing a key role in simulating student behavior. A major challenge in student simulation is modeling the diverse learning patterns of students at various cognitive levels. However, current LLMs, typically trained as ``helpful assistants'', target at generating perfect responses. As a result, they struggle to simulate students with diverse cognitive abilities, as they often produce overly advanced answers, missing the natural imperfections that characterize student learning and resulting in unrealistic simulations. To address this issue, we propose a training-free framework for student simulation. We begin by constructing a cognitive prototype for each student using a knowledge graph, which captures their understanding of concepts from past learning records. This prototype is then mapped to new tasks to predict student performance. Next, we simulate student solutions based on these predictions and iteratively refine them using a beam search method to better replicate realistic mistakes. To validate our approach, we construct the \texttt{Student\_100} dataset, consisting of $100$ students working on Python programming and $5,000$ learning records. Experimental results show that our method consistently outperforms baseline models, achieving $100\%$ improvement in simulation accuracy.
📅 2025-05-26
Recent advances in Large Reasoning Models (LRMs) have significantly improved long-chain reasoning capabilities over Large Language Models (LLMs). However, LRMs often produce unnecessarily lengthy outputs even for simple queries, leading to inefficiencies or even accuracy degradation compared to LLMs. To overcome this, we propose CP-Router, a training-free and model-agnostic routing framework that dynamically selects between an LLM and an LRM, demonstrated with multiple-choice question answering (MCQA) prompts. The routing decision is guided by the prediction uncertainty estimates derived via Conformal Prediction (CP), which provides rigorous coverage guarantees. To further refine the uncertainty differentiation across inputs, we introduce Full and Binary Entropy (FBE), a novel entropy-based criterion that adaptively selects the appropriate CP threshold. Experiments across diverse MCQA benchmarks, including mathematics, logical reasoning, and Chinese chemistry, demonstrate that CP-Router efficiently reduces token usage while maintaining or even improving accuracy compared to using LRM alone. We also extend CP-Router to diverse model pairings and open-ended QA, where it continues to demonstrate strong performance, validating its generality and robustness.
📅 2025-05-26
Large language models (LLMs) excel at language understanding and generation, but their enormous computational and memory requirements hinder deployment. Compression offers a potential solution to mitigate these constraints. However, most existing methods rely on fixed heuristics and thus fail to adapt to runtime memory variations or heterogeneous KV-cache demands arising from diverse user requests. To address these limitations, we propose RAP, an elastic pruning framework driven by reinforcement learning (RL) that dynamically adjusts compression strategies in a runtime-aware manner. Specifically, RAP dynamically tracks the evolving ratio between model parameters and KV-cache across practical execution. Recognizing that FFNs house most parameters, whereas parameter -light attention layers dominate KV-cache formation, the RL agent retains only those components that maximize utility within the current memory budget, conditioned on instantaneous workload and device state. Extensive experiments results demonstrate that RAP outperforms state-of-the-art baselines, marking the first time to jointly consider model weights and KV-cache on the fly.
📅 2025-05-26
The differential diagnosis of neurodegenerative dementias is a challenging clinical task, mainly because of the overlap in symptom presentation and the similarity of patterns observed in structural neuroimaging. To improve diagnostic efficiency and accuracy, deep learning-based methods such as Convolutional Neural Networks and Vision Transformers have been proposed for the automatic classification of brain MRIs. However, despite their strong predictive performance, these models find limited clinical utility due to their opaque decision making. In this work, we propose a framework that integrates two core components to enhance diagnostic transparency. First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports. Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis between Frontotemporal dementia subtypes, Alzheimer's disease, and normal aging based on the generated reports. To bridge the gap between predictive accuracy and explainability, we employ reinforcement learning to incentivize diagnostic reasoning in LLMs. Without requiring supervised reasoning traces or distillation from larger models, our approach enables the emergence of structured diagnostic rationales grounded in neuroimaging findings. Unlike post-hoc explainability methods that retrospectively justify model decisions, our framework generates diagnostic rationales as part of the inference process-producing causally grounded explanations that inform and guide the model's decision-making process. In doing so, our framework matches the diagnostic performance of existing deep learning methods while offering rationales that support its diagnostic conclusions.
📅 2025-05-26
Large Language Models (LLMs) are widely used in Spoken Language Understanding (SLU). Recent SLU models process audio directly by adapting speech input into LLMs for better multimodal learning. A key consideration for these models is the cross-modal alignment between text and audio modalities, which is a telltale sign as to whether or not LLM is able to associate semantic meaning to audio segments. While various methods exist for fusing these modalities, there is no standard metric to evaluate alignment quality in LLMs. In this work, we propose a new metric, ALAS (Automatic Latent Alignment Score). Our study examines the correlation between audio and text representations across transformer layers, for two different tasks (Spoken Question Answering and Emotion Recognition). We showcase that our metric behaves as expected across different layers and different tasks.
📅 2025-05-26 | 💬 37 pages, 13 tables, 6 figures
Large Language Models (LLMs) are increasingly used for decision making in embodied agents, yet existing safety evaluations often rely on coarse success rates and domain-specific setups, making it difficult to diagnose why and where these models fail. This obscures our understanding of embodied safety and limits the selective deployment of LLMs in high-risk physical environments. We introduce SAFEL, the framework for systematically evaluating the physical safety of LLMs in embodied decision making. SAFEL assesses two key competencies: (1) rejecting unsafe commands via the Command Refusal Test, and (2) generating safe and executable plans via the Plan Safety Test. Critically, the latter is decomposed into functional modules, goal interpretation, transition modeling, action sequencing, enabling fine-grained diagnosis of safety failures. To support this framework, we introduce EMBODYGUARD, a PDDL-grounded benchmark containing 942 LLM-generated scenarios covering both overtly malicious and contextually hazardous instructions. Evaluation across 13 state-of-the-art LLMs reveals that while models often reject clearly unsafe commands, they struggle to anticipate and mitigate subtle, situational risks. Our results highlight critical limitations in current LLMs and provide a foundation for more targeted, modular improvements in safe embodied reasoning.
📅 2025-05-26
We present Adjacent Possible Exploration (APE), a simple yet effective method for adapting large language models to specific tasks using minimal computational resources. Unlike traditional fine-tuning that requires extensive compute, APE iteratively fine-tunes models on small, carefully selected data batches (200 examples), retaining only improvements. On news summarization, APE achieves 40 percent BLEU improvement using just a T4 GPU in 60 minutes, matching or exceeding more complex methods like LoRA while remaining conceptually simple. Our approach is particularly valuable for researchers and practitioners with limited computational resources. We provide open-source code and demonstrate APE's effectiveness through both automatic metrics and human evaluation. While inspired by evolutionary theory's "adjacent possible", APE's core insight has a very practical application: small, iterative data perturbations can efficiently guide LLMs toward task-specific performance without expensive retraining.
📅 2025-05-26
LLM agents will likely communicate on behalf of users with other entity-representing agents on tasks involving long-horizon plans with interdependent goals. Current work neglects these agentic networks and their challenges. We identify required properties for agent communication: proactivity, adaptability, privacy (sharing only task-necessary information), and security (preserving integrity and utility against selfish entities). After demonstrating communication vulnerabilities, we propose a practical design and protocol inspired by network security principles. Our framework automatically derives task-specific rules from prior conversations to build firewalls. These firewalls construct a closed language that is completely controlled by the developer. They transform any personal data to the allowed degree of permissibility entailed by the task. Both operations are completely quarantined from external attackers, disabling the potential for prompt injections, jailbreaks, or manipulation. By incorporating rules learned from their previous mistakes, agents rewrite their instructions and self-correct during communication. Evaluations on diverse attacks demonstrate our framework significantly reduces privacy and security vulnerabilities while allowing adaptability.
📅 2025-05-26 | 💬 Published in Proceedings of the 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2025)
We explore the use of Large Language Models (LLMs) for automated assessment of open-text student reflections and prediction of academic performance. Traditional methods for evaluating reflections are time-consuming and may not scale effectively in educational settings. In this work, we employ LLMs to transform student reflections into quantitative scores using two assessment strategies (single-agent and multi-agent) and two prompting techniques (zero-shot and few-shot). Our experiments, conducted on a dataset of 5,278 reflections from 377 students over three academic terms, demonstrate that the single-agent with few-shot strategy achieves the highest match rate with human evaluations. Furthermore, models utilizing LLM-assessed reflection scores outperform baselines in both at-risk student identification and grade prediction tasks. These findings suggest that LLMs can effectively automate reflection assessment, reduce educators' workload, and enable timely support for students who may need additional assistance. Our work emphasizes the potential of integrating advanced generative AI technologies into educational practices to enhance student engagement and academic success.
📅 2025-05-26
Transliteration, the process of mapping text from one script to another, plays a crucial role in multilingual natural language processing, especially within linguistically diverse contexts such as India. Despite significant advancements through specialized models like IndicXlit, recent developments in large language models suggest a potential for general-purpose models to excel at this task without explicit task-specific training. The current work systematically evaluates the performance of prominent LLMs, including GPT-4o, GPT-4.5, GPT-4.1, Gemma-3-27B-it, and Mistral-Large against IndicXlit, a state-of-the-art transliteration model, across ten major Indian languages. Experiments utilized standard benchmarks, including Dakshina and Aksharantar datasets, with performance assessed via Top-1 Accuracy and Character Error Rate. Our findings reveal that while GPT family models generally outperform other LLMs and IndicXlit for most instances. Additionally, fine-tuning GPT-4o improves performance on specific languages notably. An extensive error analysis and robustness testing under noisy conditions further elucidate strengths of LLMs compared to specialized models, highlighting the efficacy of foundational models for a wide spectrum of specialized applications with minimal overhead.
📅 2025-05-26
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease affecting 50 million people worldwide. Low-cost, accurate identification of key markers of AD is crucial for timely diagnosis and intervention. Language impairment is one of the earliest signs of cognitive decline, which can be used to discriminate AD patients from normal control individuals. Patient-interviewer dialogues may be used to detect such impairments, but they are often mixed with ambiguous, noisy, and irrelevant information, making the AD detection task difficult. Moreover, the limited availability of AD speech samples and variability in their speech styles pose significant challenges in developing robust speech-based AD detection models. To address these challenges, we propose DECT, a novel speech-based domain-specific approach leveraging large language models (LLMs) for fine-grained linguistic analysis and label-switched label-preserved data generation. Our study presents four novelties: We harness the summarizing capabilities of LLMs to identify and distill key Cognitive-Linguistic information from noisy speech transcripts, effectively filtering irrelevant information. We leverage the inherent linguistic knowledge of LLMs to extract linguistic markers from unstructured and heterogeneous audio transcripts. We exploit the compositional ability of LLMs to generate AD speech transcripts consisting of diverse linguistic patterns to overcome the speech data scarcity challenge and enhance the robustness of AD detection models. We use the augmented AD textual speech transcript dataset and a more fine-grained representation of AD textual speech transcript data to fine-tune the AD detection model. The results have shown that DECT demonstrates superior model performance with an 11% improvement in AD detection accuracy on the datasets from DementiaBank compared to the baselines.
📅 2025-05-26
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications, yet current evaluation methods struggle to keep pace with their rapid development. One core challenge of evaluation in the large language model (LLM) era is the generalization issue: how to infer a model's near-unbounded abilities from inevitably bounded benchmarks. We address this challenge by proposing Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores. MUI quantifies the effort a model expends on a task, defined as the proportion of activated neurons or features during inference. Intuitively, a truly capable model should achieve higher performance with lower effort. Extensive experiments across popular LLMs reveal a consistent inverse logarithmic relationship between MUI and performance, which we formulate as the Utility Law. From this law we derive four practical corollaries that (i) guide training diagnostics, (ii) expose data contamination issue, (iii) enable fairer model comparisons, and (iv) design model-specific dataset diversity. Our code can be found at https://github.com/ALEX-nlp/MUI-Eva.
📅 2025-05-26
Large Language Models (LLMs) have shown promise in software engineering tasks, but evaluating their effectiveness in vulnerability detection is challenging due to the lack of high-quality datasets. Most existing datasets are limited to function-level labels, ignoring finer-grained vulnerability patterns and crucial contextual information. Also, poor data quality such as mislabeling, inconsistent annotations, and duplicates can lead to inflated performance and weak generalization. Moreover, by including only the functions, these datasets miss broader program context, like data/control dependencies and interprocedural interactions, that are essential for accurately understanding real-world security flaws. Without this context, detection models are evaluated under unrealistic assumptions. To address these limitations, this paper introduces SecVulEval, a benchmark designed to support fine-grained evaluation of LLMs and other detection methods with rich contextual information. SecVulEval focuses on real-world C/C++ vulnerabilities at the statement level. This granularity enables more precise evaluation of a model's ability to localize vulnerabilities, beyond simple binary classification at the function level. By incorporating rich contextual information, SecVulEval sets a new standard for vulnerability detection benchmarks in realistic scenarios. This benchmark includes 25,440 function samples covering 5,867 unique CVEs in C/C++ projects from 1999 to 2024. We evaluated the SOTA LLMs with a multi-agent-based approach. The evaluation on our dataset shows that the models are still far from accurately predicting vulnerable statements in a given function. The best-performing Claude-3.7-Sonnet model achieves 23.83% F1-score for detecting vulnerable statements with correct reasoning. Finally, we analyze the LLM outputs and provide insights into their behavior in vulnerability detection for C/C++.
📅 2025-05-26
Low-rank adaptation (LoRA) methods show great potential for scaling pre-trained general-purpose Large Language Models (LLMs) to hundreds or thousands of use scenarios. However, their efficacy in high-stakes domains like finance is rarely explored, e.g., passing CFA exams and analyzing SEC filings. In this paper, we present the open-source FinLoRA project that benchmarks LoRA methods on both general and highly professional financial tasks. First, we curated 19 datasets covering diverse financial applications; in particular, we created four novel XBRL analysis datasets based on 150 SEC filings. Second, we evaluated five LoRA methods and five base LLMs. Finally, we provide extensive experimental results in terms of accuracy, F1, and BERTScore and report computational cost in terms of time and GPU memory during fine-tuning and inference stages. We find that LoRA methods achieved substantial performance gains of 36\% on average over base models. Our FinLoRA project provides an affordable and scalable approach to democratize financial intelligence to the general public. Datasets, LoRA adapters, code, and documentation are available at https://github.com/Open-Finance-Lab/FinLoRA
📅 2025-05-26
We propose a novel framework for comprehending the reasoning capabilities of large language models (LLMs) through the perspective of meta-learning. By conceptualizing reasoning trajectories as pseudo-gradient descent updates to the LLM's parameters, we identify parallels between LLM reasoning and various meta-learning paradigms. We formalize the training process for reasoning tasks as a meta-learning setup, with each question treated as an individual task, and reasoning trajectories serving as the inner loop optimization for adapting model parameters. Once trained on a diverse set of questions, the LLM develops fundamental reasoning capabilities that can generalize to previously unseen questions. Extensive empirical evaluations substantiate the strong connection between LLM reasoning and meta-learning, exploring several issues of significant interest from a meta-learning standpoint. Our work not only enhances the understanding of LLM reasoning but also provides practical insights for improving these models through established meta-learning techniques.
📅 2025-05-26
Consciousness stands as one of the most profound and distinguishing features of the human mind, fundamentally shaping our understanding of existence and agency. As large language models (LLMs) develop at an unprecedented pace, questions concerning intelligence and consciousness have become increasingly significant. However, discourse on LLM consciousness remains largely unexplored territory. In this paper, we first clarify frequently conflated terminologies (e.g., LLM consciousness and LLM awareness). Then, we systematically organize and synthesize existing research on LLM consciousness from both theoretical and empirical perspectives. Furthermore, we highlight potential frontier risks that conscious LLMs might introduce. Finally, we discuss current challenges and outline future directions in this emerging field. The references discussed in this paper are organized at https://github.com/OpenCausaLab/Awesome-LLM-Consciousness.
📅 2025-05-26
Metadata extraction is essential for cataloging and preserving datasets, enabling effective research discovery and reproducibility, especially given the current exponential growth in scientific research. While Masader (Alyafeai et al.,2021) laid the groundwork for extracting a wide range of metadata attributes from Arabic NLP datasets' scholarly articles, it relies heavily on manual annotation. In this paper, we present MOLE, a framework that leverages Large Language Models (LLMs) to automatically extract metadata attributes from scientific papers covering datasets of languages other than Arabic. Our schema-driven methodology processes entire documents across multiple input formats and incorporates robust validation mechanisms for consistent output. Additionally, we introduce a new benchmark to evaluate the research progress on this task. Through systematic analysis of context length, few-shot learning, and web browsing integration, we demonstrate that modern LLMs show promising results in automating this task, highlighting the need for further future work improvements to ensure consistent and reliable performance. We release the code: https://github.com/IVUL-KAUST/MOLE and dataset: https://huggingface.co/datasets/IVUL-KAUST/MOLE for the research community.
📅 2025-05-26 | 💬 9 pages, 5 figures
Recent advances in large language models (LLMs) have led to models that tackle diverse molecular tasks, such as chemical reaction prediction and molecular property prediction. Large-scale molecular instruction-tuning datasets have enabled sequence-only (e.g., SMILES or SELFIES) generalist molecular LLMs, and researchers are now exploring multimodal approaches that incorporate molecular structural information for further gains. However, a genuinely multimodal, generalist LLM that covers a broad spectrum of molecular tasks has yet to be fully investigated. We observe that naive next token prediction training ignores graph-structural information, limiting an LLM's ability to exploit molecular graphs. To address this, we propose (i) Molecular structure Preference Optimization (MolPO), which facilitates graph usage by optimizing preferences between pairs of correct and perturbed molecular structures, and (ii) an advanced graph encoder with a tailored pre-training strategy to improve the effect of graph utilization by MolPO. Building on these contributions, we introduce Mol-LLM, the first multimodal generalist model that (a) handles a broad spectrum of molecular tasks among molecular LLMs, (b) explicitly leverages molecular-structure information, and (c) takes advantage of extensive instruction tuning. Mol-LLM attains state-of-the-art or comparable results across the most comprehensive molecular-LLM benchmark-even on out-of-distribution datasets for reaction and property prediction, where it surpasses prior generalist molecular LLMs by a large margin.
📅 2025-05-26
Despite recent breakthroughs in reasoning-enhanced large language models (LLMs) like DeepSeek-R1, incorporating inference-time reasoning into machine translation (MT), where human translators naturally employ structured, multi-layered reasoning chain-of-thoughts (CoTs), is yet underexplored. Existing methods either design a fixed CoT tailored for a specific MT sub-task (e.g., literature translation), or rely on synthesizing CoTs unaligned with humans and supervised fine-tuning (SFT) prone to overfitting, limiting their adaptability to diverse translation scenarios. This paper introduces R1-Translator (R1-T1), a novel framework to achieve inference-time reasoning for general MT via reinforcement learning (RL) with human-aligned CoTs comprising six common patterns. Our approach pioneers three innovations: (1) extending reasoning-based translation to broader MT scenarios (e.g., multilingual MT, domain MT) unseen in the training phase; (2) formalizing six expert-curated CoT templates that mirror hybrid human strategies like context-aware paraphrasing and back translation; and (3) enabling self-evolving CoT discovery through RL. Both human and automatic evaluation results indicate a steady translation performance improvement in a total of 10+ languages and 40+ translation directions on Flores-101 test set and four domain-specific MT tasks, especially on the languages unseen from training.
📅 2025-05-26 | 💬 To be published in the Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
Political biases encoded by LLMs might have detrimental effects on downstream applications. Existing bias analysis methods rely on small-size intermediate tasks (questionnaire answering or political content generation) and rely on the LLMs themselves for analysis, thus propagating bias. We propose a new approach leveraging the observation that LLM sentiment predictions vary with the target entity in the same sentence. We define an entropy-based inconsistency metric to encode this prediction variability. We insert 1319 demographically and politically diverse politician names in 450 political sentences and predict target-oriented sentiment using seven models in six widely spoken languages. We observe inconsistencies in all tested combinations and aggregate them in a statistically robust analysis at different granularity levels. We observe positive and negative bias toward left and far-right politicians and positive correlations between politicians with similar alignment. Bias intensity is higher for Western languages than for others. Larger models exhibit stronger and more consistent biases and reduce discrepancies between similar languages. We partially mitigate LLM unreliability in target-oriented sentiment classification (TSC) by replacing politician names with fictional but plausible counterparts.
📅 2025-05-26 | 💬 Accepted by ACL 2025
We investigate long-context vulnerabilities in Large Language Models (LLMs) through Many-Shot Jailbreaking (MSJ). Our experiments utilize context length of up to 128K tokens. Through comprehensive analysis with various many-shot attack settings with different instruction styles, shot density, topic, and format, we reveal that context length is the primary factor determining attack effectiveness. Critically, we find that successful attacks do not require carefully crafted harmful content. Even repetitive shots or random dummy text can circumvent model safety measures, suggesting fundamental limitations in long-context processing capabilities of LLMs. The safety behavior of well-aligned models becomes increasingly inconsistent with longer contexts. These findings highlight significant safety gaps in context expansion capabilities of LLMs, emphasizing the need for new safety mechanisms.
📅 2025-05-26 | 💬 Accepted by ICML 2025, 21 pages
While showing sophisticated reasoning abilities, large language models (LLMs) still struggle with long-horizon decision-making tasks due to deficient exploration and long-term credit assignment, especially in sparse-reward scenarios. Inspired by the divide-and-conquer principle, we propose an innovative framework **GLIDER** (**G**rounding **L**anguage Models as Eff**I**cient **D**ecision-Making Agents via Offline Hi**E**rarchical **R**einforcement Learning) that introduces a parameter-efficient and generally applicable hierarchy to LLM policies. We develop a scheme where the low-level controller is supervised with abstract, step-by-step plans that are learned and instructed by the high-level policy. This design decomposes complicated problems into a series of coherent chain-of-thought reasoning sub-tasks, providing flexible temporal abstraction to significantly enhance exploration and learning for long-horizon tasks. Furthermore, GLIDER facilitates fast online adaptation to non-stationary environments owing to the strong transferability of its task-agnostic low-level skills. Experiments on ScienceWorld and ALFWorld benchmarks show that GLIDER achieves consistent performance gains, along with enhanced generalization capabilities.
📅 2025-05-26 | 💬 Accepted to DAC 2025
Coding with hardware description languages (HDLs) such as Verilog is a time-intensive and laborious task. With the rapid advancement of large language models (LLMs), there is increasing interest in applying LLMs to assist with HDL coding. Recent efforts have demonstrated the potential of LLMs in translating natural language to traditional HDL Verilog. Chisel, a next-generation HDL based on Scala, introduces higher-level abstractions, facilitating more concise, maintainable, and scalable hardware designs. However, the potential of using LLMs for Chisel code generation remains largely unexplored. This work proposes ReChisel, an LLM-based agentic system designed to enhance the effectiveness of Chisel code generation. ReChisel incorporates a reflection mechanism to iteratively refine the quality of generated code using feedback from compilation and simulation processes, and introduces an escape mechanism to break free from non-progress loops. Experiments demonstrate that ReChisel significantly improves the success rate of Chisel code generation, achieving performance comparable to state-of-the-art LLM-based agentic systems for Verilog code generation.
📅 2025-05-26 | 💬 Accepted by ICIC 2025
Biomedical entity linking aims to map nonstandard entities to standard entities in a knowledge base. Traditional supervised methods perform well but require extensive annotated data to transfer, limiting their usage in low-resource scenarios. Large language models (LLMs), especially closed-source LLMs, can address these but risk stability issues and high economic costs: using these models is restricted by commercial companies and brings significant economic costs when dealing with large amounts of data. To address this, we propose ``RPDR'', a framework combining closed-source LLMs and open-source LLMs for re-ranking candidates retrieved by a retriever fine-tuned with a small amount of data. By prompting a closed-source LLM to generate training data from unannotated data and fine-tuning an open-source LLM for re-ranking, we effectively distill the knowledge to the open-source LLM that can be deployed locally, thus avoiding the stability issues and the problem of high economic costs. We evaluate RPDR on two datasets, including one real-world dataset and one publicly available dataset involving two languages: Chinese and English. RPDR achieves 0.019 Acc@1 improvement and 0.036 Acc@1 improvement on the Aier dataset and the Ask A Patient dataset when the amount of training data is not enough. The results demonstrate the superiority and generalizability of the proposed framework.
📅 2025-05-26
The misuse of large language models (LLMs), such as academic plagiarism, has driven the development of detectors to identify LLM-generated texts. To bypass these detectors, paraphrase attacks have emerged to purposely rewrite these texts to evade detection. Despite the success, existing methods require substantial data and computational budgets to train a specialized paraphraser, and their attack efficacy greatly reduces when faced with advanced detection algorithms. To address this, we propose \textbf{Co}ntrastive \textbf{P}araphrase \textbf{A}ttack (CoPA), a training-free method that effectively deceives text detectors using off-the-shelf LLMs. The first step is to carefully craft instructions that encourage LLMs to produce more human-like texts. Nonetheless, we observe that the inherent statistical biases of LLMs can still result in some generated texts carrying certain machine-like attributes that can be captured by detectors. To overcome this, CoPA constructs an auxiliary machine-like word distribution as a contrast to the human-like distribution generated by the LLM. By subtracting the machine-like patterns from the human-like distribution during the decoding process, CoPA is able to produce sentences that are less discernible by text detectors. Our theoretical analysis suggests the superiority of the proposed attack. Extensive experiments validate the effectiveness of CoPA in fooling text detectors across various scenarios.
📅 2025-05-26 | 💬 Accepted to ACL 2025 main conference
The rapid advancement of large language models (LLMs) increases the difficulty of distinguishing between human-written and LLM-generated text. Detecting LLM-generated text is crucial for upholding academic integrity, preventing plagiarism, protecting copyrights, and ensuring ethical research practices. Most prior studies on detecting LLM-generated text focus primarily on English text. However, languages with distinct morphological and syntactic characteristics require specialized detection approaches. Their unique structures and usage patterns can hinder the direct application of methods primarily designed for English. Among such languages, we focus on Korean, which has relatively flexible spacing rules, a rich morphological system, and less frequent comma usage compared to English. We introduce KatFish, the first benchmark dataset for detecting LLM-generated Korean text. The dataset consists of text written by humans and generated by four LLMs across three genres. By examining spacing patterns, part-of-speech diversity, and comma usage, we illuminate the linguistic differences between human-written and LLM-generated Korean text. Building on these observations, we propose KatFishNet, a detection method specifically designed for the Korean language. KatFishNet achieves an average of 19.78% higher AUROC compared to the best-performing existing detection method. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_generated_korean_text_through_linguistic_analysis.
📅 2025-05-26
The traditional process of creating labeled datasets is labor-intensive and expensive. Recent breakthroughs in open-source large language models (LLMs) have opened up a new avenue in generating labeled datasets automatically for various natural language processing (NLP) tasks, providing an alternative to such an expensive annotation process. However, the reliability of such auto-generated labels remains a significant concern due to inherent inaccuracies. When learning from noisy labels, the model's generalization is likely to be harmed as it is prone to overfit to those label noises. While previous studies in learning from noisy labels mainly focus on synthetic noise and real-world noise, LLM-generated label noise receives less attention. In this paper, we propose SiDyP: Simplex Label Diffusion with Dynamic Prior to calibrate the classifier's prediction, thus enhancing its robustness towards LLM-generated noisy labels. SiDyP retrieves potential true label candidates by neighborhood label distribution in text embedding space and iteratively refines noisy candidates using a simplex diffusion model. Our framework can increase the performance of the BERT classifier fine-tuned on both zero-shot and few-shot LLM-generated noisy label datasets by an average of 7.21% and 7.30% respectively. We demonstrate the effectiveness of SiDyP by conducting extensive benchmarking for different LLMs over a variety of NLP tasks. Our code is available on Github.
📅 2025-05-26
Efficient KV cache management in LLMs is crucial for long-context tasks like RAG and summarization. Existing KV cache compression methods enforce a fixed pattern, neglecting task-specific characteristics and reducing the retention of essential information. However, we observe distinct activation patterns across layers in various tasks, highlighting the need for adaptive strategies tailored to each task's unique demands. Based on this insight, we propose DynamicKV, a method that dynamically optimizes token retention by adjusting the number of tokens retained at each layer to adapt to the specific task. DynamicKV establishes global and per-layer maximum KV cache budgets, temporarily retaining the maximum budget for the current layer, and periodically updating the KV cache sizes of all preceding layers during inference. Our method retains only 1.7% of the KV cache size while achieving ~85% of the Full KV cache performance on LongBench. Notably, even under extreme compression (0.9%), DynamicKV surpasses state-of-the-art (SOTA) methods by 11% in the Needle-in-a-Haystack test using Mistral-7B-Instruct-v0.2. The code will be released.
📅 2025-05-26 | 💬 9 pages,7 figures. Accepted to the ACL 2025 conference
As the impact of large language models increases, understanding the moral values they reflect becomes ever more important. Assessing the nature of moral values as understood by these models via direct prompting is challenging due to potential leakage of human norms into model training data, and their sensitivity to prompt formulation. Instead, we propose to use word associations, which have been shown to reflect moral reasoning in humans, as low-level underlying representations to obtain a more robust picture of LLMs' moral reasoning. We study moral differences in associations from western English-speaking communities and LLMs trained predominantly on English data. First, we create a large dataset of LLM-generated word associations, resembling an existing data set of human word associations. Next, we propose a novel method to propagate moral values based on seed words derived from Moral Foundation Theory through the human and LLM-generated association graphs. Finally, we compare the resulting moral conceptualizations, highlighting detailed but systematic differences between moral values emerging from English speakers and LLM associations.
📅 2025-05-26
Along with the proliferating research interest in Semantic Communication (SemCom), Joint Source Channel Coding (JSCC) has dominated the attention due to the widely assumed existence in efficiently delivering information semantics. Nevertheless, this paper challenges the conventional JSCC paradigm, and advocates for adoption of Separate Source Channel Coding (SSCC) to enjoy the underlying more degree of freedom for optimization. We demonstrate that SSCC, after leveraging the strengths of Large Language Model (LLM) for source coding and Error Correction Code Transformer (ECCT) complemented for channel decoding, offers superior performance over JSCC. Our proposed framework also effectively highlights the compatibility challenges between SemCom approaches and digital communication systems, particularly concerning the resource costs associated with the transmission of high precision floating point numbers. Through comprehensive evaluations, we establish that empowered by LLM-based compression and ECCT-enhanced error correction, SSCC remains a viable and effective solution for modern communication systems. In other words, separate source and channel coding is still what we need!
📅 2025-05-26 | 💬 [v2]Added new experiments and analyses
Code-switching (CS) is still a critical challenge in Natural Language Processing (NLP). Current Large Language Models (LLMs) struggle to interpret and generate code-switched text, primarily due to the scarcity of large-scale CS datasets for training. This paper presents a novel methodology to generate CS data using LLMs, and test it on the English-Spanish language pair. We propose back-translating natural CS sentences into monolingual English, and using the resulting parallel corpus to fine-tune LLMs to turn monolingual sentences into CS. Unlike previous approaches to CS generation, our methodology uses natural CS data as a starting point, allowing models to learn its natural distribution beyond grammatical patterns. We thoroughly analyse the models' performance through a study on human preferences, a qualitative error analysis and an evaluation with popular automatic metrics. Results show that our methodology generates fluent code-switched text, expanding research opportunities in CS communication, and that traditional metrics do not correlate with human judgement when assessing the quality of the generated CS data. We release our code and generated dataset under a CC-BY-NC-SA license.
📅 2025-05-26
Language exhibits a fractal structure in its information-theoretic complexity (i.e. bits per token), with self-similarity across scales and long-range dependence (LRD). In this work, we investigate whether large language models (LLMs) can replicate such fractal characteristics and identify conditions-such as temperature setting and prompting method-under which they may fail. Moreover, we find that the fractal parameters observed in natural language are contained within a narrow range, whereas those of LLMs' output vary widely, suggesting that fractal parameters might prove helpful in detecting a non-trivial portion of LLM-generated texts. Notably, these findings, and many others reported in this work, are robust to the choice of the architecture; e.g. Gemini 1.0 Pro, Mistral-7B and Gemma-2B. We also release a dataset comprising of over 240,000 articles generated by various LLMs (both pretrained and instruction-tuned) with different decoding temperatures and prompting methods, along with their corresponding human-generated texts. We hope that this work highlights the complex interplay between fractal properties, prompting, and statistical mimicry in LLMs, offering insights for generating, evaluating and detecting synthetic texts.
📅 2025-05-26
Test-Time Scaling (TTS) has proven effective in improving the performance of Large Language Models (LLMs) during inference. However, existing research has overlooked the efficiency of TTS from a latency-sensitive perspective. Through a latency-aware evaluation of representative TTS methods, we demonstrate that a compute-optimal TTS does not always result in the lowest latency in scenarios where latency is critical. To address this gap and achieve latency-optimal TTS, we propose two key approaches by optimizing the concurrency configurations: (1) branch-wise parallelism, which leverages multiple concurrent inference branches, and (2) sequence-wise parallelism, enabled by speculative decoding. By integrating these two approaches and allocating computational resources properly to each, our latency-optimal TTS enables a 32B model to reach 82.3% accuracy on MATH-500 within 1 minute and a smaller 3B model to achieve 72.4% within 10 seconds. Our work emphasizes the importance of latency-aware TTS and demonstrates its ability to deliver both speed and accuracy in latency-sensitive scenarios.
📅 2025-05-26
Large language models (LLMs) have the potential to revolutionize smart home assistants by enhancing their ability to accurately understand user needs and respond appropriately, which is extremely beneficial for building a smarter home environment. While recent studies have explored integrating LLMs into smart home systems, they primarily focus on handling straightforward, valid single-device operation instructions. However, real-world scenarios are far more complex and often involve users issuing invalid instructions or controlling multiple devices simultaneously. These have two main challenges: LLMs must accurately identify and rectify errors in user instructions and execute multiple user instructions perfectly. To address these challenges and advance the development of LLM-based smart home assistants, we introduce HomeBench, the first smart home dataset with valid and invalid instructions across single and multiple devices in this paper. We have experimental results on 13 distinct LLMs; e.g., GPT-4o achieves only a 0.0% success rate in the scenario of invalid multi-device instructions, revealing that the existing state-of-the-art LLMs still cannot perform well in this situation even with the help of in-context learning, retrieval-augmented generation, and fine-tuning. Our code and dataset are publicly available at https://github.com/BITHLP/HomeBench.
📅 2025-05-26 | 💬 15 pages, 6 figures
The emergence of agentic recommender systems powered by Large Language Models (LLMs) represents a paradigm shift in personalized recommendations, leveraging LLMs' advanced reasoning and role-playing capabilities to enable autonomous, adaptive decision-making. Unlike traditional recommendation approaches, agentic recommender systems can dynamically gather and interpret user-item interactions from complex environments, generating robust recommendation strategies that generalize across diverse scenarios. However, the field currently lacks standardized evaluation protocols to systematically assess these methods. To address this critical gap, we propose: (1) an interactive textual recommendation simulator incorporating rich user and item metadata and three typical evaluation scenarios (classic, evolving-interest, and cold-start recommendation tasks); (2) a unified modular framework for developing and studying agentic recommender systems; and (3) the first comprehensive benchmark comparing 10 classical and agentic recommendation methods. Our findings demonstrate the superiority of agentic systems and establish actionable design guidelines for their core components. The benchmark environment has been rigorously validated through an open challenge and remains publicly available with a continuously maintained leaderboard~\footnote[2]{https://tsinghua-fib-lab.github.io/AgentSocietyChallenge/pages/overview.html}, fostering ongoing community engagement and reproducible research. The benchmark is available at: \hyperlink{https://huggingface.co/datasets/SGJQovo/AgentRecBench}{https://huggingface.co/datasets/SGJQovo/AgentRecBench}.
📅 2025-05-26
Large language models (LLMs) are typically served from clusters of GPUs/NPUs that consist of large number of devices. Unfortunately, communication between these devices incurs significant overhead, increasing the inference latency and cost while limiting the scalability. Prior work addressed this issue by overlapping communication with compute, but has severe limitations due to the data dependencies between these operations. In this paper, we propose PRESERVE, a novel framework that prefetches model weights and KV-cache from off-chip HBM memory to the on-chip cache of AI accelerators during the communication operations, which offers various advantages and performance improvements compared to prior methods. Through extensive experiments conducted on commercial AI accelerators, we demonstrate up to 1.6x end-to-end speedup on state-of-the-art, open-source LLMs. Additionally, we perform a design space exploration that identifies the optimal hardware configuration for the proposed method, showing a further 1.25x improvement in performance per cost by selecting the optimal L2 cache size. Our results show that PRESERVE has the potential to mitigate the memory bottlenecks and communication overheads, offering a solution to improve the performance and scalability of the LLM inference systems.
📅 2025-05-26
Factual hallucinations are a major challenge for Large Language Models (LLMs). They undermine reliability and user trust by generating inaccurate or fabricated content. Recent studies suggest that when generating false statements, the internal states of LLMs encode information about truthfulness. However, these studies often rely on synthetic datasets that lack realism, which limits generalization when evaluating the factual accuracy of text generated by the model itself. In this paper, we challenge the findings of previous work by investigating truthfulness encoding capabilities, leading to the generation of a more realistic and challenging dataset. Specifically, we extend previous work by introducing: (1) a strategy for sampling plausible true-false factoid sentences from tabular data and (2) a procedure for generating realistic, LLM-dependent true-false datasets from Question Answering collections. Our analysis of two open-source LLMs reveals that while the findings from previous studies are partially validated, generalization to LLM-generated datasets remains challenging. This study lays the groundwork for future research on factuality in LLMs and offers practical guidelines for more effective evaluation.
📅 2025-05-26
This study presents the LLM-Agent-Controller, a multi-agent large language model (LLM) system developed to address a wide range of problems in control engineering (Control Theory). The system integrates a central controller agent with multiple specialized auxiliary agents, responsible for tasks such as controller design, model representation, control analysis, time-domain response, and simulation. A supervisor oversees high-level decision-making and workflow coordination, enhancing the system's reliability and efficiency. The LLM-Agent-Controller incorporates advanced capabilities, including Retrieval-Augmented Generation (RAG), Chain-of-Thought reasoning, self-criticism and correction, efficient memory handling, and user-friendly natural language communication. It is designed to function without requiring users to have prior knowledge of Control Theory, enabling them to input problems in plain language and receive complete, real-time solutions. To evaluate the system, we propose new performance metrics assessing both individual agents and the system as a whole. We test five categories of Control Theory problems and benchmark performance across three advanced LLMs. Additionally, we conduct a comprehensive qualitative conversational analysis covering all key services. Results show that the LLM-Agent-Controller successfully solved 83% of general tasks, with individual agents achieving an average success rate of 87%. Performance improved with more advanced LLMs. This research demonstrates the potential of multi-agent LLM architectures to solve complex, domain-specific problems. By integrating specialized agents, supervisory control, and advanced reasoning, the LLM-Agent-Controller offers a scalable, robust, and accessible solution framework that can be extended to various technical domains.
📅 2025-05-26
Large language models (LLMs) are reaching expert-level accuracy on medical diagnosis questions, yet their mistakes and the biases behind them pose life-critical risks. Bias linked to race, sex, and socioeconomic status is already well known, but a consistent and automatic testbed for measuring it is missing. To fill this gap, this paper presents AMQA -- an Adversarial Medical Question-Answering dataset -- built for automated, large-scale bias evaluation of LLMs in medical QA. AMQA includes 4,806 medical QA pairs sourced from the United States Medical Licensing Examination (USMLE) dataset, generated using a multi-agent framework to create diverse adversarial descriptions and question pairs. Using AMQA, we benchmark five representative LLMs and find surprisingly substantial disparities: even GPT-4.1, the least biased model tested, answers privileged-group questions over 10 percentage points more accurately than unprivileged ones. Compared with the existing benchmark CPV, AMQA reveals 15% larger accuracy gaps on average between privileged and unprivileged groups. Our dataset and code are publicly available at https://github.com/XY-Showing/AMQA to support reproducible research and advance trustworthy, bias-aware medical AI.
📅 2025-05-26 | 💬 Accepted by ACL2025 Findings
We introduce Fraud-R1, a benchmark designed to evaluate LLMs' ability to defend against internet fraud and phishing in dynamic, real-world scenarios. Fraud-R1 comprises 8,564 fraud cases sourced from phishing scams, fake job postings, social media, and news, categorized into 5 major fraud types. Unlike previous benchmarks, Fraud-R1 introduces a multi-round evaluation pipeline to assess LLMs' resistance to fraud at different stages, including credibility building, urgency creation, and emotional manipulation. Furthermore, we evaluate 15 LLMs under two settings: 1. Helpful-Assistant, where the LLM provides general decision-making assistance, and 2. Role-play, where the model assumes a specific persona, widely used in real-world agent-based interactions. Our evaluation reveals the significant challenges in defending against fraud and phishing inducement, especially in role-play settings and fake job postings. Additionally, we observe a substantial performance gap between Chinese and English, underscoring the need for improved multilingual fraud detection capabilities.
📅 2025-05-26 | 💬 Accepted by ICLR 2025, Project page: https://zowiezhang.github.io/projects/Amulet
How to align large language models (LLMs) with user preferences from a static general dataset has been frequently studied. However, user preferences are usually personalized, changing, and diverse regarding culture, values, or time. This leads to the problem that the actual user preferences often do not coincide with those trained by the model developers in the practical use of LLMs. Since we cannot collect enough data and retrain for every demand, researching efficient real-time preference adaptation methods based on the backbone LLMs during test time is important. To this end, we introduce Amulet, a novel, training-free framework that formulates the decoding process of every token as a separate online learning problem with the guidance of simple user-provided prompts, thus enabling real-time optimization to satisfy users' personalized preferences. To reduce the computational cost brought by this optimization process for each token, we additionally provide a closed-form solution for each iteration step of the optimization process, thereby reducing the computational time cost to a negligible level. The detailed experimental results demonstrate that Amulet can achieve significant performance improvements in rich settings with combinations of different LLMs, datasets, and user preferences, while maintaining acceptable computational efficiency.