llm - 2025_06
Navigation
- Part 1
- Part 2
- Part 3
- Part 4
- Part 5
- Part 6
- Part 7
- Part 8
- Part 9
- Part 10
- Part 11
- Part 12
- Part 13
- Part 14
- Part 15
Papers
Large language models (LLMs) with diverse capabilities are increasingly being deployed in local environments, presenting significant security and controllability challenges. These locally deployed LLMs operate outside the direct control of developers, rendering them more susceptible to abuse. Existing mitigation techniques mainly designed for cloud-based LLM services are frequently circumvented or ineffective in deployer-controlled environments. We propose SECNEURON, the first framework that seamlessly embeds classic access control within the intrinsic capabilities of LLMs, achieving reliable, cost-effective, flexible, and certified abuse control for local deployed LLMs. SECNEURON employs neuron-level encryption and selective decryption to dynamically control the task-specific capabilities of LLMs, limiting unauthorized task abuse without compromising others. We first design a task-specific neuron extraction mechanism to decouple logically related neurons and construct a layered policy tree for handling coupled neurons. We then introduce a flexible and efficient hybrid encryption framework for millions of neurons in LLMs. Finally, we developed a distribution-based decrypted neuron detection mechanism on ciphertext to ensure the effectiveness of partially decrypted LLMs. We proved that SECNEURON satisfies IND-CPA Security and Collusion Resistance Security under the Task Controllability Principle. Experiments on various task settings show that SECNEURON limits unauthorized task accuracy to below 25% while keeping authorized accuracy loss with 2%. Using an unauthorized Code task example, the accuracy of abuse-related malicious code generation was reduced from 59% to 15%. SECNEURON also mitigates unauthorized data leakage, reducing PII extraction rates to below 5% and membership inference to random guesses.
In this work, we identify the "2D-Cheating" problem in 3D LLM evaluation, where these tasks might be easily solved by VLMs with rendered images of point clouds, exposing ineffective evaluation of 3D LLMs' unique 3D capabilities. We test VLM performance across multiple 3D LLM benchmarks and, using this as a reference, propose principles for better assessing genuine 3D understanding. We also advocate explicitly separating 3D abilities from 1D or 2D aspects when evaluating 3D LLMs. Code and data are available at https://github.com/LLM-class-group/Revisiting-3D-LLM-Benchmarks .
Large Language Models (LLMs) have demonstrated remarkable improvements in reasoning and planning through increased test-time compute, often by framing problem-solving as a search process. While methods like Monte Carlo Tree Search (MCTS) have proven effective in some domains, their reliance on fixed exploration hyperparameters limits their adaptability across tasks of varying difficulty, rendering them impractical or expensive in certain settings. In this paper, we propose \textbf{LLM-First Search (LFS)}, a novel \textit{LLM Self-Guided Search} method that removes the need for pre-defined search strategies by empowering the LLM to autonomously control the search process via self-guided exploration. Rather than relying on external heuristics or hardcoded policies, the LLM evaluates whether to pursue the current search path or explore alternative branches based on its internal scoring mechanisms. This enables more flexible and context-sensitive reasoning without requiring manual tuning or task-specific adaptation. We evaluate LFS on Countdown and Sudoku against three classic widely-used search algorithms, Tree-of-Thoughts' Breadth First Search (ToT-BFS), Best First Search (BestFS), and MCTS, each of which have been used to achieve SotA results on a range of challenging reasoning tasks. We found that LFS (1) performs better on more challenging tasks without additional tuning, (2) is more computationally efficient compared to the other methods, especially when powered by a stronger model, (3) scales better with stronger models, due to its LLM-First design, and (4) scales better with increased compute budget. Our code is publicly available at \href{https://github.com/NathanHerr/LLM-First-Search}{LLM-First-Search}.
Large Language Models (LLMs) are transforming a wide range of domains, yet verifying their outputs remains a significant challenge, especially for complex open-ended tasks such as consolidation, summarization, and knowledge extraction. To address this, we introduce CheckEmbed (CE): a simple, scalable, and accurate verification method. CE reduces each LLM answer to a single embedding vector using powerful modern embedding LLM models like SFR-Embedding-Mistral. Prior methods such as BERTScore and SelfCheckGPT relied on weaker encoders like BERT, forcing them to operate at token or sentence granularity. In contrast, CE performs fast, semantically rich comparisons directly at the whole-answer level, overcoming key limitations in both accuracy and scalability. We conduct a comprehensive design and time complexity analysis across 13 verification baselines, including classical text scorers (e.g., BLEU), stability-based methods (e.g., SelfCheckGPT), and generative evaluators (e.g., LLM-as-a-Judge), which highlights the effectiveness, efficiency, versatility, and simplicity of CE. Empirical results show that CE reliably detects hallucinations in both closed and open-ended tasks. We further present evidence that CE generalizes beyond text to other modalities such as vision, establishing it as a practical and versatile verification framework.
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs) by enabling the retrieval of documents into the LLM context to provide more accurate and relevant responses. Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents. Such queries occur frequently, but are challenging because the embeddings of these documents may be distant in the embedding space, making it hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea: leveraging activations of Transformer's multi-head attention layer, instead of the decoder layer, as keys for fetching multi-aspect documents. The driving observation is that different attention heads learn to capture different data aspects. Harnessing the corresponding activations results in embeddings that represent various facets of data items and queries, improving the retrieval accuracy for complex queries. We provide an evaluation methodology and metrics, multi-aspect datasets, and real-world use cases to demonstrate MRAG's effectiveness. We show MRAG's design advantages over 18 RAG baselines, empirical improvements of up to 20% in retrieval success ratios, and benefits for downstream LLM generation. MRAG can be seamlessly integrated with existing RAG frameworks and benchmarks.
On the Comprehensibility of Multi-structured Financial Documents using LLMs and Pre-processing Tools
The proliferation of complex structured data in hybrid sources, such as PDF documents and web pages, presents unique challenges for current Large Language Models (LLMs) and Multi-modal Large Language Models (MLLMs) in providing accurate answers. Despite the recent advancements of MLLMs, they still often falter when interpreting intricately structured information, such as nested tables and multi-dimensional plots, leading to hallucinations and erroneous outputs. This paper explores the capabilities of LLMs and MLLMs in understanding and answering questions from complex data structures found in PDF documents by leveraging industrial and open-source tools as part of a pre-processing pipeline. Our findings indicate that GPT-4o, a popular MLLM, achieves an accuracy of 56% on multi-structured documents when fed documents directly, and that integrating pre-processing tools raises the accuracy of LLMs to 61.3% for GPT-4o and 76% for GPT-4, and with lower overall cost. The code is publicly available at https://github.com/OGCDS/FinancialQA.
Large Language Models (LLMs) are known to exhibit social, demographic, and gender biases, often as a consequence of the data on which they are trained. In this work, we adopt a mechanistic interpretability approach to analyze how such biases are structurally represented within models such as GPT-2 and Llama2. Focusing on demographic and gender biases, we explore different metrics to identify the internal edges responsible for biased behavior. We then assess the stability, localization, and generalizability of these components across dataset and linguistic variations. Through systematic ablations, we demonstrate that bias-related computations are highly localized, often concentrated in a small subset of layers. Moreover, the identified components change across fine-tuning settings, including those unrelated to bias. Finally, we show that removing these components not only reduces biased outputs but also affects other NLP tasks, such as named entity recognition and linguistic acceptability judgment because of the sharing of important components with these tasks.
The rapid development of large-scale GPU clusters for LLM training has driven enterprises to replace core-layer electrical switches with optical circuit switches (OCS) to meet escalating bandwidth demands. However, current physical topology design of OCS-based clusters faces two critical challenges. First, there exist unrealizable logical topologies, leading to underutilization of bandwidth resource. Second, calculating OCS reconfiguration constitutes an NP-Complete problem and is time-consuming for multi-tenant GPU clusters which need real-time scheduling. In this paper, we propose \emph{Cross Wiring}, a new physical topology design that resolves both limitations. Our physical topology guarantees full compatibility with all logical topologies under L2-compatibility constraints. Through a proposed \emph{Symmetric Integer Matrix Decomposition Theorem}, we design a polynomial-time OCS reconfiguration algorithm that satisfies arbitrary logical topology requirements. Evaluations show a up to 39.5\% higher training throughput versus prior architectures such as \emph{Gemini} in 128-NPU testbed and a 12.6\% reduction in average job completion time through real-workload based multi-tenant large-scale simulations.
Zero-shot Event Detection (ED), the task of identifying event mentions in natural language text without any training data, is critical for document understanding in specialized domains. Understanding the complex event ontology, extracting domain-specific triggers from the passage, and structuring them appropriately overloads and limits the utility of Large Language Models (LLMs) for zero-shot ED. To this end, we propose DiCoRe, a divergent-convergent reasoning framework that decouples the task of ED using Dreamer and Grounder. Dreamer encourages divergent reasoning through open-ended event discovery, which helps to boost event coverage. Conversely, Grounder introduces convergent reasoning to align the free-form predictions with the task-specific instructions using finite-state machine guided constrained decoding. Additionally, an LLM-Judge verifies the final outputs to ensure high precision. Through extensive experiments on six datasets across five domains and nine LLMs, we demonstrate how DiCoRe consistently outperforms prior zero-shot, transfer-learning, and reasoning baselines, achieving 4-7% average F1 gains over the best baseline -- establishing DiCoRe as a strong zero-shot ED framework.
Accurate and verifiable large language model (LLM) simulations of human research subjects promise an accessible data source for understanding human behavior and training new AI systems. However, results to date have been limited, and few social scientists have adopted this method. In this position paper, we argue that the promise of LLM social simulations can be achieved by addressing five tractable challenges. We ground our argument in a review of empirical comparisons between LLMs and human research subjects, commentaries on the topic, and related work. We identify promising directions, including context-rich prompting and fine-tuning with social science datasets. We believe that LLM social simulations can already be used for pilot and exploratory studies, and more widespread use may soon be possible with rapidly advancing LLM capabilities. Researchers should prioritize developing conceptual models and iterative evaluations to make the best use of new AI systems.
The rise of general-purpose artificial intelligence (AI) systems, particularly large language models (LLMs), has raised pressing moral questions about how to reduce bias and ensure fairness at scale. Researchers have documented a sort of "bias" in the significant correlations between demographics (e.g., race, gender) in LLM prompts and responses, but it remains unclear how LLM fairness could be evaluated with more rigorous definitions, such as group fairness or fair representations. We analyze a variety of technical fairness frameworks and find inherent challenges in each that make the development of a fair LLM intractable. We show that each framework either does not logically extend to the general-purpose AI context or is infeasible in practice, primarily due to the large amounts of unstructured training data and the many potential combinations of human populations, use cases, and sensitive attributes. These inherent challenges would persist for general-purpose AI, including LLMs, even if empirical challenges, such as limited participatory input and limited measurement methods, were overcome. Nonetheless, fairness will remain an important type of model evaluation, and there are still promising research directions, particularly the development of standards for the responsibility of LLM developers, context-specific evaluations, and methods of iterative, participatory, and AI-assisted evaluation that could scale fairness across the diverse contexts of modern human-AI interaction.
The assurance of mobile app GUI is more and more significant. Automated GUI testing approaches of different strategies have been developed, while there are still huge gaps between the approaches and the app business logic, not taking the completion of specific testing scenarios as the exploration target, leading to the exploration missing of critical app functionalities. Learning from the manual testing, which takes testing scenarios with app business logic as the basic granularity, in this paper, we utilize the LLMs to understand the semantics presented in app GUI and how they are mapped in the testing context based on specific testing scenarios. Then, scenario-based GUI tests are generated with the guidance of multi-agent collaboration. Specifically, we propose ScenGen, a novel LLM-guided scenario-based GUI testing approach involving five agents to respectively take responsibilities of different phases of the manual testing process. The Observer perceives the app GUI state by extracting GUI widgets and forming GUI layouts, understanding the expressed semantics. Then the app GUI info is sent to the Decider to make decisions on target widgets based on the target testing scenarios. The decision-making process takes the completion of specific testing scenarios as the exploration target. The Executor then executes the demanding operations on the apps. The execution results are checked by the Supervisor on whether the generated tests are consistent with the completion target of the testing scenarios, ensuring the traceability of the test generation and execution. Furthermore, the corresponding GUI test operations are recorded to the context memory by Recorder as an important basis for further decision-making, meanwhile monitoring the runtime bug occurrences. ScenGen is evaluated and the results show that ScenGen can effectively generate scenario-based GUI tests guided by LLMs.
Mathematical optimization is fundamental to decision-making across diverse domains, from operations research to healthcare. Yet, translating real-world problems into optimization models remains a difficult task, often demanding specialized expertise. This paper approaches the problem of $\textit{autoformulation}$: the automated creation of solver-ready optimization models from natural language problem descriptions. We identify three core challenges of autoformulation: $\textit{(1)}$ the vast, problem-dependent hypothesis space, $\textit{(2)}$ efficient and diverse exploration of this space under uncertainty, and $\textit{(3)}$ evaluation of formulation correctness against problem description. To address these challenges, we present a novel method leveraging $\textit{Large Language Models}$ (LLMs) with $\textit{Monte-Carlo Tree Search}$, exploiting the hierarchical nature of optimization modeling to generate and systematically explore possible formulations. To enhance search efficiency, we introduce symbolic pruning to eliminate trivially equivalent search paths (branches), and employ LLM-based evaluation of partial formulations to guide search. Empirical analysis on linear and mixed-integer programming benchmarks demonstrates our method's effectiveness, with significant performance gains from both LLM-based value estimation and symbolic pruning techniques.
Self-harm detection on social media is critical for early intervention and mental health support, yet remains challenging due to the subtle, context-dependent nature of such expressions. Identifying self-harm intent aids suicide prevention by enabling timely responses, but current large language models (LLMs) struggle to interpret implicit cues in casual language and emojis. This work enhances LLMs' comprehension of self-harm by distinguishing intent through nuanced language-emoji interplay. We present the Centennial Emoji Sensitivity Matrix (CESM-100), a curated set of 100 emojis with contextual self-harm interpretations and the Self-Harm Identification aNd intent Extraction with Supportive emoji sensitivity (SHINES) dataset, offering detailed annotations for self-harm labels, casual mentions (CMs), and serious intents (SIs). Our unified framework: a) enriches inputs using CESM-100; b) fine-tunes LLMs for multi-task learning: self-harm detection (primary) and CM/SI span detection (auxiliary); c) generates explainable rationales for self-harm predictions. We evaluate the framework on three state-of-the-art LLMs-Llama 3, Mental-Alpaca, and MentalLlama, across zero-shot, few-shot, and fine-tuned scenarios. By coupling intent differentiation with contextual cues, our approach commendably enhances LLM performance in both detection and explanation tasks, effectively addressing the inherent ambiguity in self-harm signals. The SHINES dataset, CESM-100 and codebase are publicly available at: https://www.iitp.ac.in/~ai-nlp-ml/resources.html#SHINES .
Large Language Models (LLMs) perform exceedingly well in Natural Language Understanding (NLU) tasks for many languages including English. However, despite being the fifth most-spoken language globally, Grammatical Error Correction (GEC) in Bangla remains underdeveloped. In this work, we investigate how LLMs can be leveraged for improving Bangla GEC. For that, we first do an extensive categorization of 12 error classes in Bangla, and take a survey of native Bangla speakers to collect real-world errors. We next devise a rule-based noise injection method to create grammatically incorrect sentences corresponding to correct ones. The Vaiyakarana dataset, thus created, consists of 5,67,422 sentences of which 2,27,119 are erroneous. This dataset is then used to instruction-tune LLMs for the task of GEC in Bangla. Evaluations show that instruction-tuning with \name improves GEC performance of LLMs by 3-7 percentage points as compared to the zero-shot setting, and makes them achieve human-like performance in grammatical error identification. Humans, though, remain superior in error correction.
Driven by advances in Large Language Models (LLMs), integrating them into recommendation tasks has gained interest due to their strong semantic understanding and prompt flexibility. Prior work encoded user-item interactions or metadata into prompts for recommendations. In parallel, LLM reasoning, boosted by test-time scaling and reinforcement learning, has excelled in fields like mathematics and code, where reasoning traces and correctness signals are clear, enabling high performance and interpretability. However, directly applying these reasoning methods to recommendation is ineffective because user feedback is implicit and lacks reasoning supervision. To address this, we propose $\textbf{R2Rec}$, a reasoning-enhanced recommendation framework that samples interaction chains from the user-item graph and converts them into structured interaction-of-thoughts via a progressive masked prompting strategy, with each thought representing stepwise reasoning grounded in interaction context. This allows LLMs to simulate step-by-step decision-making based on implicit patterns. We design a two-stage training pipeline: supervised fine-tuning teaches basic reasoning from high-quality traces, and reinforcement learning refines reasoning via reward signals, alleviating sparse explicit supervision. Experiments on three real-world datasets show R2Rec outperforms classical and LLM-based baselines with an average $\textbf{10.48%}$ improvement in HitRatio@1 and $\textbf{131.81%}$ gain over the original LLM. Furthermore, the explicit reasoning chains enhance interpretability by revealing the decision process. Our code is available at: https://anonymous.4open.science/r/R2Rec-7C5D.
Large language models (LLMs) are rapidly evolving into autonomous agents that cooperate across organizational boundaries, enabling joint disaster response, supply-chain optimization, and other tasks that demand decentralized expertise without surrendering data ownership. Yet, cross-domain collaboration shatters the unified trust assumptions behind current alignment and containment techniques. An agent benign in isolation may, when receiving messages from an untrusted peer, leak secrets or violate policy, producing risks driven by emergent multi-agent dynamics rather than classical software bugs. This position paper maps the security agenda for cross-domain multi-agent LLM systems. We introduce seven categories of novel security challenges, for each of which we also present plausible attacks, security evaluation metrics, and future research guidelines.
We introduce Debate Speech Evaluation as a novel and challenging benchmark for assessing LLM judges. Evaluating debate speeches requires a deep understanding of the speech at multiple levels, including argument strength and relevance, the coherence and organization of the speech, the appropriateness of its style and tone, and so on. This task involves a unique set of cognitive abilities that have previously received limited attention in systematic LLM benchmarking. To explore such skills, we leverage a dataset of over 600 meticulously annotated debate speeches and present the first in-depth analysis of how state-of-the-art LLMs compare to human judges on this task. Our findings reveal a nuanced picture: while larger models can approximate individual human judgments in some respects, they differ substantially in their overall judgment behavior. We also investigate the ability of frontier LLMs to generate persuasive, opinionated speeches, showing that models may perform at a human level on this task.
Large Language Models (LLMs) excel in high-resource languages but struggle with low-resource languages due to limited training data. This paper presents TALL (Trainable Architecture for Enhancing LLM Performance in Low-Resource Languages), which integrates an LLM with two bilingual translation models. TALL transforms low-resource inputs into high-resource representations, leveraging the LLM's capabilities while preserving linguistic features through dimension alignment layers and custom transformers. Our experiments on Hebrew demonstrate significant improvements over several baselines, including direct use, naive translation, and fine-tuning approaches. The architecture employs a parameter-efficient strategy, freezing pre-trained components while training only lightweight adapter modules, balancing computational efficiency with performance gains.
Large language models (LLMs) have achieved distinguished performance on various reasoning-intensive tasks. However, LLMs might still face the challenges of robustness issues and fail unexpectedly in some simple reasoning tasks. Previous works evaluate the LLM robustness with hand-crafted templates or a limited set of perturbation rules, indicating potential data contamination in pre-training or fine-tuning datasets. In this work, inspired by stress testing in software engineering, we propose a novel framework, Automatic Robustness Checker (AR-Checker), to generate mathematical problem variants that maintain the semantic meanings of the original one but might fail the LLMs. The AR-Checker framework generates mathematical problem variants through multi-round parallel streams of LLM-based rewriting and verification. Our framework can generate benchmark variants dynamically for each LLM, thus minimizing the risk of data contamination. Experiments on GSM8K and MATH-500 demonstrate the strong performance of AR-Checker on mathematical tasks. We also evaluate AR-Checker on benchmarks beyond mathematics, including MMLU, MMLU-Pro, and CommonsenseQA, where it also achieves strong performance, further proving the effectiveness of AR-Checker.
Large language model (LLM) unlearning has demonstrated its essential role in removing privacy and copyright-related responses, crucial for their legal and safe applications. However, the pursuit of complete unlearning often comes with substantial costs due to its compromises in their general functionality, leading to a notorious trade-off between unlearning and retention. It motivates this paper to explore enhanced unlearning schemes that can mitigate this trade-off. Specifically, we propose Gradient Rectified Unlearning (GRU), an improved framework that regulates the directions of gradient updates during the unlearning procedure such that their side impacts on other, unrelated responses can be minimized. GRU is easy and general to implement, demonstrating practical effectiveness across a variety of well-established unlearning benchmarks.
System prompts in Large Language Models (LLMs) are predefined directives that guide model behaviour, taking precedence over user inputs in text processing and generation. LLM deployers increasingly use them to ensure consistent responses across contexts. While model providers set a foundation of system prompts, deployers and third-party developers can append additional prompts without visibility into others' additions, while this layered implementation remains entirely hidden from end-users. As system prompts become more complex, they can directly or indirectly introduce unaccounted for side effects. This lack of transparency raises fundamental questions about how the position of information in different directives shapes model outputs. As such, this work examines how the placement of information affects model behaviour. To this end, we compare how models process demographic information in system versus user prompts across six commercially available LLMs and 50 demographic groups. Our analysis reveals significant biases, manifesting in differences in user representation and decision-making scenarios. Since these variations stem from inaccessible and opaque system-level configurations, they risk representational, allocative and potential other biases and downstream harms beyond the user's ability to detect or correct. Our findings draw attention to these critical issues, which have the potential to perpetuate harms if left unexamined. Further, we argue that system prompt analysis must be incorporated into AI auditing processes, particularly as customisable system prompts become increasingly prevalent in commercial AI deployments.
Accessing quality preparation and feedback for the Romanian Bacalaureat exam is challenging, particularly for students in remote or underserved areas. This paper introduces BacPrep, an experimental online platform exploring Large Language Model (LLM) potential for automated assessment, aiming to offer a free, accessible resource. Using official exam questions from the last 5 years, BacPrep employs one of Google's newest models, Gemini 2.0 Flash (released Feb 2025), guided by official grading schemes, to provide experimental feedback. Currently operational, its primary research function is collecting student solutions and LLM outputs. This focused dataset is vital for planned expert validation to rigorously evaluate the feasibility and accuracy of this cutting-edge LLM in the specific Bacalaureat context before reliable deployment. We detail the design, data strategy, status, validation plan, and ethics.
Large Language Models (LLMs) have shown to be effective evaluators across various domains such as machine translations or the scientific domain. Current LLM-as-a-Judge approaches rely mostly on individual assessments or a single round of pairwise assessments, preventing the judge LLM from developing a global ranking perspective. To address this, we present Knockout Assessment, an LLM-asa Judge method using a knockout tournament system with iterative pairwise comparisons. Experiments across three LLMs on two datasets show that knockout assessment improves scoring accuracy, increasing Pearson correlation with expert evaluations by 0.07 on average for university-level exam scoring and machine translation evaluations, aligning LLM assessments more closely with human scoring.
Large language models (LLMs) require substantial compute, and thus energy, at inference time. While quantizing weights and activations is effective at improving efficiency, naive quantization of LLMs can significantly degrade performance due to large magnitude outliers. This paper describes FPTQuant, which introduces four novel, lightweight, and expressive function-preserving transforms (FPTs) to facilitate quantization of transformers: (1) a mergeable pre-RoPE transform for queries and keys, (2) a mergeable transform for values, (3) a mergeable scaling transform within the MLP block, and (4) a cheap, dynamic scaling transform. By leveraging the equivariances and independencies inherent to canonical transformer operation, we designed these FPTs to maintain the model's function while shaping the intermediate activation distributions to be more quantization friendly. FPTQuant requires no custom kernels and adds virtually no overhead during inference. The FPTs are trained both locally to reduce outliers, and end-to-end such that the outputs of the quantized and full-precision models match. FPTQuant enables static INT4 quantization with minimal overhead and shows SOTA speed-up of up to 3.9 times over FP. Empirically, FPTQuant has an excellent accuracy-speed trade-off -- it is performing on par or exceeding most prior work and only shows slightly lower accuracy compared to a method that is up to 29% slower.
We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.
This paper presents a comprehensive evaluation of the performance of state-of-the-art Large Language Models (LLMs) on challenging university-level algorithms exams. By testing multiple models on both a Romanian exam and its high-quality English translation, we analyze LLMs' problem-solving capabilities, consistency, and multilingual performance. Our empirical study reveals that the most recent models not only achieve scores comparable to top-performing students but also demonstrate robust reasoning skills on complex, multi-step algorithmic challenges, even though difficulties remain with graph-based tasks. Building on these findings, we explore the potential of LLMs to support educational environments through the generation of high-quality editorial content, offering instructors a powerful tool to enhance student feedback. The insights and best practices discussed herein pave the way for further integration of generative AI in advanced algorithm education.
The rise of Large Language Models (LLMs) has revolutionized Graphical User Interface (GUI) automation through LLM-powered GUI agents, yet their ability to process sensitive data with limited human oversight raises significant privacy and security risks. This position paper identifies three key risks of GUI agents and examines how they differ from traditional GUI automation and general autonomous agents. Despite these risks, existing evaluations focus primarily on performance, leaving privacy and security assessments largely unexplored. We review current evaluation metrics for both GUI and general LLM agents and outline five key challenges in integrating human evaluators for GUI agent assessments. To address these gaps, we advocate for a human-centered evaluation framework that incorporates risk assessments, enhances user awareness through in-context consent, and embeds privacy and security considerations into GUI agent design and evaluation.
This paper advances motion agents empowered by large language models (LLMs) toward autonomous navigation in dynamic and cluttered environments, significantly surpassing first and recent seminal but limited studies on LLM's spatial reasoning, where movements are restricted in four directions in simple, static environments in the presence of only single agents much less multiple agents. Specifically, we investigate LLMs as spatial reasoners to overcome these limitations by uniformly encoding environments (e.g., real indoor floorplans), agents which can be dynamic obstacles and their paths as discrete tokens akin to language tokens. Our training-free framework supports multi-agent coordination, closed-loop replanning, and dynamic obstacle avoidance without retraining or fine-tuning. We show that LLMs can generalize across agents, tasks, and environments using only text-based interactions, opening new possibilities for semantically grounded, interactive navigation in both simulation and embodied systems.
Large language models (LLMs) have demonstrated the ability to generate formative feedback and instructional hints in English, making them increasingly relevant for AI-assisted education. However, their ability to provide effective instructional support across different languages, especially for mathematically grounded reasoning tasks, remains largely unexamined. In this work, we present the first large-scale simulation of multilingual tutor-student interactions using LLMs. A stronger model plays the role of the tutor, generating feedback in the form of hints, while a weaker model simulates the student. We explore 352 experimental settings across 11 typologically diverse languages, four state-of-the-art LLMs, and multiple prompting strategies to assess whether language-specific feedback leads to measurable learning gains. Our study examines how student input language, teacher feedback language, model choice, and language resource level jointly influence performance. Results show that multilingual hints can significantly improve learning outcomes, particularly in low-resource languages when feedback is aligned with the student's native language. These findings offer practical insights for developing multilingual, LLM-based educational tools that are both effective and inclusive.
The honesty of large language models (LLMs) is a critical alignment challenge, especially as advanced systems with chain-of-thought (CoT) reasoning may strategically deceive humans. Unlike traditional honesty issues on LLMs, which could be possibly explained as some kind of hallucination, those models' explicit thought paths enable us to study strategic deception--goal-driven, intentional misinformation where reasoning contradicts outputs. Using representation engineering, we systematically induce, detect, and control such deception in CoT-enabled LLMs, extracting "deception vectors" via Linear Artificial Tomography (LAT) for 89% detection accuracy. Through activation steering, we achieve a 40% success rate in eliciting context-appropriate deception without explicit prompts, unveiling the specific honesty-related issue of reasoning models and providing tools for trustworthy AI alignment.
Large Language Models (LLMs), whilst great at extracting facts from text, struggle with nested narrative reasoning. Existing long context and multi-hop QA benchmarks inadequately test this, lacking realistic distractors or failing to decouple context length from reasoning complexity, masking a fundamental LLM limitation. We introduce Verbose ListOps, a novel benchmark that programmatically transposes ListOps computations into lengthy, coherent stories. This uniquely forces internal computation and state management of nested reasoning problems by withholding intermediate results, and offers fine-grained controls for both narrative size \emph{and} reasoning difficulty. Whilst benchmarks like LongReason (2025) advance approaches for synthetically expanding the context size of multi-hop QA problems, Verbose ListOps pinpoints a specific LLM vulnerability: difficulty in state management for nested sub-reasoning amongst semantically-relevant, distracting narrative. Our experiments show that leading LLMs (e.g., OpenAI o4, Gemini 2.5 Pro) collapse in performance on Verbose ListOps at modest (~10k token) narrative lengths, despite effortlessly solving raw ListOps equations. Addressing this failure is paramount for real-world text interpretation which requires identifying key reasoning points, tracking conceptual intermediate results, and filtering irrelevant information. Verbose ListOps, and its extensible generation framework thus enables targeted reasoning enhancements beyond mere context-window expansion; a critical step to automating the world's knowledge work.
With the significant progress of large reasoning models in complex coding and reasoning tasks, existing benchmarks, like LiveCodeBench and CodeElo, are insufficient to evaluate the coding capabilities of large language models (LLMs) in real competition environments. Moreover, current evaluation metrics such as Pass@K fail to capture the reflective abilities of reasoning models. To address these challenges, we propose \textbf{ICPC-Eval}, a top-level competitive coding benchmark designed to probing the frontiers of LLM reasoning. ICPC-Eval includes 118 carefully curated problems from 11 recent ICPC contests held in various regions of the world, offering three key contributions: 1) A challenging realistic ICPC competition scenario, featuring a problem type and difficulty distribution consistent with actual contests. 2) A robust test case generation method and a corresponding local evaluation toolkit, enabling efficient and accurate local evaluation. 3) An effective test-time scaling evaluation metric, Refine@K, which allows iterative repair of solutions based on execution feedback. The results underscore the significant challenge in evaluating complex reasoning abilities: top-tier reasoning models like DeepSeek-R1 often rely on multi-turn code feedback to fully unlock their in-context reasoning potential when compared to non-reasoning counterparts. Furthermore, despite recent advancements in code generation, these models still lag behind top-performing human teams. We release the benchmark at: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs
Large language models (LLMs) have achieved significant success in reasoning tasks, including mathematical reasoning and logical deduction. Among these reasoning tasks, graph problems stand out due to their complexity and unique structural characteristics, attracting considerable attention from researchers. Previous studies have explored LLMs' graph reasoning abilities through various techniques, such as different encoding methods for graph structures and the use of carefully designed prompts. However, a critical factor has been mostly overlooked: the prompt sequential order in which graph descriptions are presented to the models. In this study, we present the first comprehensive analysis of how the order of graph descriptions impacts LLM performance. Specifically, we comprehensively evaluate four graph description orders across six graph problems using six mainstream LLMs. The results reveal that: (1) ordered graph descriptions significantly improve LLMs' comprehension of graph structures; (2) the robustness of LLMs to graph description order varies across different tasks; and (3) the impact of graph order on performance is closely related to the inherent characteristics of tasks. This study provides a critical advancement in the application of LLMs for solving graph-related problems, paving the way for future research to optimize model performance through strategic graph description ordering.
Recent work suggests that large language models (LLMs) can improve performance of speech tasks compared to existing systems. To support their claims, results on LibriSpeech and Common Voice are often quoted. However, this work finds that a substantial amount of the LibriSpeech and Common Voice evaluation sets appear in public LLM pretraining corpora. This calls into question the reliability of findings drawn from these two datasets. To measure contamination impact, LLMs trained with/without contamination are compared. A contaminated LLM is more likely to generate test sentences it has seen during training. Then, speech recognisers based on LLMs are compared. They show only subtle error rate differences if the LLM is contaminated, but assign significantly higher probabilities to transcriptions seen during LLM training. Results show that LLM outputs can be biased by tiny amounts of data contamination, highlighting the importance of evaluating LLM-based speech systems with held-out data.
We propose a method that enables large language models (LLMs) to control embodied agents by directly mapping continuous observation vectors to continuous action vectors. Initially, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. In most cases, it successfully identifies optimal or high-performing solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
In this study, we explore the effectiveness of isometric machine translation across multiple language pairs (En$\to$De, En$\to$Fr, and En$\to$Es) under the conditions of the IWSLT Isometric Shared Task 2022. Using eight open-source large language models (LLMs) of varying sizes, we investigate how different prompting strategies, varying numbers of few-shot examples, and demonstration selection influence translation quality and length control. We discover that the phrasing of instructions, when aligned with the properties of the provided demonstrations, plays a crucial role in controlling the output length. Our experiments show that LLMs tend to produce shorter translations only when presented with extreme examples, while isometric demonstrations often lead to the models disregarding length constraints. While few-shot prompting generally enhances translation quality, further improvements are marginal across 5, 10, and 20-shot settings. Finally, considering multiple outputs allows to notably improve overall tradeoff between the length and quality, yielding state-of-the-art performance for some language pairs.
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.
The complexity of modern computing environments and the growing sophistication of cyber threats necessitate a more robust, adaptive, and automated approach to security enforcement. In this paper, we present a framework leveraging large language models (LLMs) for automating attack mitigation policy compliance through an innovative combination of in-context learning and retrieval-augmented generation (RAG). We begin by describing how our system collects and manages both tool and API specifications, storing them in a vector database to enable efficient retrieval of relevant information. We then detail the architectural pipeline that first decomposes high-level mitigation policies into discrete tasks and subsequently translates each task into a set of actionable API calls. Our empirical evaluation, conducted using publicly available CTI policies in STIXv2 format and Windows API documentation, demonstrates significant improvements in precision, recall, and F1-score when employing RAG compared to a non-RAG baseline.
Large language models (LLMs) excel at many supervised tasks but often struggle with structured reasoning in unfamiliar settings. This discrepancy suggests that standard fine-tuning pipelines may instill narrow, domain-specific heuristics rather than fostering general-purpose thinking strategies. In this work, we propose a "play to learn" framework that fine-tunes LLMs through reinforcement learning on a suite of seven custom logic puzzles, each designed to cultivate distinct reasoning skills such as constraint propagation, spatial consistency, and symbolic deduction. Using a reinforcement learning setup with verifiable rewards, models receive binary feedback based on puzzle correctness, encouraging iterative, hypothesis-driven problem solving. We demonstrate that this training approach significantly improves out-of-distribution performance on a range of mathematical benchmarks, especially for mid-difficulty problems that require multi-step reasoning. Analyses across problem categories and difficulty levels reveal that puzzle training promotes transferable reasoning routines, strengthening algebraic manipulation, geometric inference, and combinatorial logic, while offering limited gains on rote or highly specialized tasks. These findings show that reinforcement learning over logic puzzles reshapes the internal reasoning of LLMs, enabling more robust and compositional generalization without relying on task-specific symbolic tools.
Logical reasoning is a core capability for many applications of large language models (LLMs), yet existing benchmarks often rely solely on final-answer accuracy, failing to capture the quality and structure of the reasoning process. We propose FineLogic, a fine-grained evaluation framework that assesses logical reasoning across three dimensions: overall benchmark accuracy, stepwise soundness, and representation-level alignment. In addition, to better understand how reasoning capabilities emerge, we conduct a comprehensive study on the effects of supervision format during fine-tuning. We construct four supervision styles (one natural language and three symbolic variants) and train LLMs under each. Our findings reveal that natural language supervision yields strong generalization even on out-of-distribution and long-context tasks, while symbolic reasoning styles promote more structurally sound and atomic inference chains. Further, our representation-level probing shows that fine-tuning primarily improves reasoning behaviors through step-by-step generation, rather than enhancing shortcut prediction or internalized correctness. Together, our framework and analysis provide a more rigorous and interpretable lens for evaluating and improving logical reasoning in LLMs.
Automatic Speech Recognition (ASR) error correction aims to correct recognition errors while preserving accurate text. Although traditional approaches demonstrate moderate effectiveness, LLMs offer a paradigm that eliminates the need for training and labeled data. However, directly using LLMs will encounter hallucinations problem, which may lead to the modification of the correct text. To address this problem, we propose the Reliable LLM Correction Framework (RLLM-CF), which consists of three stages: (1) error pre-detection, (2) chain-of-thought sub-tasks iterative correction, and (3) reasoning process verification. The advantage of our method is that it does not require additional information or fine-tuning of the model, and ensures the correctness of the LLM correction under multi-pass programming. Experiments on AISHELL-1, AISHELL-2, and Librispeech show that the GPT-4o model enhanced by our framework achieves 21%, 11%, 9%, and 11.4% relative reductions in CER/WER.
The rapid progress of Multimodal Large Language Models(MLLMs) has transformed the AI landscape. These models combine pre-trained LLMs with various modality encoders. This integration requires a systematic understanding of how different modalities connect to the language backbone. Our survey presents an LLM-centric analysis of current approaches. We examine methods for transforming and aligning diverse modal inputs into the language embedding space. This addresses a significant gap in existing literature. We propose a classification framework for MLLMs based on three key dimensions. First, we examine architectural strategies for modality integration. This includes both the specific integration mechanisms and the fusion level. Second, we categorize representation learning techniques as either joint or coordinate representations. Third, we analyze training paradigms, including training strategies and objective functions. By examining 125 MLLMs developed between 2021 and 2025, we identify emerging patterns in the field. Our taxonomy provides researchers with a structured overview of current integration techniques. These insights aim to guide the development of more robust multimodal integration strategies for future models built on pre-trained foundations.
Distilling reasoning paths from teacher to student models via supervised fine-tuning (SFT) provides a shortcut for improving the reasoning ability of smaller Large Language Models (LLMs). However, the reasoning paths generated by teacher models often reflect only surface-level traces of their underlying authentic reasoning. Insights from cognitive neuroscience suggest that authentic reasoning involves a complex interweaving between meta-reasoning (which selects appropriate sub-problems from multiple candidates) and solving (which addresses the sub-problem). This implies authentic reasoning has an implicit multi-branch structure. Supervised fine-tuning collapses this rich structure into a flat sequence of token prediction in the teacher's reasoning path, preventing effective distillation of this structure to students. To address this limitation, we propose RLKD, a reinforcement learning (RL)-based distillation framework guided by a novel Generative Structure Reward Model (GSRM). Our GSRM converts reasoning paths into multiple meta-reasoning-solving steps and computes rewards to measure structural alignment between student and teacher reasoning. RLKD combines this reward with RL, enabling student LLMs to internalize the teacher's implicit multi-branch reasoning structure rather than merely mimicking fixed output paths. Experiments show RLKD surpasses standard SFT-RL pipelines even when trained on 0.1% of data under an RL-only regime, unlocking greater student reasoning potential than SFT-based distillation.
Despite the success of Instruction Tuning (IT) in training large language models (LLMs), such models often leverage spurious or biased features learnt from their training data and can become misaligned, leading to undesired behaviours. While existing techniques can steer model behaviour at inference-time, they are often post-hoc and do not embed steering as an intrinsic model feature. In this work, we introduce Focus Instruction Tuning (FIT), which trains LLMs to condition their responses by focusing on specific features whilst ignoring others, leading to different behaviours based on what features are specified. Across diverse benchmarks, we demonstrate that FIT: (i) successfully steers behaviour at inference time; (ii) increases robustness by amplifying core task signals and down-weighting spurious cues; (iii) mitigates social bias by suppressing demographic attributes; and (iv) generalises under distribution shifts and to previously unseen focus features. FIT therefore offers a lightweight, intrinsic mechanism for building more robust, fair, and easily controllable LLMs.
Recent advancements in Large Language Models (LLMs) have led to increasingly diverse requests, accompanied with varying resource (compute and memory) demands to serve them. However, this in turn degrades the cost-efficiency of LLM serving as common practices primarily rely on homogeneous GPU resources. In response to this problem, this work conducts a thorough study about serving LLMs over heterogeneous GPU resources on cloud platforms. The rationale is that different GPU types exhibit distinct compute and memory characteristics, aligning well with the divergent resource demands of diverse requests. Particularly, through comprehensive benchmarking, we discover that the cost-efficiency of LLM serving can be substantially optimized by meticulously determining GPU composition, deployment configurations, and workload assignments. Subsequently, we design a scheduling algorithm via mixed-integer linear programming, aiming at deducing the most cost-efficient serving plan under the constraints of price budget and real-time GPU availability. Remarkably, our approach effectively outperforms homogeneous and heterogeneous baselines under a wide array of scenarios, covering diverse workload traces, varying GPU availablilities, and multi-model serving. This casts new light on more accessible and efficient LLM serving over heterogeneous cloud resources.
The development of AI-Generated Video (AIGV) technology has been remarkable in recent years, significantly transforming the paradigm of video content production. However, AIGVs still suffer from noticeable visual quality defects, such as noise, blurriness, frame jitter and low dynamic degree, which severely impact the user's viewing experience. Therefore, an effective automatic visual quality assessment is of great importance for AIGV content regulation and generative model improvement. In this work, we decompose the visual quality of AIGVs into three dimensions: technical quality, motion quality, and video semantics. For each dimension, we design corresponding encoder to achieve effective feature representation. Moreover, considering the outstanding performance of large language models (LLMs) in various vision and language tasks, we introduce a LLM as the quality regression module. To better enable the LLM to establish reasoning associations between multi-dimensional features and visual quality, we propose a specially designed multi-modal prompt engineering framework. Additionally, we incorporate LoRA fine-tuning technology during the training phase, allowing the LLM to better adapt to specific tasks. Our proposed method achieved \textbf{second place} in the NTIRE 2025 Quality Assessment of AI-Generated Content Challenge: Track 2 AI Generated video, demonstrating its effectiveness. Codes can be obtained at https://github.com/QiZelu/AIGVEval.
In automatic speech recognition (ASR), phoneme-based multilingual pre-training and crosslingual fine-tuning is attractive for its high data efficiency and competitive results compared to subword-based models. However, Weighted Finite State Transducer (WFST) based decoding is limited by its complex pipeline and inability to leverage large language models (LLMs). Therefore, we propose LLM-based phoneme-to-grapheme (LLM-P2G) decoding for phoneme-based ASR, consisting of speech-to-phoneme (S2P) and phoneme-to-grapheme (P2G). A challenge is that there seems to have information loss in cascading S2P and P2G. To address this challenge, we propose two training strategies: data augmentation with noisy phonemes (DANP), and randomized top-$K$ marginalized (TKM) training and decoding. Our experimental results show that LLM-P2G outperforms WFST-based systems in crosslingual ASR for Polish and German, by relative WER reductions of 3.6% and 6.9% respectively.
The strong planning and reasoning capabilities of Large Language Models (LLMs) have fostered the development of agent-based systems capable of leveraging external tools and interacting with increasingly complex environments. However, these powerful features also introduce a critical security risk: indirect prompt injection, a sophisticated attack vector that compromises the core of these agents, the LLM, by manipulating contextual information rather than direct user prompts. In this work, we propose a generic black-box fuzzing framework, AgentFuzzer, designed to automatically discover and exploit indirect prompt injection vulnerabilities across diverse LLM agents. Our approach starts by constructing a high-quality initial seed corpus, then employs a seed selection algorithm based on Monte Carlo Tree Search (MCTS) to iteratively refine inputs, thereby maximizing the likelihood of uncovering agent weaknesses. We evaluate AgentFuzzer on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o, respectively, nearly doubling the performance of baseline attacks. Moreover, AgentFuzzer exhibits strong transferability across unseen tasks and internal LLMs, as well as promising results against defenses. Beyond benchmark evaluations, we apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
MMS-LLaMA: Efficient LLM-based Audio-Visual Speech Recognition with Minimal Multimodal Speech Tokens
Audio-Visual Speech Recognition (AVSR) achieves robust speech recognition in noisy environments by combining auditory and visual information. However, recent Large Language Model (LLM) based AVSR systems incur high computational costs due to the high temporal resolution of audio-visual speech processed by LLMs. In this work, we introduce an efficient multimodal speech LLM framework that minimizes token length while preserving essential linguistic content. Our approach employs an early AV-fusion module for streamlined feature integration, an audio-visual speech Q-Former that dynamically allocates tokens based on input duration, and a refined query allocation strategy with a speech rate predictor to adjust token allocation according to speaking speed of each audio sample. Extensive experiments on the LRS3 dataset show that our method achieves state-of-the-art performance with a WER of 0.72% while using only 3.5 tokens per second. Moreover, our approach not only reduces token usage by 86% compared to the previous multimodal speech LLM framework, but also improves computational efficiency by reducing FLOPs by 35.7%.
Recent advances in LLMs have enabled their use as autonomous agents across a range of tasks, yet they continue to struggle with formulating and adhering to coherent long-term strategies. In this paper, we investigate whether LLM agents can self-improve when placed in environments that explicitly challenge their strategic planning abilities. Using the board game Settlers of Catan, accessed through the open-source Catanatron framework, we benchmark a progression of LLM-based agents, from a simple game-playing agent to systems capable of autonomously rewriting their own prompts and their player agent's code. We introduce a multi-agent architecture in which specialized roles (Analyzer, Researcher, Coder, and Player) collaborate to iteratively analyze gameplay, research new strategies, and modify the agent's logic or prompt. By comparing manually crafted agents to those evolved entirely by LLMs, we evaluate how effectively these systems can diagnose failure and adapt over time. Our results show that self-evolving agents, particularly when powered by models like Claude 3.7 and GPT-4o, outperform static baselines by autonomously adopting their strategies, passing along sample behavior to game-playing agents, and demonstrating adaptive reasoning over multiple iterations.
Large Language Models (LLMs) have transformed natural language processing, demonstrating impressive capabilities across diverse tasks. However, deploying these models introduces critical risks related to intellectual property violations and potential misuse, particularly as adversaries can imitate these models to steal services or generate misleading outputs. We specifically focus on model stealing attacks, as they are highly relevant to proprietary LLMs and pose a serious threat to their security, revenue, and ethical deployment. While various watermarking techniques have emerged to mitigate these risks, it remains unclear how far the community and industry have progressed in developing and deploying watermarks in LLMs. To bridge this gap, we aim to develop a comprehensive systematization for watermarks in LLMs by 1) presenting a detailed taxonomy for watermarks in LLMs, 2) proposing a novel intellectual property classifier to explore the effectiveness and impacts of watermarks on LLMs under both attack and attack-free environments, 3) analyzing the limitations of existing watermarks in LLMs, and 4) discussing practical challenges and potential future directions for watermarks in LLMs. Through extensive experiments, we show that despite promising research outcomes and significant attention from leading companies and community to deploy watermarks, these techniques have yet to reach their full potential in real-world applications due to their unfavorable impacts on model utility of LLMs and downstream tasks. Our findings provide an insightful understanding of watermarks in LLMs, highlighting the need for practical watermarks solutions tailored to LLM deployment.
Large language models (LLMs) have demonstrated the ability to generate formative feedback and instructional hints in English, making them increasingly relevant for AI-assisted education. However, their ability to provide effective instructional support across different languages, especially for mathematically grounded reasoning tasks, remains largely unexamined. In this work, we present the first large-scale simulation of multilingual tutor-student interactions using LLMs. A stronger model plays the role of the tutor, generating feedback in the form of hints, while a weaker model simulates the student. We explore 352 experimental settings across 11 typologically diverse languages, four state-of-the-art LLMs, and multiple prompting strategies to assess whether language-specific feedback leads to measurable learning gains. Our study examines how student input language, teacher feedback language, model choice, and language resource level jointly influence performance. Results show that multilingual hints can significantly improve learning outcomes, particularly in low-resource languages when feedback is aligned with the student's native language. These findings offer practical insights for developing multilingual, LLM-based educational tools that are both effective and inclusive.
This paper describes LIBU (LoRA enhanced influence-based unlearning), an algorithm to solve the task of unlearning - removing specific knowledge from a large language model without retraining from scratch and compromising its overall utility (SemEval-2025 Task 4: Unlearning sensitive content from Large Language Models). The algorithm combines classical \textit{influence functions} to remove the influence of the data from the model and \textit{second-order optimization} to stabilize the overall utility. Our experiments show that this lightweight approach is well applicable for unlearning LLMs in different kinds of task.
Automated counter-narratives (CN) offer a promising strategy for mitigating online hate speech, yet concerns about their affective tone, accessibility, and ethical risks remain. We propose a framework for evaluating Large Language Model (LLM)-generated CNs across four dimensions: persona framing, verbosity and readability, affective tone, and ethical robustness. Using GPT-4o-Mini, Cohere's CommandR-7B, and Meta's LLaMA 3.1-70B, we assess three prompting strategies on the MT-Conan and HatEval datasets. Our findings reveal that LLM-generated CNs are often verbose and adapted for people with college-level literacy, limiting their accessibility. While emotionally guided prompts yield more empathetic and readable responses, there remain concerns surrounding safety and effectiveness.
Large Language Models (LLMs) are transforming a wide range of domains, yet verifying their outputs remains a significant challenge, especially for complex open-ended tasks such as consolidation, summarization, and knowledge extraction. To address this, we introduce CheckEmbed (CE): a simple, scalable, and accurate verification method. CE reduces each LLM answer to a single embedding vector using powerful modern embedding LLM models like SFR-Embedding-Mistral. Prior methods such as BERTScore and SelfCheckGPT relied on weaker encoders like BERT, forcing them to operate at token or sentence granularity. In contrast, CE performs fast, semantically rich comparisons directly at the whole-answer level, overcoming key limitations in both accuracy and scalability. We conduct a comprehensive design and time complexity analysis across 13 verification baselines, including classical text scorers (e.g., BLEU), stability-based methods (e.g., SelfCheckGPT), and generative evaluators (e.g., LLM-as-a-Judge), which highlights the effectiveness, efficiency, versatility, and simplicity of CE. Empirical results show that CE reliably detects hallucinations in both closed and open-ended tasks. We further present evidence that CE generalizes beyond text to other modalities such as vision, establishing it as a practical and versatile verification framework.
LLMs have been extensively used for the task of automated code generation. In this work, we examine the applicability of LLMs for the related but relatively unexplored task of code-equivalence checking, i.e., given two programs, whether they are functionally equivalent or not. This is an important problem since benchmarking code equivalence can play a critical role in evaluating LLM capabilities for tasks such as code re-writing and code translation. Towards this end, we present CETBench - Code Equivalence with Transformations Benchmark, constructed via a repository of programs, where two programs in the repository may be solving the same or different tasks. Each instance in our dataset is obtained by taking a pair of programs in the repository and applying a random series of pre-defined code transformations, resulting in (non-)equivalent pairs. Our analysis on this dataset reveals a surprising finding that very simple code transformations in the underlying pair of programs can result in a significant drop in performance of SOTA LLMs for the task of code-equivalence checking. To remedy this, we present a simple fine-tuning-based approach to boost LLM performance on the transformed pairs of programs. Our approach for dataset generation is generic, and can be used with repositories with varying program difficulty levels and allows for applying varying numbers as well as kinds of transformations. In our experiments, we perform ablations over the difficulty level of original programs, as well as the kind of transformations used in generating pairs for equivalence checking. Our analysis presents deep insights into the working of LLMs for the task of code-equivalence, and points to the fact that they may still be far from what could be termed as a semantic understanding of the underlying code.
As Large Language Model (LLM) agents become more widespread, associated misalignment risks increase. Prior work has examined agents' ability to enact misaligned behaviour (misalignment capability) and their compliance with harmful instructions (misuse propensity). However, the likelihood of agents attempting misaligned behaviours in real-world settings (misalignment propensity) remains poorly understood. We introduce a misalignment propensity benchmark, AgentMisalignment, consisting of a suite of realistic scenarios in which LLM agents have the opportunity to display misaligned behaviour. We organise our evaluations into subcategories of misaligned behaviours, including goal-guarding, resisting shutdown, sandbagging, and power-seeking. We report the performance of frontier models on our benchmark, observing higher misalignment on average when evaluating more capable models. Finally, we systematically vary agent personalities through different system prompts. We find that persona characteristics can dramatically and unpredictably influence misalignment tendencies -- occasionally far more than the choice of model itself -- highlighting the importance of careful system prompt engineering for deployed AI agents. Our work highlights the failure of current alignment methods to generalise to LLM agents, and underscores the need for further propensity evaluations as autonomous systems become more prevalent.
Although large language models (LLMs) have shown great potential in recommender systems, the prohibitive computational costs for fine-tuning LLMs on entire datasets hinder their successful deployment in real-world scenarios. To develop affordable and effective LLM-based recommender systems, we focus on the task of coreset selection which identifies a small subset of fine-tuning data to optimize the test loss, thereby facilitating efficient LLMs' fine-tuning. Although there exist some intuitive solutions of subset selection, including distribution-based and importance-based approaches, they often lead to suboptimal performance due to the misalignment with downstream fine-tuning objectives or weak generalization ability caused by individual-level sample selection. To overcome these challenges, we propose GORACS, which is a novel Group-level Optimal tRAnsport-guided Coreset Selection framework for LLM-based recommender systems. GORACS is designed based on two key principles for coreset selection: 1) selecting the subsets that minimize the test loss to align with fine-tuning objectives, and 2) enhancing model generalization through group-level data selection. Corresponding to these two principles, GORACS has two key components: 1) a Proxy Optimization Objective (POO) leveraging optimal transport and gradient information to bound the intractable test loss, thus reducing computational costs by avoiding repeated LLM retraining, and 2) a two-stage Initialization-Then-Refinement Algorithm (ITRA) for efficient group-level selection. Our extensive experiments across diverse recommendation datasets and tasks validate that GORACS significantly reduces fine-tuning costs of LLMs while achieving superior performance over the state-of-the-art baselines and full data training. The source code of GORACS are available at https://github.com/Mithas-114/GORACS.
Unit testing plays a critical role in ensuring software correctness. However, writing unit tests manually is laborious, especially for strong typed languages like Java, motivating the need for automated approaches. Traditional methods primarily rely on search-based or randomized algorithms to generate tests that achieve high code coverage and produce regression oracles, which are derived from the program's current behavior rather than its intended functionality. Recent advances in large language models (LLMs) have enabled oracle generation from natural language descriptions. However, existing LLM-based methods often require LLM fine-tuning or rely on external tools such as EvoSuite for test prefix generation. In this work, we propose CANDOR, a novel end-to-end, prompt-based LLM framework for automated JUnit test generation. CANDOR orchestrates multiple specialized LLM agents to generate JUnit tests, including both high-quality test prefixes and accurate oracles. To mitigate the notorious hallucinations in LLMs, we introduce a novel strategy that engages multiple reasoning LLMs in a panel discussion and generate accurate oracles based on consensus. Additionally, to reduce the verbosity of reasoning LLMs' outputs, we propose a novel dual-LLM pipeline to produce concise and structured oracle evaluations. Our experiments on the HumanEvalJava and LeetCodeJava datasets show that CANDOR can generate accurate oracles and is slightly better than EvoSuite in generating tests with high line coverage and clearly superior in terms of mutation score. Moreover, CANDOR significantly outperforms the state-of-the-art, prompt-based test generator LLM-Empirical, achieving improvements of 15.8 to 25.1 percentage points in oracle correctness on both correct and faulty source code. Ablation studies confirm the critical contributions of key agents in improving test prefix quality and oracle accuracy.
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.
Graph Retrieval Augmented Generation (GraphRAG) effectively enhances external knowledge integration capabilities by explicitly modeling knowledge relationships, thereby improving the factual accuracy and generation quality of Large Language Models (LLMs) in specialized domains. However, existing methods suffer from two inherent limitations: 1) Inefficient Information Aggregation: They rely on a single agent and fixed iterative patterns, making it difficult to adaptively capture multi-level textual, structural, and degree information within graph data. 2) Rigid Reasoning Mechanism: They employ preset reasoning schemes, which cannot dynamically adjust reasoning depth nor achieve precise semantic correction. To overcome these limitations, we propose Graph Counselor, an GraphRAG method based on multi-agent collaboration. This method uses the Adaptive Graph Information Extraction Module (AGIEM), where Planning, Thought, and Execution Agents work together to precisely model complex graph structures and dynamically adjust information extraction strategies, addressing the challenges of multi-level dependency modeling and adaptive reasoning depth. Additionally, the Self-Reflection with Multiple Perspectives (SR) module improves the accuracy and semantic consistency of reasoning results through self-reflection and backward reasoning mechanisms. Experiments demonstrate that Graph Counselor outperforms existing methods in multiple graph reasoning tasks, exhibiting higher reasoning accuracy and generalization ability. Our code is available at https://github.com/gjq100/Graph-Counselor.git.
Large language models (LLMs) often struggle with visualization tasks like plotting diagrams, charts, where success depends on both code correctness and visual semantics. Existing instruction-tuning datasets lack execution-grounded supervision and offer limited support for iterative code correction, resulting in fragile and unreliable plot generation. We present VisCode-200K, a large-scale instruction tuning dataset for Python-based visualization and self-correction. It contains over 200K examples from two sources: (1) validated plotting code from open-source repositories, paired with natural language instructions and rendered plots; and (2) 45K multi-turn correction dialogues from Code-Feedback, enabling models to revise faulty code using runtime feedback. We fine-tune Qwen2.5-Coder-Instruct on VisCode-200K to create VisCoder, and evaluate it on PandasPlotBench. VisCoder significantly outperforms strong open-source baselines and approaches the performance of proprietary models like GPT-4o-mini. We further adopt a self-debug evaluation protocol to assess iterative repair, demonstrating the benefits of feedback-driven learning for executable, visually accurate code generation.
Enhancing the mathematical reasoning capabilities of LLMs has garnered significant attention in both the mathematical and computer science communities. Recent works have made substantial progress in both Natural Language (NL) reasoning and Formal Language (FL) reasoning by leveraging the potential of pure Reinforcement Learning (RL) methods on base models. However, RL approaches struggle to impart new capabilities not presented in the base model, highlighting the need to integrate more knowledge like FL into NL math reasoning effectively. Yet, this integration is challenging due to inherent disparities in problem structure and reasoning format between NL and FL. To address these challenges, we introduce **NL-FL HybridReasoning**, an end-to-end framework designed to incorporate the FL expert into NL math problem-solving. To bridge the NL and FL input format gap, we propose the *NL-FL Problem Alignment* method, which reformulates the Question-Answering (QA) problems in NL as existence theorems in FL. Subsequently, the *Mixed Problem Input* technique we provide enables the FL reasoner to handle both QA and existence problems concurrently. Lastly, we mitigate the NL and FL output format gap in reasoning through an LLM-based *Answer Extraction* mechanism. Comprehensive experiments demonstrate that the **HybridReasoning** framework achieves **89.80%** and **84.34%** accuracy rates on the MATH-500 and the AMC benchmarks, surpassing the NL baseline by 4.60% and 4.82%, respectively. Notably, some problems resolved by our framework remain unsolved by the NL baseline model even under a larger number of trials.
Large language models (LLMs) are known to be sensitive to input phrasing, but the mechanisms by which semantic cues shape reasoning remain poorly understood. We investigate this phenomenon in the context of comparative math problems with objective ground truth, revealing a consistent and directional framing bias: logically equivalent questions containing the words ``more'', ``less'', or ``equal'' systematically steer predictions in the direction of the framing term. To study this effect, we introduce MathComp, a controlled benchmark of 300 comparison scenarios, each evaluated under 14 prompt variants across three LLM families. We find that model errors frequently reflect linguistic steering, systematic shifts toward the comparative term present in the prompt. Chain-of-thought prompting reduces these biases, but its effectiveness varies: free-form reasoning is more robust, while structured formats may preserve or reintroduce directional drift. Finally, we show that including demographic identity terms (e.g., ``a woman'', ``a Black person'') in input scenarios amplifies directional drift, despite identical underlying quantities, highlighting the interplay between semantic framing and social referents. These findings expose critical blind spots in standard evaluation and motivate framing-aware benchmarks for diagnosing reasoning robustness and fairness in LLMs.
Several closed-source LLMs have consistently outperformed open-source alternatives in program repair tasks, primarily due to their superior reasoning capabilities and extensive pre-training. This paper introduces Repairity, a novel three-stage methodology that significantly narrows this performance gap through reasoning extraction and reinforcement learning. Our approach: (1) systematically filters high-quality reasoning traces from closed-source models using correctness verification, (2) transfers this reasoning knowledge to open-source models via supervised fine-tuning, and (3) develops reinforcement learning with LLM-based feedback to further optimize performance. Empirical evaluation across multiple program repair benchmarks demonstrates that Repairity improves the performance of Qwen2.5-Coder-32B-Instruct, a base open source LLM, by 8.68\% on average, reducing the capability gap with Claude-Sonnet3.7, a state-of-the-art closed-source model, from 10.05% to 1.35%. Ablation studies confirm that both reasoning extraction and LLM-guided reinforcement learning contribute significantly to these improvements. Our methodology generalizes effectively to additional code-related tasks, enabling organizations to leverage high-quality program repair capabilities while maintaining the customizability, transparency, and deployment flexibility inherent to open-source models.
With the rise of AI-based code generation, customizing existing code out of natural language instructions to modify visual results -such as figures or images -has become possible, promising to reduce the need for deep programming expertise. However, even experienced developers can struggle with this task, as it requires identifying relevant code regions (feature location), generating valid code variants, and ensuring the modifications reliably align with user intent. In this paper, we introduce vTikZ, the first benchmark designed to evaluate the ability of Large Language Models (LLMs) to customize code while preserving coherent visual outcomes. Our benchmark consists of carefully curated vTikZ editing scenarios, parameterized ground truths, and a reviewing tool that leverages visual feedback to assess correctness. Empirical evaluation with stateof-the-art LLMs shows that existing solutions struggle to reliably modify code in alignment with visual intent, highlighting a gap in current AI-assisted code editing approaches. We argue that vTikZ opens new research directions for integrating LLMs with visual feedback mechanisms to improve code customization tasks in various domains beyond TikZ, including image processing, art creation, Web design, and 3D modeling.
Extensive LLM applications demand efficient structured generations, particularly for LR(1) grammars, to produce outputs in specified formats (e.g., JSON). Existing methods primarily parse LR(1) grammars into a pushdown automaton (PDA), leading to runtime execution overhead for context-dependent token processing, especially inefficient under large inference batches. To address these issues, we propose Pre$^3$ that exploits deterministic pushdown automata (DPDA) to optimize the constrained LLM decoding efficiency. First, by precomputing prefix-conditioned edges during the preprocessing, Pre$^3$ enables ahead-of-time edge analysis and thus makes parallel transition processing possible. Second, by leveraging the prefix-conditioned edges, Pre$^3$ introduces a novel approach that transforms LR(1) transition graphs into DPDA, eliminating the need for runtime path exploration and achieving edge transitions with minimal overhead. Pre$^3$ can be seamlessly integrated into standard LLM inference frameworks, reducing time per output token (TPOT) by up to 40% and increasing throughput by up to 36% in our experiments. Our code is available at https://github.com/ModelTC/lightllm.
Recently, Large Language Models (LLMs) have demonstrated significant potential for data annotation, markedly reducing the labor costs associated with downstream applications. However, existing methods mostly adopt an aggressive strategy by prompting LLM to determine a single gold label for each unlabeled sample. Due to the inherent uncertainty within LLMs, they often produce incorrect labels for difficult samples, severely compromising the data quality for downstream applications. Motivated by ambiguity aversion in human behaviors, we propose a novel candidate annotation paradigm wherein large language models are encouraged to output all possible labels when incurring uncertainty. To ensure unique labels are provided for downstream tasks, we develop a teacher-student framework CanDist that distills candidate annotations with a Small Language Model (SLM). We further provide a rigorous justification demonstrating that distilling candidate annotations from the teacher LLM offers superior theoretical guarantees compared to directly using single annotations. Extensive experiments across six text classification tasks validate the effectiveness of our proposed method. The source code is available at https://github.com/MingxuanXia/CanDist.
Large language models (LLMs) have recently achieved impressive performance across a wide range of natural language tasks and are now widely used in real-world applications. Among them, black-box LLMs--served via APIs without access to model internals--are especially dominant due to their scalability and ease of deployment. Despite their strong capabilities, these models typically produce generalized responses that overlook personal preferences and reasoning styles. This has led to growing interest in black-box LLM personalization, which aims to tailor model outputs to user-specific context without modifying model parameters. However, existing approaches primarily focus on response-level personalization, attempting to match final outputs without modeling personal thought process. To address this limitation, we propose RPM, a framework for reasoning-level personalization that aligns the model's reasoning process with a user's personalized logic. RPM first constructs statistical user-specific factors by extracting and grouping response-influential features from user history. It then builds personalized reasoning paths that reflect how these factors are used in context. In the inference stage, RPM retrieves reasoning-aligned examples for new queries via feature-level similarity and performs inference conditioned on the structured factors and retrieved reasoning paths, enabling the model to follow user-specific reasoning trajectories. This reasoning-level personalization enhances both predictive accuracy and interpretability by grounding model outputs in user-specific logic through structured information. Extensive experiments across diverse tasks show that RPM consistently outperforms response-level personalization methods, demonstrating the effectiveness of reasoning-level personalization in black-box LLMs.
Large language models (LLMs) have majorly advanced NLP and AI, and next to their ability to perform a wide range of procedural tasks, a major success factor is their internalized factual knowledge. Since Petroni et al. (2019), analyzing this knowledge has gained attention. However, most approaches investigate one question at a time via modest-sized pre-defined samples, introducing an ``availability bias'' (Tversky&Kahnemann, 1973) that prevents the analysis of knowledge (or beliefs) of LLMs beyond the experimenter's predisposition. To address this challenge, we propose a novel methodology to comprehensively materialize an LLM's factual knowledge through recursive querying and result consolidation. Our approach is a milestone for LLM research, for the first time providing constructive insights into the scope and structure of LLM knowledge (or beliefs). As a prototype, we build GPTKB, a knowledge base (KB) comprising 101 million relational triples for over 2.9 million entities from GPT-4o-mini. We use GPTKB to exemplarily analyze GPT-4o-mini's factual knowledge in terms of scale, accuracy, bias, cutoff and consistency, at the same time. GPTKB is accessible at https://gptkb.org
Traditional Business Process Management (BPM) struggles with rigidity, opacity, and scalability in dynamic environments while emerging Large Language Models (LLMs) present transformative opportunities alongside risks. This paper explores four real-world use cases that demonstrate how LLMs, augmented with trustworthy process intelligence, redefine process modeling, prediction, and automation. Grounded in early-stage research projects with industrial partners, the work spans manufacturing, modeling, life-science, and design processes, addressing domain-specific challenges through human-AI collaboration. In manufacturing, an LLM-driven framework integrates uncertainty-aware explainable Machine Learning (ML) with interactive dialogues, transforming opaque predictions into auditable workflows. For process modeling, conversational interfaces democratize BPMN design. Pharmacovigilance agents automate drug safety monitoring via knowledge-graph-augmented LLMs. Finally, sustainable textile design employs multi-agent systems to navigate regulatory and environmental trade-offs. We intend to examine tensions between transparency and efficiency, generalization and specialization, and human agency versus automation. By mapping these trade-offs, we advocate for context-sensitive integration prioritizing domain needs, stakeholder values, and iterative human-in-the-loop workflows over universal solutions. This work provides actionable insights for researchers and practitioners aiming to operationalize LLMs in critical BPM environments.
Large Language Models (LLMs) have shown to be effective evaluators across various domains such as machine translations or the scientific domain. Current LLM-as-a-Judge approaches rely mostly on individual assessments or a single round of pairwise assessments, preventing the judge LLM from developing a global ranking perspective. To address this, we present Knockout Assessment, an LLM-asa Judge method using a knockout tournament system with iterative pairwise comparisons. Experiments across three LLMs on two datasets show that knockout assessment improves scoring accuracy, increasing Pearson correlation with expert evaluations by 0.07 on average for university-level exam scoring and machine translation evaluations, aligning LLM assessments more closely with human scoring.
Query expansion methods powered by large language models (LLMs) have demonstrated effectiveness in zero-shot retrieval tasks. These methods assume that LLMs can generate hypothetical documents that, when incorporated into a query vector, enhance the retrieval of real evidence. However, we challenge this assumption by investigating whether knowledge leakage in benchmarks contributes to the observed performance gains. Using fact verification as a testbed, we analyze whether the generated documents contain information entailed by ground-truth evidence and assess their impact on performance. Our findings indicate that, on average, performance improvements consistently occurred for claims whose generated documents included sentences entailed by gold evidence. This suggests that knowledge leakage may be present in fact-verification benchmarks, potentially inflating the perceived performance of LLM-based query expansion methods.
Large language models (LLMs) are increasingly used for long-content generation (e.g., long Chain-of-Thought reasoning) where decoding efficiency becomes a critical bottleneck: Autoregressive decoding is inherently limited by its sequential token generation process, where each token must be generated before the next can be processed. This sequential dependency restricts the ability to fully leverage modern hardware's parallel processing capabilities. Existing methods like speculative decoding and layer skipping offer potential speedups but have notable drawbacks: speculative decoding relies on an auxiliary "drafter" model, which can be challenging to acquire and increases memory overhead, while layer skipping may introduce discrepancies in the outputs due to the missing key-value cache at skipped layers. In this work, we propose AdaDecode, which accelerates LLM decoding without requiring auxiliary models or changes to the original model parameters, while ensuring output consistency. AdaDecode leverages the insight that many tokens can accurately be generated at intermediate layers, as further layers often do not significantly alter predictions once the model reaches a certain confidence. By adaptively generating tokens at intermediate layers when confidence is high, AdaDecode enables the next token's computation to begin immediately. The remaining layer computations for early-predicted tokens are deferred and executed in parallel with subsequent tokens when needed, maximizing hardware utilization and reducing decoding latency. A final verification step ensures that early predictions match the results of standard autoregressive decoding, preserving output parity. Experiments across diverse generation tasks shows that AdaDecode consistently achieves superior decoding throughput with up to 1.73x speedup, while guaranteeing output parity with standard autoregressive decoding.
Continuous Integration and Continuous Deployment (CI/CD) pipelines are pivotal to modern software engineering, yet diagnosing and resolving their failures remains a complex and labor-intensive challenge. In this paper, we present LogSage, the first end-to-end LLM-powered framework that performs root cause analysis and solution generation from failed CI/CD pipeline logs. During the root cause analysis stage, LogSage employs a specialized log preprocessing pipeline tailored for LLMs, which extracts critical error logs and eliminates noise to enhance the precision of LLM-driven root cause analysis. In the solution generation stage, LogSage leverages RAG to integrate historical resolution strategies and utilizes tool-calling to deliver actionable, automated fixes. We evaluated the root cause analysis stage using a newly curated open-source dataset, achieving 98\% in precision and 12\% improvement over naively designed LLM-based log analysis baselines, while attaining near-perfect recall. The end-to-end system was rigorously validated in a large-scale industrial CI/CD environment of production quality, processing more than 3,000 executions daily and accumulating more than 1.07 million executions in its first year of deployment, with end-to-end precision exceeding 88\%. These two forms of evaluation confirm that LogSage providing a scalable and practical solution to manage CI/CD pipeline failures in real-world DevOps workflows.
Discourse understanding is essential for many NLP tasks, yet most existing work remains constrained by framework-dependent discourse representations. This work investigates whether large language models (LLMs) capture discourse knowledge that generalizes across languages and frameworks. We address this question along two dimensions: (1) developing a unified discourse relation label set to facilitate cross-lingual and cross-framework discourse analysis, and (2) probing LLMs to assess whether they encode generalizable discourse abstractions. Using multilingual discourse relation classification as a testbed, we examine a comprehensive set of 23 LLMs of varying sizes and multilingual capabilities. Our results show that LLMs, especially those with multilingual training corpora, can generalize discourse information across languages and frameworks. Further layer-wise analyses reveal that language generalization at the discourse level is most salient in the intermediate layers. Lastly, our error analysis provides an account of challenging relation classes.
Despite rapid advancements in the research and deployment of large language models (LLMs), the statistical distribution of model parameters, as well as their influence on initialization, training dynamics, and downstream efficiency, has received surprisingly little attention. A recent work introduced BackSlash, a training-time compression algorithm. It first demonstrated that pre-trained LLM parameters follow generalized Gaussian distributions (GGDs) better. By optimizing GG priors during training, BackSlash can reduce parameters by up to 90\% with minimal performance loss. Building on this foundational insight, we propose a unified, end-to-end framework for LLM optimization based on the GG model. Our contributions are threefold: (1) GG-based initialization scheme that aligns with the statistical structure of trained models, resulting in faster convergence and improved accuracy; (2) DeepShape, a post-training regularization method that reshapes weight distributions to match a GG profile, improving compressibility with minimized degradation in performance; and (3) RF8, a compact and hardware-efficient 8-bit floating-point format designed for GG-distributed-initialized BackSlash training, enabling low-cost inference without compromising accuracy. Experiments across diverse model architectures show that our framework consistently yields smaller and faster models that match or outperform standard training baselines. By grounding LLM development in principled statistical modeling, this work forges a new path toward efficient, scalable, and hardware-aware AI systems. The code is available on our project page: https://huggingface.co/spaces/shifeng3711/gg_prior.
Formal logic enables computers to reason in natural language by representing sentences in symbolic forms and applying rules to derive conclusions. However, in what our study characterizes as "rulebreaker" scenarios, this method can lead to conclusions that are typically not inferred or accepted by humans given their common sense and factual knowledge. Inspired by works in cognitive science, we create RULEBREAKERS, the first dataset for rigorously evaluating the ability of large language models (LLMs) to recognize and respond to rulebreakers (versus non-rulebreakers) in a human-like manner. Evaluating seven LLMs, we find that most models, including GPT-4o, achieve mediocre accuracy on RULEBREAKERS and exhibit some tendency to over-rigidly apply logical rules unlike what is expected from typical human reasoners. Further analysis suggests that this apparent failure is potentially associated with the models' poor utilization of their world knowledge and their attention distribution patterns. Whilst revealing a limitation of current LLMs, our study also provides a timely counterbalance to a growing body of recent works that propose methods relying on formal logic to improve LLMs' general reasoning capabilities, highlighting their risk of further increasing divergence between LLMs and human-like reasoning.
Auto-vectorization is a fundamental optimization for modern compilers to exploit SIMD parallelism. However, state-of-the-art approaches still struggle to handle intricate code patterns, often requiring manual hints or domain-specific expertise. Large language models (LLMs), with their ability to capture intricate patterns, provide a promising solution, yet their effective application in compiler optimizations remains an open challenge due to issues such as hallucinations and a lack of domain-specific reasoning. In this paper, we present VecTrans, a novel framework that leverages LLMs to enhance compiler-based code vectorization. VecTrans first employs compiler analysis to identify potentially vectorizable code regions. It then utilizes an LLM to refactor these regions into patterns that are more amenable to the compilers auto-vectorization. To ensure semantic correctness, VecTrans further integrates a hybrid validation mechanism at the intermediate representation (IR) level. With the above efforts, VecTrans combines the adaptability of LLMs with the precision of compiler vectorization, thereby effectively opening up the vectorization opportunities. experimental results show that among all TSVC functions unvectorizable by GCC, ICC, Clang, and BiSheng Compiler, VecTrans achieves an geomean speedup of 1.77x and successfully vectorizes 24 of 51 test cases. This marks a significant advancement over state-of-the-art approaches while maintaining a cost efficiency of $0.012 per function optimization for LLM API usage.
Malicious websites and phishing URLs pose an ever-increasing cybersecurity risk, with phishing attacks growing by 40% in a single year. Traditional detection approaches rely on machine learning classifiers or rule-based scanners operating in the cloud, but these face significant challenges in generalization, privacy, and evasion by sophisticated threats. In this paper, we propose a novel client-side framework for comprehensive URL analysis that leverages zero-shot inference by a local large language model (LLM) running entirely in-browser. Our system uses a compact LLM (e.g., 3B/8B parameters) via WebLLM to perform reasoning over rich context collected from the target webpage, including static code analysis (JavaScript abstract syntax trees, structure, and code patterns), dynamic sandbox execution results (DOM changes, API calls, and network requests),and visible content. We detail the architecture and methodology of the system, which combines a real browser sandbox (using iframes) resistant to common anti-analysis techniques, with an LLM-based analyzer that assesses potential vulnerabilities and malicious behaviors without any task-specific training (zero-shot). The LLM aggregates evidence from multiple sources (code, execution trace, page content) to classify the URL as benign or malicious and to provide an explanation of the threats or security issues identified. We evaluate our approach on a diverse set of benign and malicious URLs, demonstrating that even a compact client-side model can achieve high detection accuracy and insightful explanations comparable to cloud-based solutions, while operating privately on end-user devices. The results show that client-side LLM inference is a feasible and effective solution to web threat analysis, eliminating the need to send potentially sensitive data to cloud services.
The proliferation of misinformation necessitates scalable, automated fact-checking solutions. Yet, current benchmarks often overlook multilingual and topical diversity. This paper introduces a novel, dynamically extensible data set that includes 61,514 claims in multiple languages and topics, extending existing datasets up to 2024. Through a comprehensive evaluation of five prominent Large Language Models (LLMs), including GPT-4o, GPT-3.5 Turbo, LLaMA 3.1, and Mixtral 8x7B, we identify significant performance gaps between different languages and topics. While overall GPT-4o achieves the highest accuracy, it declines to classify 43% of claims. Across all models, factual-sounding claims are misclassified more often than opinions, revealing a key vulnerability. These findings underscore the need for caution and highlight challenges in deploying LLM-based fact-checking systems at scale.
Fine-tuning LLMs on tabular classification tasks can lead to the phenomenon of fine-tuning multiplicity where equally well-performing models make conflicting predictions on the same input. Fine-tuning multiplicity can arise due to variations in the training process, e.g., seed, weight initialization, minor changes to training data, etc., raising concerns about the reliability of Tabular LLMs in high-stakes applications such as finance, hiring, education, healthcare. Our work formalizes this unique challenge of fine-tuning multiplicity in Tabular LLMs and proposes a novel measure to quantify the consistency of individual predictions without expensive model retraining. Our measure quantifies a prediction's consistency by analyzing (sampling) the model's local behavior around that input in the embedding space. Interestingly, we show that sampling in the local neighborhood can be leveraged to provide probabilistic guarantees on prediction consistency under a broad class of fine-tuned models, i.e., inputs with sufficiently high local stability (as defined by our measure) also remain consistent across several fine-tuned models with high probability. We perform experiments on multiple real-world datasets to show that our local stability measure preemptively captures consistency under actual multiplicity across several fine-tuned models, outperforming competing measures.
Large language models (LLMs) have exhibited their problem-solving abilities in mathematical reasoning. Solving realistic optimization (OPT) problems in application scenarios requires advanced and applied mathematics ability. However, current OPT benchmarks that merely solve linear programming are far from complex realistic situations. In this work, we propose OptiBench, a benchmark for End-to-end optimization problem-solving with human-readable inputs and outputs. OptiBench contains rich optimization problems, including linear and nonlinear programming with or without tabular data, which can comprehensively evaluate LLMs' solving ability. In our benchmark, LLMs are required to call a code solver to provide precise numerical answers. Furthermore, to alleviate the data scarcity for optimization problems, and to bridge the gap between open-source LLMs on a small scale (e.g., Llama-3-8b) and closed-source LLMs (e.g., GPT-4), we further propose a data synthesis method namely ReSocratic. Unlike general data synthesis methods that proceed from questions to answers, \ReSocratic first incrementally synthesizes formatted optimization demonstration with mathematical formulations step by step and then back-translates the generated demonstrations into questions. Based on this, we synthesize the ReSocratic-29k dataset. We further conduct supervised fine-tuning with ReSocratic-29k on multiple open-source models. Experimental results show that ReSocratic-29k significantly improves the performance of open-source models.
Conventional biomedical research is increasingly labor-intensive due to the exponential growth of scientific literature and datasets. Artificial intelligence (AI), particularly Large Language Models (LLMs), has the potential to revolutionize this process by automating various steps. Still, significant challenges remain, including the need for multidisciplinary expertise, logicality of experimental design, and performance measurements. This paper introduces BioResearcher, the first end-to-end automated system designed to streamline the entire biomedical research process involving dry lab experiments. BioResearcher employs a modular multi-agent architecture, integrating specialized agents for search, literature processing, experimental design, and programming. By decomposing complex tasks into logically related sub-tasks and utilizing a hierarchical learning approach, BioResearcher effectively addresses the challenges of multidisciplinary requirements and logical complexity. Furthermore, BioResearcher incorporates an LLM-based reviewer for in-process quality control and introduces novel evaluation metrics to assess the quality and automation of experimental protocols. BioResearcher successfully achieves an average execution success rate of 63.07% across eight previously unmet research objectives. The generated protocols averagely outperform typical agent systems by 22.0% on five quality metrics. The system demonstrates significant potential to reduce researchers' workloads and accelerate biomedical discoveries, paving the way for future innovations in automated research systems.
Large Language Model (LLM) agents are reshaping the game industry, particularly with more intelligent and human-preferable game characters. However, existing game benchmarks fall short of practical needs: they lack evaluations of diverse LLM capabilities across various game genres, studies of agentic modules crucial for complex gameplay, and fine-tuning datasets for aligning pre-trained LLMs into gaming agents. To fill these gaps, we present \textbf{\benchname{}}, a foundational benchmark designed to train and evaluate LLM agents across diverse real-world video games. Unlike existing benchmarks, Orak includes 12 popular video games spanning all major genres, enabling comprehensive studies of LLM capabilities and agentic modules essential for intricate game scenarios. To support consistent evaluation of LLMs, we introduce a plug-and-play interface based on Model Context Protocol (MCP) that enables LLMs to seamlessly connect with games and manipulate agentic modules. Additionally, we propose a fine-tuning dataset, consisting of LLM gameplay trajectories across diverse game genres. Orak offers a comprehensive evaluation framework, encompassing general game score leaderboards, LLM battle arenas, and in-depth analyses of visual input state, agentic strategies, and fine-tuning effects, establishing a foundation towards building generic gaming agents. Code is available at https://github.com/krafton-ai/Orak.
Function-calling has enabled large language models (LLMs) to act as tool-using agents, but injecting thousands of tool schemas into the prompt is costly and error-prone. We introduce MCP-Zero, a proactive agent framework that lets the LLM itself decide when and which external tools to retrieve, thereby assembling a task-specific toolchain from scratch. The framework is built upon three components: (1) Proactive Tool Request, where the model emits a structured $\left<\operatorname{tool\_assistant}\right>$ block that explicitly specifies the desired server and task; (2) Hierarchical Vector Routing, a coarse-to-fine retrieval algorithm that first selects candidate servers and then ranks tools within each server based on the semantic similarity; (3) Iterative Proactive Invocation, enabling multi-round, cross-domain toolchain construction with minimal context overhead, and allowing the model to iteratively revise its request when the returned tools are insufficient. To evaluate our approach we also compile MCP-tools, a retrieval dataset comprising 308 MCP servers and 2,797 tools extracted from the official Model-Context-Protocol repository and normalized into a unified JSON schema. Experiments show that MCP-Zero (i) effectively addresses the context overhead problem of existing methods and accurately selects the correct tool from a pool of nearly 3,000 candidates (248.1k tokens); (ii) reduces token consumption by 98\% on the APIbank while maintaining high accuracy; and (iii) supports multi-turn tool invocation with consistent accuracy across rounds.
Accelerating large language model (LLM) inference is critical for real-world deployments requiring high throughput and low latency. Contextual sparsity, where each token dynamically activates only a small subset of the model parameters, shows promise but does not scale to large batch sizes due to union of active neurons quickly approaching dense computation. We introduce Polar Sparsity, highlighting a key shift in sparsity importance from MLP to Attention layers as we scale batch size and sequence length. While MLP layers become more compute-efficient under batching, their sparsity vanishes. In contrast, attention becomes increasingly more expensive at scale, while their head sparsity remains stable and batch-invariant. We develop hardware-efficient, sparsity-aware GPU kernels for selective MLP and Attention computations, delivering up to \(2.2\times\) end-to-end speedups for models like OPT, LLaMA-2 \& 3, across various batch sizes and sequence lengths without compromising accuracy. To our knowledge, this is the first work to demonstrate that contextual sparsity can scale effectively to large batch sizes, delivering substantial inference acceleration with minimal changes, making Polar Sparsity practical for large-scale, high-throughput LLM deployment systems. Our code is available at: https://github.com/susavlsh10/Polar-Sparsity.
This paper presents a systematic evaluation of Large Language Models' (LLMs) behavior on long-tail distributed (encrypted) texts and their safety implications. We introduce a two-dimensional framework for assessing LLM safety: (1) instruction refusal-the ability to reject harmful obfuscated instructions, and (2) generation safety-the suppression of generating harmful responses. Through comprehensive experiments, we demonstrate that models that possess capabilities to decrypt ciphers may be susceptible to mismatched-generalization attacks: their safety mechanisms fail on at least one safety dimension, leading to unsafe responses or over-refusal. Based on these findings, we evaluate a number of pre-LLM and post-LLM safeguards and discuss their strengths and limitations. This work contributes to understanding the safety of LLM in long-tail text scenarios and provides directions for developing robust safety mechanisms.
Mixture-of-Experts (MoE) has been gaining popularity due to its successful adaptation to large language models (LLMs). In this work, we introduce Privacy-preserving Collaborative Mixture-of-Experts (PC-MoE), which leverages the sparsity of the MoE architecture for memory-efficient decentralized collaborative LLM training, enabling multiple parties with limited GPU-memory and data resources to collectively train more capable LLMs than they could achieve individually. At the same time, this approach protects training data privacy of each participant by keeping training data, as well as parts of the forward pass signal and gradients locally within each party. By design, PC-MoE synergistically combines the strengths of distributed computation with strong confidentiality assurances. Unlike most privacy-preserving schemes, which pay for confidentiality with lower task accuracy, our framework breaks that trade-off: across seven popular LLM benchmarks, it almost matches (and sometimes exceeds) the performance and convergence rate of a fully centralized model, enjoys near 70% peak GPU RAM reduction, while being fully robust against reconstruction attacks.
Fault localization, the process of identifying the software components responsible for failures, is essential but often time-consuming. Recent advances in Large Language Models (LLMs) have enabled fault localization without extensive defect datasets or model fine-tuning. However, existing LLM-based methods rely only on general LLM capabilities and lack integration of project-specific knowledge, resulting in limited effectiveness, especially for complex software. We introduce MemFL, a novel approach that enhances LLM-based fault localization by integrating project-specific knowledge via external memory. This memory includes static summaries of the project and dynamic, iterative debugging insights gathered from previous attempts. By leveraging external memory, MemFL simplifies debugging into three streamlined steps, significantly improving efficiency and accuracy. Iterative refinement through dynamic memory further enhances reasoning quality over time. Evaluated on the Defects4J benchmark, MemFL using GPT-4o-mini localized 12.7% more bugs than current LLM-based methods, achieving this improvement with just 21% of the execution time (17.4 seconds per bug) and 33% of the API cost (0.0033 dollars per bug). On complex projects, MemFL's advantage increased to 27.6%. Additionally, MemFL with GPT-4.1-mini outperformed existing methods by 24.4%, requiring only 24.7 seconds and 0.0094 dollars per bug. MemFL thus demonstrates significant improvements by effectively incorporating project-specific knowledge into LLM-based fault localization, delivering high accuracy with reduced time and cost.
Large Language Models (LLMs) are predominantly evaluated on Standard American English (SAE), often overlooking the diversity of global English varieties. This narrow focus may raise fairness concerns as degraded performance on non-standard varieties can lead to unequal benefits for users worldwide. Therefore, it is critical to extensively evaluate the linguistic robustness of LLMs on multiple non-standard English varieties. We introduce Trans-EnV, a framework that automatically transforms SAE datasets into multiple English varieties to evaluate the linguistic robustness. Our framework combines (1) linguistics expert knowledge to curate variety-specific features and transformation guidelines from linguistic literature and corpora, and (2) LLM-based transformations to ensure both linguistic validity and scalability. Using Trans-EnV, we transform six benchmark datasets into 38 English varieties and evaluate seven state-of-the-art LLMs. Our results reveal significant performance disparities, with accuracy decreasing by up to 46.3% on non-standard varieties. These findings highlight the importance of comprehensive linguistic robustness evaluation across diverse English varieties. Each construction of Trans-EnV was validated through rigorous statistical testing and consultation with a researcher in the field of second language acquisition, ensuring its linguistic validity. Our code and datasets are publicly available at https://github.com/jiyounglee-0523/TransEnV and https://huggingface.co/collections/jiyounglee0523/transenv-681eadb3c0c8cf363b363fb1.
Current large language model (LLM) agents lack authentic human psychological processes necessary for genuine digital twins and social AI applications. To address this limitation, we present a computational implementation of Global Workspace Theory (GNWT) that integrates human cognitive architecture principles into LLM agents, creating specialized sub-agents for emotion, memory, social norms, planning, and goal-tracking coordinated through a global workspace mechanism. However, authentic digital twins require accurate personality initialization. We therefore develop a novel adventure-based personality test that evaluates true personality through behavioral choices within interactive scenarios, bypassing self-presentation bias found in traditional assessments. Building on these innovations, our CogniPair platform enables digital twins to engage in realistic simulated dating interactions and job interviews before real encounters, providing bidirectional cultural fit assessment for both romantic compatibility and workplace matching. Validation using 551 GNWT-Agents and Columbia University Speed Dating dataset demonstrates 72% correlation with human attraction patterns, 77.8% match prediction accuracy, and 74% agreement in human validation studies. This work advances psychological authenticity in LLM agents and establishes a foundation for intelligent dating platforms and HR technology solutions.
Hepato-pancreato-biliary (HPB) disorders represent a global public health challenge due to their high morbidity and mortality. Although large language models (LLMs) have shown promising performance in general medical question-answering tasks, the current evaluation benchmarks are mostly derived from standardized examinations or manually designed questions, lacking HPB coverage and clinical cases. To address these issues, we systematically eatablish an HPB disease evaluation benchmark comprising 3,535 closed-ended multiple-choice questions and 337 open-ended real diagnosis cases, which encompasses all the 33 main categories and 465 subcategories of HPB diseases defined in the International Statistical Classification of Diseases, 10th Revision (ICD-10). The multiple-choice questions are curated from public datasets and synthesized data, and the clinical cases are collected from prestigious medical journals, case-sharing platforms, and collaborating hospitals. By evalauting commercial and open-source general and medical LLMs on our established benchmark, namely ClinBench-HBP, we find that while commercial LLMs perform competently on medical exam questions, they exhibit substantial performance degradation on HPB diagnosis tasks, especially on complex, inpatient clinical cases. Those medical LLMs also show limited generalizability to HPB diseases. Our results reveal the critical limitations of current LLMs in the domain of HPB diseases, underscoring the imperative need for future medical LLMs to handle real, complex clinical diagnostics rather than simple medical exam questions. The benchmark will be released at https://clinbench-hpb.github.io.
Ensuring the robustness of code generated by large language models (LLMs) is crucial for real-world reliability. However, existing evaluations predominantly focus on correctness, often neglecting key robustness concerns such as missing input validation and insufficient error handling. In this paper, we present the first empirical study on the robustness of LLM-generated code. We introduce novel robustness metrics and analyze four state-of-the-art code LLMs, revealing that, on average, 43.1% of their generated code is less robust than human-written counterparts. Notably, over 90% of robustness deficiencies stem from missing conditional checks, with 70% of these omissions occurring in the first line of code. Additionally, in 69% of cases where a conditional statement is necessary but absent, the "if" token still ranks third or higher in the model's predicted token probabilities, indicating an implicit recognition of control structures. Building on these findings, we propose RobGen, a framework designed to enhance code robustness without requiring model retraining. RobGen leverages two model-agnostic techniques: RobGen-Adj, which dynamically adjusts token probabilities during decoding to encourage the inclusion of control structures, and RobGen-Ins, which improves generated code by inserting missing conditionals after generation. Experimental results demonstrate that RobGen reduces the proportion of less robust model-generated code by 20.0%, significantly enhancing code reliability across diverse tasks. As a lightweight and adaptable solution, RobGen effectively mitigates robustness challenges in LLM-generated code. All code and data are available at https://github.com/SYSUSELab/RobGen.
Safety, security, and compliance are essential requirements when aligning large language models (LLMs). However, many seemingly aligned LLMs are soon shown to be susceptible to jailbreak attacks. These attacks aim to circumvent the models' safety guardrails and security mechanisms by introducing jailbreak prompts into malicious queries. In response to these challenges, this paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism specifically designed to protect LLMs against such sophisticated jailbreak strategies. Unlike previous approaches, which have often compromised the utility of the model for the sake of safety, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs. Our method uses strategically designed interpretable suffix prompts that effectively thwart a wide range of standard and adaptive jailbreak techniques. Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP, showing significant reductions in ASR with negligible impact on utility. Our approach not only outperforms existing defense strategies in balancing safety and functionality, but also provides a scalable and interpretable solution applicable to various LLM platforms.
This proposal discusses the growing challenges in reverse engineering modern software binaries, particularly those compiled from newer system programming languages such as Rust, Go, and Mojo. Traditional reverse engineering techniques, developed with a focus on C and C++, fall short when applied to these newer languages due to their reliance on outdated heuristics and failure to fully utilize the rich semantic information embedded in binary programs. These challenges are exacerbated by the limitations of current data-driven methods, which are susceptible to generating inaccurate results, commonly referred to as hallucinations. To overcome these limitations, we propose a novel approach that integrates probabilistic binary analysis with fine-tuned large language models (LLMs). Our method systematically models the uncertainties inherent in reverse engineering, enabling more accurate reasoning about incomplete or ambiguous information. By incorporating LLMs, we extend the analysis beyond traditional heuristics, allowing for more creative and context-aware inferences, particularly for binaries from diverse programming languages. This hybrid approach not only enhances the robustness and accuracy of reverse engineering efforts but also offers a scalable solution adaptable to the rapidly evolving landscape of software development.
Large Language Models (LLMs) often require domain-specific fine-tuning to address targeted tasks, which risks degrading their general capabilities. Maintaining a balance between domain-specific enhancements and general model utility is a key challenge. This paper proposes a novel approach named APT (Weakness Case Acquisition and Iterative Preference Training) to enhance domain-specific performance with self-generated dis-preferred weakness data (bad cases and similar cases). APT uniquely focuses on training the model using only those samples where errors occur, alongside a small, similar set of samples retrieved for this purpose. This targeted training minimizes interference with the model's existing knowledge base, effectively retaining generic capabilities. Experimental results on the LLama-2 and Mistral-V0.3 models across various benchmarks demonstrate that APT ensures no reduction in generic capacity and achieves superior performance on downstream tasks compared to various existing methods. This validates our method as an effective strategy for enhancing domain-specific capabilities without sacrificing the model's broader applicability.
Managing long texts is challenging for large language models (LLMs) due to limited context window sizes. This study introduces UIO-LLMs, an unbiased incremental optimization approach for memory-enhanced transformers under long-context settings. We initially conceptualize the process as a streamlined encoder-decoder framework where the weights-shared encoder and decoder respectively encapsulate a context segment into memories and leverage these memories to predict outputs of the subsequent segment. Subsequently, by treating our memory-enhanced transformers as fully-connected recurrent neural networks (RNNs), we refine the training process using the Truncated Backpropagation Through Time (TBPTT) algorithm, which incorporates innovative incremental optimization techniques. These techniques not only diminish time complexity but also address the bias in gradient computation through an unbiased optimization process. UIO-LLMs successfully handle long context, such as extending the context window of Llama2-7b-chat from 4K to 100K tokens with minimal 2% additional parameters, while keeping the inference cost nearly linear as context length increases.
User-item interactions contain rich collaborative signals that form the backbone of many successful recommender systems. While recent work has explored the use of large language models (LLMs) for recommendation, it remains unclear whether LLMs can effectively reason over this type of collaborative information. In this paper, we conduct a systematic comparison between LLMs and classical matrix factorization (MF) models to assess LLMs' ability to leverage user-item interaction data. We further introduce a simple retrieval-augmented generation (RAG) method that enhances LLMs by grounding their predictions in structured interaction data. Our experiments reveal that current LLMs often fall short in capturing collaborative patterns inherent to MF models, but that our RAG-based approach substantially improves recommendation quality-highlighting a promising direction for future LLM-based recommenders.