Skip to the content.

llm - 2025_06

Home / Papers / llm

Papers

📅 2025-06-23 | 💬 18 pages, 8 tables, 7 figures
Prompt injection threatens novel applications that emerge from adapting LLMs for various user tasks. The newly developed LLM-based software applications become more ubiquitous and diverse. However, the threat of prompt injection attacks undermines the security of these systems as the mitigation and defenses against them, proposed so far, are insufficient. We investigated the capabilities of early prompt injection detection systems, focusing specifically on the detection performance of techniques implemented in various open-source solutions. These solutions are supposed to detect certain types of prompt injection attacks, including the prompt leak. In prompt leakage attacks, an attacker maliciously manipulates the LLM into outputting its system instructions, violating the system's confidentiality. Our study presents analyzes of distinct prompt leakage detection techniques, and a comparative analysis of several detection solutions, which implement those techniques. We identify the strengths and weaknesses of these techniques and elaborate on their optimal configuration and usage in high-stake deployments. In one of the first studies on existing prompt leak detection solutions, we compared the performances of LLM Guard, Vigil, and Rebuff. We concluded that the implementations of canary word checks in Vigil and Rebuff were not effective at detecting prompt leak attacks, and we proposed improvements for them. We also found an evasion weakness in Rebuff's secondary model-based technique and proposed a mitigation. Then, the result of the comparison of LLM Guard, Vigil, and Rebuff at their peak performance revealed that Vigil is optimal for cases when minimal false positive rate is required, and Rebuff is the most optimal for average needs.
📅 2025-06-23
Large language models (LLMs) are known to perform well on language tasks, but struggle with reasoning tasks. This paper explores the ability of LLMs to play the 2D puzzle game Baba is You, in which players manipulate rules by rearranging text blocks that define object properties. Given that this rule-manipulation relies on language abilities and reasoning, it is a compelling challenge for LLMs. Six LLMs are evaluated using different prompt types, including (1) simple, (2) rule-extended and (3) action-extended prompts. In addition, two models (Mistral, OLMo) are finetuned using textual and structural data from the game. Results show that while larger models (particularly GPT-4o) perform better in reasoning and puzzle solving, smaller unadapted models struggle to recognize game mechanics or apply rule changes. Finetuning improves the ability to analyze the game levels, but does not significantly improve solution formulation. We conclude that even for state-of-the-art and finetuned LLMs, reasoning about dynamic rule changes is difficult (specifically, understanding the use-mention distinction). The results provide insights into the applicability of LLMs to complex problem-solving tasks and highlight the suitability of games with dynamically changing rules for testing reasoning and reflection by LLMs.
📅 2025-06-23 | 💬 Accepted to NAACL 2025 Main (oral)
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety.
📅 2025-06-23 | 💬 Accepted to IEEE EMBC 2025
Synthetic data generation creates data based on real-world data using generative models. In health applications, generating high-quality data while maintaining fairness for sensitive attributes is essential for equitable outcomes. Existing GAN-based and LLM-based methods focus on counterfactual fairness and are primarily applied in finance and legal domains. Causal fairness provides a more comprehensive evaluation framework by preserving causal structure, but current synthetic data generation methods do not address it in health settings. To fill this gap, we develop the first LLM-augmented synthetic data generation method to enhance causal fairness using real-world tabular health data. Our generated data deviates by less than 10% from real data on causal fairness metrics. When trained on causally fair predictors, synthetic data reduces bias on the sensitive attribute by 70% compared to real data. This work improves access to fair synthetic data, supporting equitable health research and healthcare delivery.
📅 2025-06-23 | 💬 Under Review
Ensuring the moral reasoning capabilities of Large Language Models (LLMs) is a growing concern as these systems are used in socially sensitive tasks. Nevertheless, current evaluation benchmarks present two major shortcomings: a lack of annotations that justify moral classifications, which limits transparency and interpretability; and a predominant focus on English, which constrains the assessment of moral reasoning across diverse cultural settings. In this paper, we introduce MFTCXplain, a multilingual benchmark dataset for evaluating the moral reasoning of LLMs via hate speech multi-hop explanation using Moral Foundation Theory (MFT). The dataset comprises 3,000 tweets across Portuguese, Italian, Persian, and English, annotated with binary hate speech labels, moral categories, and text span-level rationales. Empirical results highlight a misalignment between LLM outputs and human annotations in moral reasoning tasks. While LLMs perform well in hate speech detection (F1 up to 0.836), their ability to predict moral sentiments is notably weak (F1 < 0.35). Furthermore, rationale alignment remains limited mainly in underrepresented languages. These findings show the limited capacity of current LLMs to internalize and reflect human moral reasoning.
📅 2025-06-23
The rapid evolution of LLMs threatens to overwhelm existing wireless infrastructure, necessitating architectural innovations for burgeoning mobile LLM services. This paper introduces WiLLM, the first open-source wireless system specifically designed for these services. First, we establish a new paradigm by deploying LLMs in core networks (CNs) with abundant GPUs. This enables distributed inference services, strategically positioning LLM inference at the convergence of backbone bandwidth and the cellular network's edge. Second, we propose an innovative "Tree-Branch-Fruit" extension to the conventional network slicing architecture. This specialized design allows telecom operators to monetize LLM services through slice subscriptions while maintaining infrastructure ownership. Finally, to realize this vision, WiLLM addresses critical limitations in current solutions with several novel capabilities. It features enhanced slice orchestration through a dual-layer slicing architecture, enabling coordinated multi-UE-multi-slice scheduling for finer-grained resource allocation. To ensure universal compatibility, an application-layer tunneling mechanism allows legacy devices without native slicing to access LLM slice services without hardware upgrades. Furthermore, its dual-mode scheduling and cross-layer APIs support flexible deployment from CNs to servers. Built on OpenAirInterface, WiLLM extends this established framework, lowering the adoption barrier for researchers. We also release the first LLM wireless communication dataset with 1,649,996 records and synchronized 58-dimensional metrics, alongside two benchmarks. A case study with smart glasses demonstrates practical viability for resource-constrained devices. WiLLM aims to foster an open platform for cross-layer optimization and AI-telecom convergence. The code, datasets, and hardware details are available at https://openwillm.github.io.
📅 2025-06-23 | 💬 29 pages, 9 figures, 15 tables
Large Language Models (LLMs) often generate responses with inherent biases, undermining their reliability in real-world applications. Existing evaluation methods often overlook biases in long-form responses and the intrinsic variability of LLM outputs. To address these challenges, we propose FiSCo(Fine-grained Semantic Computation), a novel statistical framework to evaluate group-level fairness in LLMs by detecting subtle semantic differences in long-form responses across demographic groups. Unlike prior work focusing on sentiment or token-level comparisons, FiSCo goes beyond surface-level analysis by operating at the claim level, leveraging entailment checks to assess the consistency of meaning across responses. We decompose model outputs into semantically distinct claims and apply statistical hypothesis testing to compare inter- and intra-group similarities, enabling robust detection of subtle biases. We formalize a new group counterfactual fairness definition and validate FiSCo on both synthetic and human-annotated datasets spanning gender, race, and age. Experiments show that FiSco more reliably identifies nuanced biases while reducing the impact of stochastic LLM variability, outperforming various evaluation metrics.
📅 2025-06-23 | 💬 Accepted to the Pre-ACL Workshop 2025, Copenhagen
When artificial intelligence mistakes memorization for intelligence, it creates a dangerous mirage of reasoning. Existing studies treat memorization and self-knowledge deficits in LLMs as separate issues and do not recognize an intertwining link that degrades the trustworthiness of LLM responses. In our study, we utilize a novel framework to ascertain if LLMs genuinely learn reasoning patterns from training data or merely memorize them to assume competence across problems of similar complexity focused on STEM domains. Our analysis shows a noteworthy problem in generalization: LLMs draw confidence from memorized solutions to infer a higher self-knowledge about their reasoning ability, which manifests as an over 45% inconsistency in feasibility assessments when faced with self-validated, logically coherent task perturbations. This effect is most pronounced in science and medicine domains, which tend to have maximal standardized jargon and problems, further confirming our approach. Significant wavering within the self-knowledge of LLMs also shows flaws in current architectures and training patterns, highlighting the need for techniques that ensure a balanced, consistent stance on models' perceptions of their own knowledge for maximum AI explainability and trustworthiness. Our code and results are available publicly at https://github.com/knowledge-verse-ai/LLM-Memorization_SK_Eval-.
📅 2025-06-23
Running Large Language Models (LLMs) on edge devices is constrained by high compute and memory demands posing a barrier for real-time applications in sectors like healthcare, education, and embedded systems. Current solutions such as quantization, pruning, and retrieval-augmented generation (RAG) offer only partial optimizations and often compromise on speed or accuracy. We introduce HOLA, an end-to-end optimization framework for efficient LLM deployment. Internally, it leverages Hierarchical Speculative Decoding (HSD) for faster inference without quality loss. Externally, AdaComp-RAG adjusts retrieval complexity based on context needs. Together with LoBi, which blends structured pruning (LoRA) and quantization, HOLA delivers significant gains: 17.6% EMA on GSM8K, 10.5% MCA on ARC, and reduced latency and memory on edge devices like Jetson Nano--proving both scalable and production-ready.
📅 2025-06-23 | 💬 26 pages, 9 figures
Resolution of complex SQL issues persists as a significant bottleneck in real-world database applications. Current Large Language Models (LLMs), while adept at text-to-SQL translation, have not been rigorously evaluated on the more challenging task of debugging SQL issues. To address this gap, we introduce BIRD-CRITIC, a new SQL issue debugging benchmark comprising 530 PostgreSQL tasks (BIRD-CRITIC-PG) and 570 multi-dialect tasks (BIRD-CRITIC-Multi), distilled from authentic user issues and replayed within new environments to facilitate rigorous evaluation. Baseline evaluations underscore the task's complexity, with the leading reasoning model O3-Mini achieving only 38.87% success rate on BIRD-CRITIC-PG and 33.33% on BIRD-CRITIC-Multi. Meanwhile, advancing open-source models for database tasks is crucial for empowering local development while safeguarding data privacy. Therefore, we present Six-Gym (Sql-fIX-Gym), a training environment for elevating open-source model capabilities for SQL issue debugging. This environment leverages SQL-Rewind strategy, which automatically generates executable issue-solution datasets by reverse-engineering issues from verified SQLs. However, popular trajectory-based fine-tuning methods do not explore substantial supervisory signals. We further propose f-Plan Boosting, which extracts high-level debugging plans from SQL solutions, enabling teacher LLMs to produce 73.7% more successful trajectories for training. We integrate these components into an open-source agent, Bird-Fixer. Based on Qwen-2.5-Coder-14B, Bird-Fixer achieves 38.11% success rate on BIRD-CRITIC-PG and 29.65% on BIRD-CRITIC-Multi, surpassing leading proprietary models such as Claude-3.7-Sonnet and GPT-4.1, marking a significant step toward democratizing sophisticated SQL-debugging capabilities. The leaderboard and source code are available: https://bird-critic.github.io/
📅 2025-06-23 | 💬 Codes and Models: https://github.com/Gen-Verse/ReasonFlux
Process Reward Models (PRMs) have recently emerged as a powerful framework for supervising intermediate reasoning steps in large language models (LLMs). Previous PRMs are primarily trained on model final output responses and struggle to evaluate intermediate thinking trajectories robustly, especially in the emerging setting of trajectory-response outputs generated by frontier reasoning models like Deepseek-R1. In this work, we introduce ReasonFlux-PRM, a novel trajectory-aware PRM explicitly designed to evaluate the trajectory-response type of reasoning traces. ReasonFlux-PRM incorporates both step-level and trajectory-level supervision, enabling fine-grained reward assignment aligned with structured chain-of-thought data. We adapt ReasonFlux-PRM to support reward supervision under both offline and online settings, including (i) selecting high-quality model distillation data for downstream supervised fine-tuning of smaller models, (ii) providing dense process-level rewards for policy optimization during reinforcement learning, and (iii) enabling reward-guided Best-of-N test-time scaling. Empirical results on challenging downstream benchmarks such as AIME, MATH500, and GPQA-Diamond demonstrate that ReasonFlux-PRM-7B selects higher quality data than strong PRMs (e.g., Qwen2.5-Math-PRM-72B) and human-curated baselines. Furthermore, our derived ReasonFlux-PRM-7B yields consistent performance improvements, achieving average gains of 12.1% in supervised fine-tuning, 4.5% in reinforcement learning, and 6.3% in test-time scaling. We also release our efficient ReasonFlux-PRM-1.5B for resource-constrained applications and edge deployment. Projects: https://github.com/Gen-Verse/ReasonFlux
📅 2025-06-23
Recent large-scale language models (LLMs) with long Chain-of-Thought reasoning-such as DeepSeek-R1-have achieved impressive results on Olympiad-level mathematics benchmarks. However, they often rely on a narrow set of strategies and struggle with problems that require a novel way of thinking. To systematically investigate these limitations, we introduce OMEGA-Out-of-distribution Math Problems Evaluation with 3 Generalization Axes-a controlled yet diverse benchmark designed to evaluate three axes of out-of-distribution generalization, inspired by Boden's typology of creativity: (1) Exploratory-applying known problem solving skills to more complex instances within the same problem domain; (2) Compositional-combining distinct reasoning skills, previously learned in isolation, to solve novel problems that require integrating these skills in new and coherent ways; and (3) Transformative-adopting novel, often unconventional strategies by moving beyond familiar approaches to solve problems more effectively. OMEGA consists of programmatically generated training-test pairs derived from templated problem generators across geometry, number theory, algebra, combinatorics, logic, and puzzles, with solutions verified using symbolic, numerical, or graphical methods. We evaluate frontier (or top-tier) LLMs and observe sharp performance degradation as problem complexity increases. Moreover, we fine-tune the Qwen-series models across all generalization settings and observe notable improvements in exploratory generalization, while compositional generalization remains limited and transformative reasoning shows little to no improvement. By isolating and quantifying these fine-grained failures, OMEGA lays the groundwork for advancing LLMs toward genuine mathematical creativity beyond mechanical proficiency.
📅 2025-06-23
Large foundation models trained on large-scale vision-language data can boost Open-Vocabulary Object Detection (OVD) via synthetic training data, yet the hand-crafted pipelines often introduce bias and overfit to specific prompts. We sidestep this issue by directly fusing hidden states from Large Language Models (LLMs) into detectors-an avenue surprisingly under-explored. This paper presents a systematic method to enhance visual grounding by utilizing decoder layers of the LLM of an MLLM. We introduce a zero-initialized cross-attention adapter to enable efficient knowledge fusion from LLMs to object detectors, a new approach called LED (LLM Enhanced Open-Vocabulary Object Detection). We find that intermediate LLM layers already encode rich spatial semantics; adapting only the early layers yields most of the gain. With Swin-T as the vision encoder, Qwen2-0.5B + LED lifts GroundingDINO by 3.82 % on OmniLabel at just 8.7 % extra GFLOPs, and a larger vision backbone pushes the improvement to 6.22 %. Extensive ablations on adapter variants, LLM scales and fusion depths further corroborate our design.
📅 2025-06-23 | 💬 Accepted by JAIR
Instruction tuning is a vital step of training large language models (LLM), so how to enhance the effect of instruction tuning has received increased attention. Existing works indicate that the quality of the dataset is more crucial than the quantity during instruction tuning of LLM. Therefore, recently a lot of studies focus on exploring the methods of selecting high-quality subset from instruction datasets, aiming to reduce training costs and enhance the instruction-following capabilities of LLMs. This paper presents a comprehensive survey on data selection for LLM instruction tuning. Firstly, we introduce the wildly used instruction datasets. Then, we propose a new taxonomy of the data selection methods and provide a detailed introduction of recent advances,and the evaluation strategies and results of data selection methods are also elaborated in detail. Finally, we emphasize the open challenges and present new frontiers of this task.
📅 2025-06-23 | 💬 Accepted for the 48th International Conference on Software Engineering (ICSE 2026)
High-quality smart contract vulnerability datasets are critical for evaluating security tools and advancing smart contract security research. Two major limitations of current manual dataset construction are (1) labor-intensive and error-prone annotation processes limiting the scale, quality, and evolution of the dataset, and (2) absence of standardized classification rules results in inconsistent vulnerability categories and labeling results across different datasets. To address these limitations, we present FORGE, the first automated approach for constructing smart contract vulnerability datasets. FORGE leverages an LLM-driven pipeline to extract high-quality vulnerabilities from real-world audit reports and classify them according to the CWE, the most widely recognized classification in software security. FORGE employs a divide-and-conquer strategy to extract structured and self-contained vulnerability information from these reports. Additionally, it uses a tree-of-thoughts technique to classify the vulnerability information into the hierarchical CWE classification. To evaluate FORGE's effectiveness, we run FORGE on 6,454 real-world audit reports and generate a dataset comprising 81,390 solidity files and 27,497 vulnerability findings across 296 CWE categories. Manual assessment of the dataset demonstrates high extraction precision and classification consistency with human experts (precision of 95.6% and inter-rater agreement k-$\alpha$ of 0.87). We further validate the practicality of our dataset by benchmarking 13 existing security tools on our dataset. The results reveal the significant limitations in current detection capabilities. Furthermore, by analyzing the severity-frequency distribution patterns through a unified CWE perspective in our dataset, we highlight inconsistency between current smart contract research focus and priorities identified from real-world vulnerabilities...
📅 2025-06-23 | 💬 12 pages, 10 figures, 2 tables, Accepted at the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025). Final version published in Proceedings of ICAART 2025 (Vol. 1), pages 196-207
TRIZ, the Theory of Inventive Problem Solving, is a structured, knowledge-based framework for innovation and abstracting problems to find inventive solutions. However, its application is often limited by the complexity and deep interdisciplinary knowledge required. Advancements in Large Language Models (LLMs) have revealed new possibilities for automating parts of this process. While previous studies have explored single LLMs in TRIZ applications, this paper introduces a multi-agent approach. We propose an LLM-based multi-agent system, called TRIZ agents, each with specialized capabilities and tool access, collaboratively solving inventive problems based on the TRIZ methodology. This multi-agent system leverages agents with various domain expertise to efficiently navigate TRIZ steps. The aim is to model and simulate an inventive process with language agents. We assess the effectiveness of this team of agents in addressing complex innovation challenges based on a selected case study in engineering. We demonstrate the potential of agent collaboration to produce diverse, inventive solutions. This research contributes to the future of AI-driven innovation, showcasing the advantages of decentralized problem-solving in complex ideation tasks.
📅 2025-06-23 | 💬 10 pages, 6 figures
Large Language Models (LLMs) have grown increasingly powerful, yet ensuring their decisions remain transparent and trustworthy requires self-consistency -- no contradictions in their internal reasoning. Our study reveals that even on simple tasks, such as comparing points on a line or a plane, or reasoning in a family tree, all smaller models are highly inconsistent, and even state-of-the-art models like DeepSeek-R1 and GPT-o4-mini are not fully self-consistent. To quantify and mitigate these inconsistencies, we introduce inconsistency metrics and propose two automated methods -- a graph-based and an energy-based approach. While these fixes provide partial improvements, they also highlight the complexity and importance of self-consistency in building more reliable and interpretable AI. The code and data are available at https://github.com/scorpio-nova/llm-self-consistency.
📅 2025-06-23
Training large language models (LLMs) on source code significantly enhances their general-purpose reasoning abilities, but the mechanisms underlying this generalisation are poorly understood. In this paper, we propose Programming by Backprop (PBB) as a potential driver of this effect - teaching a model to evaluate a program for inputs by training on its source code alone, without ever seeing I/O examples. To explore this idea, we finetune LLMs on two sets of programs representing simple maths problems and algorithms: one with source code and I/O examples (w/ IO), the other with source code only (w/o IO). We find evidence that LLMs have some ability to evaluate w/o IO programs for inputs in a range of experimental settings, and make several observations. Firstly, PBB works significantly better when programs are provided as code rather than semantically equivalent language descriptions. Secondly, LLMs can produce outputs for w/o IO programs directly, by implicitly evaluating the program within the forward pass, and more reliably when stepping through the program in-context via chain-of-thought. We further show that PBB leads to more robust evaluation of programs across inputs than training on I/O pairs drawn from a distribution that mirrors naturally occurring data. Our findings suggest a mechanism for enhanced reasoning through code training: it allows LLMs to internalise reusable algorithmic abstractions. Significant scope remains for future work to enable LLMs to more effectively learn from symbolic procedures, and progress in this direction opens other avenues like model alignment by training on formal constitutional principles.
📅 2025-06-23 | 💬 179 pages
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
📅 2025-06-23
The goal of this study is to identify factors that support and enhance older adults' creative experiences in human-robot co-creativity. Because the research into the use of robots for creativity support with older adults remains underexplored, we carried out an exploratory case study. We took a participatory approach and collaborated with professional art educators to design a course Drawing with Robots for adults aged 65 and over. The course featured human-human and human-robot drawing activities with various types of robots. We observed collaborative drawing interactions, interviewed participants on their experiences, and analyzed collected data. Findings show that participants preferred acting as curators, evaluating creative suggestions from the robot in a teacher or coach role. When we enhanced a robot with a multimodal Large Language Model (LLM), participants appreciated its spoken dialogue capabilities. They reported however, that the robot's feedback sometimes lacked an understanding of the context, and sensitivity to their artistic goals and preferences. Our findings highlight the potential of LLM-enhanced robots to support creativity and offer future directions for advancing human-robot co-creativity with older adults.
📅 2025-06-23 | 💬 22 pages, 11 figures, 8 tables. Submitted to Computer Science Review (Elsevier), May 2025
Sixth Generation (6G) wireless networks, which are expected to be deployed in the 2030s, have already created great excitement in academia and the private sector with their extremely high communication speed and low latency rates. However, despite the ultra-low latency, high throughput, and AI-assisted orchestration capabilities they promise, they are vulnerable to stealthy and long-term Advanced Persistent Threats (APTs). Large Language Models (LLMs) stand out as an ideal candidate to fill this gap with their high success in semantic reasoning and threat intelligence. In this paper, we present a comprehensive systematic review and taxonomy study for LLM-assisted APT detection in 6G networks. We address five research questions, namely, semantic merging of fragmented logs, encrypted traffic analysis, edge distribution constraints, dataset/modeling techniques, and reproducibility trends, by leveraging most recent studies on the intersection of LLMs, APTs, and 6G wireless networks. We identify open challenges such as explainability gaps, data scarcity, edge hardware limitations, and the need for real-time slicing-aware adaptation by presenting various taxonomies such as granularity, deployment models, and kill chain stages. We then conclude the paper by providing several research gaps in 6G infrastructures for future researchers. To the best of our knowledge, this paper is the first comprehensive systematic review and classification study on LLM-based APT detection in 6G networks.
📅 2025-06-23 | 💬 10 pages, 15 figures
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
📅 2025-06-23 | 💬 ICCS 2025 Workshops
In real-world applications, Large Language Models (LLMs) often hallucinate, even in Retrieval-Augmented Generation (RAG) settings, which poses a significant challenge to their deployment. In this paper, we introduce AggTruth, a method for online detection of contextual hallucinations by analyzing the distribution of internal attention scores in the provided context (passage). Specifically, we propose four different variants of the method, each varying in the aggregation technique used to calculate attention scores. Across all LLMs examined, AggTruth demonstrated stable performance in both same-task and cross-task setups, outperforming the current SOTA in multiple scenarios. Furthermore, we conducted an in-depth analysis of feature selection techniques and examined how the number of selected attention heads impacts detection performance, demonstrating that careful selection of heads is essential to achieve optimal results.
📅 2025-06-23 | 💬 Reply to arXiv:2505.23796
A potential concern when simulating populations of large language models (LLMs) is data contamination, i.e. the possibility that training data may shape outcomes in unintended ways. While this concern is important and may hinder certain experiments with multi-agent models, it does not preclude the study of genuinely emergent dynamics in LLM populations. The recent critique by Barrie and T\"ornberg [1] of the results of Flint Ashery et al. [2] offers an opportunity to clarify that self-organisation and model-dependent emergent dynamics can be studied in LLM populations, highlighting how such dynamics have been empirically observed in the specific case of social conventions.
📅 2025-06-23
Detecting harmful content is a crucial task in the landscape of NLP applications for Social Good, with hate speech being one of its most dangerous forms. But what do we mean by hate speech, how can we define it, and how does prompting different definitions of hate speech affect model performance? The contribution of this work is twofold. At the theoretical level, we address the ambiguity surrounding hate speech by collecting and analyzing existing definitions from the literature. We organize these definitions into a taxonomy of 14 Conceptual Elements-building blocks that capture different aspects of hate speech definitions, such as references to the target of hate (individual or groups) or of the potential consequences of it. At the experimental level, we employ the collection of definitions in a systematic zero-shot evaluation of three LLMs, on three hate speech datasets representing different types of data (synthetic, human-in-the-loop, and real-world). We find that choosing different definitions, i.e., definitions with a different degree of specificity in terms of encoded elements, impacts model performance, but this effect is not consistent across all architectures.
📅 2025-06-23
The performance of large language models (LLMs) depends on how they are prompted, with choices spanning both the high-level prompting pattern (e.g., Zero-Shot, CoT, ReAct, ReWOO) and the specific prompt content (instructions and few-shot demonstrations). Manually tuning this combination is tedious, error-prone, and specific to a given LLM and task. Therefore, this paper proposes AutoPDL, an automated approach to discovering good LLM agent configurations. Our approach frames this as a structured AutoML problem over a combinatorial space of agentic and non-agentic prompting patterns and demonstrations, using successive halving to efficiently navigate this space. We introduce a library implementing common prompting patterns using the PDL prompt programming language. AutoPDL solutions are human-readable, editable, and executable PDL programs that use this library. This approach also enables source-to-source optimization, allowing human-in-the-loop refinement and reuse. Evaluations across three tasks and seven LLMs (ranging from 3B to 70B parameters) show consistent accuracy gains ($9.06\pm15.3$ percentage points), up to 68.9pp, and reveal that selected prompting strategies vary across models and tasks.
📅 2025-06-23
Building safe Large Language Models (LLMs) across multiple languages is essential in ensuring both safe access and linguistic diversity. To this end, we conduct a large-scale, comprehensive safety evaluation of the current LLM landscape. For this purpose, we introduce M-ALERT, a multilingual benchmark that evaluates the safety of LLMs in five languages: English, French, German, Italian, and Spanish. M-ALERT includes 15k high-quality prompts per language, totaling 75k, with category-wise annotations. Our extensive experiments on 39 state-of-the-art LLMs highlight the importance of language-specific safety analysis, revealing that models often exhibit significant inconsistencies in safety across languages and categories. For instance, Llama3.2 shows high unsafety in category crime_tax for Italian but remains safe in other languages. Similar inconsistencies can be observed across all models. In contrast, certain categories, such as substance_cannabis and crime_propaganda, consistently trigger unsafe responses across models and languages. These findings underscore the need for robust multilingual safety practices in LLMs to ensure responsible usage across diverse communities.
📅 2025-06-23 | 💬 Accepted to INTERSPEECH2025 workshop DISS2025
Accurate detection of disfluencies in spoken language is crucial for enhancing the performance of automatic speech and language processing systems, as well as fostering the development of more inclusive speech and language technologies. Leveraging the growing trend of large language models (LLMs) as versatile learners capable of processing both lexical and non-lexical inputs (e.g., audio and video), we propose a novel approach to transcribing disfluencies as explicit tokens with timestamps, enabling the generation of fully annotated disfluency-rich transcripts. Our method integrates acoustic representations extracted from an audio encoder with textual inputs of varying quality: clean transcriptions without disfluencies, time-aligned transcriptions from aligners, or outputs from phoneme-based ASR models -- all of which may contain imperfections. Importantly, our experiments demonstrate that textual inputs do not need to be flawless. As long as they include timestamp-related cues, LLMs can effectively smooth the input and produce fully disfluency-annotated transcripts, underscoring their robustness in handling imperfect hints.
📅 2025-06-23
With the widespread application of LLM-based dialogue systems in daily life, quality assurance has become more important than ever. Recent research has successfully introduced methods to identify unexpected behaviour in single-turn testing scenarios. However, multi-turn interaction is the common real-world usage of dialogue systems, yet testing methods for such interactions remain underexplored. This is largely due to the oracle problem in multi-turn testing, which continues to pose a significant challenge for dialogue system developers and researchers. In this paper, we propose MORTAR, a metamorphic multi-turn dialogue testing approach, which mitigates the test oracle problem in testing LLM-based dialogue systems. MORTAR formalises the multi-turn testing for dialogue systems, and automates the generation of question-answer dialogue test cases with multiple dialogue-level perturbations and metamorphic relations (MRs). The automated MR matching mechanism allows MORTAR more flexibility and efficiency in metamorphic testing. The proposed approach is fully automated without reliance on LLM judges. In testing six popular LLM-based dialogue systems, MORTAR reaches significantly better effectiveness with over 150\% more bugs revealed per test case when compared to the single-turn metamorphic testing baseline. Regarding the quality of bugs, MORTAR reveals higher-quality bugs in terms of diversity, precision and uniqueness. MORTAR is expected to inspire more multi-turn testing approaches, and assist developers in evaluating the dialogue system performance more comprehensively with constrained test resources and budget.
📅 2025-06-23
Current LLM agents inject thousands of tool schemas into prompts, creating massive context overhead and reducing models to passive tool selectors rather than autonomous agents. We introduce MCP-Zero, an active agent framework that restores tool discovery autonomy to LLMs themselves. Instead of overwhelming models with all available tools, MCP-Zero enables agents to actively identify capability gaps, and request specific tools on-demand, transforming them from large-scale retrievers into genuine autonomous agents. The framework operates through three core mechanisms: (1) Active Tool Request, where models autonomously generate structured requests specifying their exact tool requirements; (2) Hierarchical Semantic Routing, a two-stage algorithm that matches requests to relevant servers and tools through improved semantic alignment; (3) Iterative Capability Extension, enabling agents to progressively build cross-domain toolchains while maintaining minimal context footprint. We also construct MCP-tools, a comprehensive dataset of 308 MCP servers and 2,797 tools from the official Model-Context-Protocol repository. Experiments demonstrate that MCP-Zero preserves agent autonomy while achieving substantial efficiency gains: (i) accurate tool selection from nearly 3k candidates across 248.1k tokens; (ii) 98\% reduction in token consumption on APIBank while maintaining high accuracy; and (iii) consistent multi-turn performance that scales with tool ecosystem growth. This work establishes active tool discovery as a fundamental design pattern for scalable autonomous agent systems.
📅 2025-06-23 | 💬 9 pages, presented at LLM4Eval Workshop, SIGIR 2025 Padova, Italy, July 17, 2025
This study investigates how accurately different evaluation metrics capture the quality of causal explanations in automatically generated diagnostic reports. We compare six metrics: BERTScore, Cosine Similarity, BioSentVec, GPT-White, GPT-Black, and expert qualitative assessment across two input types: observation-based and multiple-choice-based report generation. Two weighting strategies are applied: one reflecting task-specific priorities, and the other assigning equal weights to all metrics. Our results show that GPT-Black demonstrates the strongest discriminative power in identifying logically coherent and clinically valid causal narratives. GPT-White also aligns well with expert evaluations, while similarity-based metrics diverge from clinical reasoning quality. These findings emphasize the impact of metric selection and weighting on evaluation outcomes, supporting the use of LLM-based evaluation for tasks requiring interpretability and causal reasoning.
📅 2025-06-23
Logical reasoning is a key task for artificial intelligence due to it's role in major downstream tasks such as Question Answering, Summarization. Recent methods in improving the reasoning ability of LLMs fall short in correctly converting a natural language reasoning problem to an equivalent logical formulation, which hinders the framework's overall ability to reason. Towards this, we propose to use finetuning on a preference optimization dataset to learn to parse and represent a natural language problem as a whole to a consistent logical program by 1) introducing a new supervised and preference optimization dataset LogicPO, and 2) adopting popular techniques such as Direct Preference Optimization (DPO), Kahneman-Tversky optimization (KTO) to finetune open-source LLMs. Our best model with Phi-3.5 consistently outperforms GPT-3.5-turbo's (8-shot) by producing 10% more logically correct and with 14% less syntax errors. Through the framework and our improved evaluation metrics, we offer a promising direction in improving the logical reasoning of LLMs by better representing them in their logical formulations.
📅 2025-06-23 | 💬 21 pages, fixed typo
Large Language Models (LLMs) are increasingly used to generate synthetic textual data for training smaller specialized models. However, a comparison of various generation strategies for low-resource language settings is lacking. While various prompting strategies have been proposed, such as demonstrations, label-based summaries, and self-revision, their comparative effectiveness remains unclear, especially for low-resource languages. In this paper, we systematically evaluate the performance of these generation strategies and their combinations across 11 typologically diverse languages, including several extremely low-resource ones. Using three NLP tasks and four open-source LLMs, we assess downstream model performance on generated versus gold-standard data. Our results show that strategic combinations of generation methods, particularly target-language demonstrations with LLM-based revisions, yield strong performance, narrowing the gap with real data to as little as 5% in some settings. We also find that smart prompting techniques can reduce the advantage of larger LLMs, highlighting efficient generation strategies for synthetic data generation in low-resource scenarios with smaller models.
📅 2025-06-23 | 💬 Accepted to the 42nd International Conference on Machine Learning (ICML 2025)
Diplomacy is a complex multiplayer game that requires both cooperation and competition, posing significant challenges for AI systems. Traditional methods rely on equilibrium search to generate extensive game data for training, which demands substantial computational resources. Large Language Models (LLMs) offer a promising alternative, leveraging pre-trained knowledge to achieve strong performance with relatively small-scale fine-tuning. However, applying LLMs to Diplomacy remains challenging due to the exponential growth of possible action combinations and the intricate strategic interactions among players. To address this challenge, we propose DipLLM, a fine-tuned LLM-based agent that learns equilibrium policies for Diplomacy. DipLLM employs an autoregressive factorization framework to simplify the complex task of multi-unit action assignment into a sequence of unit-level decisions. By defining an equilibrium policy within this framework as the learning objective, we fine-tune the model using only 1.5% of the data required by the state-of-the-art Cicero model, surpassing its performance. Our results demonstrate the potential of fine-tuned LLMs for tackling complex strategic decision-making in multiplayer games.
📅 2025-06-23
Heterogeneous Large Language Model (LLM) fusion integrates the strengths of multiple source LLMs with different architectures into a target LLM with low computational overhead. While promising, existing methods suffer from two major limitations: 1) reliance on real data from limited domain for knowledge fusion, preventing the target LLM from fully acquiring knowledge across diverse domains, and 2) fixed data allocation proportions across domains, failing to dynamically adjust according to the target LLM's varying capabilities across domains, leading to a capability imbalance. To overcome these limitations, we propose Bohdi, a synthetic-data-only heterogeneous LLM fusion framework. Through the organization of knowledge domains into a hierarchical tree structure, Bohdi enables automatic domain exploration and multi-domain data generation through multi-model collaboration, thereby comprehensively extracting knowledge from source LLMs. By formalizing domain expansion and data sampling proportion allocation on the knowledge tree as a Hierarchical Multi-Armed Bandit problem, Bohdi leverages the designed DynaBranches mechanism to adaptively adjust sampling proportions based on the target LLM's performance feedback across domains. Integrated with our proposed Introspection-Rebirth (IR) mechanism, DynaBranches dynamically tracks capability shifts during target LLM's updates via Sliding Window Binomial Likelihood Ratio Testing (SWBLRT), further enhancing its online adaptation capability. Comparative experimental results on a comprehensive suite of benchmarks demonstrate that Bohdi significantly outperforms existing baselines on multiple target LLMs, exhibits higher data efficiency, and virtually eliminates the imbalance in the target LLM's capabilities. Our code is available at https://github.com/gjq100/Bohdi.git.
📅 2025-06-23
This paper explores the challenges of test-time scaling of large language models (LLMs), regarding both the data and inference efficiency. We highlight the diversity of multi-lingual reasoning based on our pilot studies, and then introduce a novel approach, \(L^2\) multi-lingual unification learning with a decoding intervention strategy for further investigation. The basic idea of \(L^2\) is that the reasoning process varies across different languages, which may be mutually beneficial to enhance both model performance and efficiency. In specific, there are two types of multi-lingual data: the entire long chain-of-thought annotations in different languages and the step-wise mixture of languages. By further tuning based on them, we show that even small amounts of data can significantly improve reasoning capabilities. Our findings suggest that multilingual learning reduces both the required data and the number of inference tokens while maintaining a comparable performance. Furthermore, \(L^2\) is orthogonal to other data efficient methods. Thus, we also emphasize the importance of diverse data selection. The \(L^2\) method offers a promising solution to the challenges of data collection and test-time compute efficiency in LLMs.
📅 2025-06-23 | 💬 Published in Proceedings of ACM FAccT 2025 Update Comment: Fixed the error where user vs. system and implicit vs. explicit labels in the heatmaps were switched. The takeaways remain the same
System prompts in Large Language Models (LLMs) are predefined directives that guide model behaviour, taking precedence over user inputs in text processing and generation. LLM deployers increasingly use them to ensure consistent responses across contexts. While model providers set a foundation of system prompts, deployers and third-party developers can append additional prompts without visibility into others' additions, while this layered implementation remains entirely hidden from end-users. As system prompts become more complex, they can directly or indirectly introduce unaccounted for side effects. This lack of transparency raises fundamental questions about how the position of information in different directives shapes model outputs. As such, this work examines how the placement of information affects model behaviour. To this end, we compare how models process demographic information in system versus user prompts across six commercially available LLMs and 50 demographic groups. Our analysis reveals significant biases, manifesting in differences in user representation and decision-making scenarios. Since these variations stem from inaccessible and opaque system-level configurations, they risk representational, allocative and potential other biases and downstream harms beyond the user's ability to detect or correct. Our findings draw attention to these critical issues, which have the potential to perpetuate harms if left unexamined. Further, we argue that system prompt analysis must be incorporated into AI auditing processes, particularly as customisable system prompts become increasingly prevalent in commercial AI deployments.
📅 2025-06-23
Large Language Models (LLMs) excel at code generation, but ensuring their outputs to be functionally correct, especially in complex programming tasks, is a persistent challenge. While traditional Test-Driven Development (TDD) offers a path for code refinement, its efficacy with LLMs is often undermined by the scarcity of high-quality test cases or the pitfalls of automated test generation, including biased tests or inaccurate output predictions that can misdirect the correction process. This paper introduces Property-Generated Solver, a novel framework that leverages Property-Based Testing (PBT) to validate high-level program properties or invariants, instead of relying on specific input-output examples. These properties are often simpler to define and verify than directly predicting exhaustive test oracles, breaking the "cycle of self-deception" where tests might share flaws with the code they are meant to validate. Property-Generated Solver employs two collaborative LLM-based agents: a Generator dedicated to code generation and iterative refinement, and a Tester that manages the PBT life-cycle and formulate semantically rich feedback from property violations. The resulting comprehensive and actionable feedback then guides the Generator in its refinement efforts. By establishing PBT as the core validation engine within this iterative, closed-loop paradigm, Property-Generated Solver provides a robust mechanism for steering LLMs towards more correct and generalizable code. Extensive experimental results on multiple code generation benchmarks demonstrate that Property-Generated Solver achieves substantial pass@1 improvements, ranging from 23.1% to 37.3% relative gains over established TDD methods.
📅 2025-06-23 | 💬 Accepted by ACL 2025
LLMs have immense potential for generating plans, transforming an initial world state into a desired goal state. A large body of research has explored the use of LLMs for various planning tasks, from web navigation to travel planning and database querying. However, many of these systems are tailored to specific problems, making it challenging to compare them or determine the best approach for new tasks. There is also a lack of clear and consistent evaluation criteria. Our survey aims to offer a comprehensive overview of current LLM planners to fill this gap. It builds on foundational work by Kartam and Wilkins (1990) and examines six key performance criteria: completeness, executability, optimality, representation, generalization, and efficiency. For each, we provide a thorough analysis of representative works and highlight their strengths and weaknesses. Our paper also identifies crucial future directions, making it a valuable resource for both practitioners and newcomers interested in leveraging LLM planning to support agentic workflows.
📅 2025-06-23 | 💬 17pages,5figures,8tables
This study introduces \textsc{Co-Persona}, a framework bridging large-scale social media analysis and user understanding via integration of Large Language Models (LLMs) and expert validation. Through a case study of B.Co, a Chinese manufacturer, we applied \textsc{Co-Persona} to bedside lamp development by analyzing 38 million posts from Xiao Hongshu. Our multi-stage NLP processing revealed five user personas based on nighttime behaviors: Health Aficionados, Night Owls, Interior Decorators, Child-care Workers, and Workaholics. These personas exhibit distinct pre-sleep activities and product preferences. The method enhances manufacturers' ability to interpret social data while preserving user-centric insights, offering actionable strategies for targeted marketing and product design. This work advances both theoretical persona development and practical consumer-driven innovation.
📅 2025-06-23
Large Language Models (LLMs) have emerged as powerful tools for automating and executing complex data tasks. However, their integration into more complex data workflows introduces significant management challenges. In response, we present TableVault - a data management system designed to handle dynamic data collections in LLM-augmented environments. TableVault meets the demands of these workflows by supporting concurrent execution, ensuring reproducibility, maintaining robust data versioning, and enabling composable workflow design. By merging established database methodologies with emerging LLM-driven requirements, TableVault offers a transparent platform that efficiently manages both structured data and associated data artifacts.
📅 2025-06-23
Web crawl is a main source of large language models' (LLMs) pretraining data, but the majority of crawled web pages are discarded in pretraining due to low data quality. This paper presents Craw4LLM, an efficient web crawling method that explores the web graph based on the preference of LLM pretraining. Specifically, it leverages the influence of a webpage in LLM pretraining as the priority score of the web crawler's scheduler, replacing the standard graph connectivity based priority. Our experiments on a web graph containing 900 million webpages from a commercial search engine's index demonstrate the efficiency of Craw4LLM in obtaining high-quality pretraining data. With just 21% URLs crawled, LLMs pretrained on Craw4LLM data reach the same downstream performances of previous crawls, significantly reducing the crawling waste and alleviating the burdens on websites. Our code is publicly available at https://github.com/cxcscmu/Craw4LLM.
📅 2025-06-23 | 💬 Published at the 4th Muslims in Machine Learning (MusIML) Workshop (ICML-25)
Centuries-old Islamic medical texts like Avicenna's Canon of Medicine and the Prophetic Tibb-e-Nabawi encode a wealth of preventive care, nutrition, and holistic therapies, yet remain inaccessible to many and underutilized in modern AI systems. Existing language-model benchmarks focus narrowly on factual recall or user preference, leaving a gap in validating culturally grounded medical guidance at scale. We propose a unified evaluation pipeline, Tibbe-AG, that aligns 30 carefully curated Prophetic-medicine questions with human-verified remedies and compares three LLMs (LLaMA-3, Mistral-7B, Qwen2-7B) under three configurations: direct generation, retrieval-augmented generation, and a scientific self-critique filter. Each answer is then assessed by a secondary LLM serving as an agentic judge, yielding a single 3C3H quality score. Retrieval improves factual accuracy by 13%, while the agentic prompt adds another 10% improvement through deeper mechanistic insight and safety considerations. Our results demonstrate that blending classical Islamic texts with retrieval and self-evaluation enables reliable, culturally sensitive medical question-answering.
📅 2025-06-23
The increasing use of synthetic data from the public Internet has enhanced data usage efficiency in large language model (LLM) training. However, the potential threat of model collapse remains insufficiently explored. Existing studies primarily examine model collapse in a single model setting or rely solely on statistical surrogates. In this work, we introduce LLM Web Dynamics (LWD), an efficient framework for investigating model collapse at the network level. By simulating the Internet with a retrieval-augmented generation (RAG) database, we analyze the convergence pattern of model outputs. Furthermore, we provide theoretical guarantees for this convergence by drawing an analogy to interacting Gaussian Mixture Models.
📅 2025-06-23 | 💬 Accepted to ACL GEM 2025
LLMs are typically trained in high-resource languages, and tasks in lower-resourced languages tend to underperform the higher-resource language counterparts for in-context learning. Despite the large body of work on prompting settings, it is still unclear how LLMs should be adapted cross-lingually specifically for in-context learning in the low-resource target languages. We perform a comprehensive study spanning five diverse target languages, three base LLMs, and seven downstream tasks spanning over 4,100 GPU training hours (9,900+ TFLOPs) across various adaptation techniques: few-shot prompting, translate-test, fine-tuning, embedding re-initialization, and instruction fine-tuning. Our results show that the few-shot prompting and translate-test settings tend to heavily outperform the gradient-based adaptation methods. To better understand this discrepancy, we design a novel metric, Valid Output Recall (VOR), and analyze model outputs to empirically attribute the degradation of these trained models to catastrophic forgetting. To the extent of our knowledge, this is the largest study done on in-context learning for low-resource languages with respect to train compute and number of adaptation techniques considered. We make all our datasets and trained models available for public use.
📅 2025-06-23
Traditional mental health support systems often generate responses based solely on the user's current emotion and situations, resulting in superficial interventions that fail to address deeper emotional needs. This study introduces a novel framework by integrating spiritual wisdom from the Bhagavad Gita with advanced large language model GPT-4o to enhance emotional well-being. We present the GITes (Gita Integrated Therapy for Emotional Support) dataset, which enhances the existing ExTES mental health dataset by including 10,729 spiritually guided responses generated by GPT-4o and evaluated by domain experts. We benchmark GITes against 12 state-of-the-art LLMs, including both mental health specific and general purpose models. To evaluate spiritual relevance in generated responses beyond what conventional n-gram based metrics capture, we propose a novel Spiritual Insight metric and automate assessment via an LLM as jury framework using chain-of-thought prompting. Integrating spiritual guidance into AI driven support enhances both NLP and spiritual metrics for the best performing LLM Phi3-Mini 3.2B Instruct, achieving improvements of 122.71% in ROUGE, 126.53% in METEOR, 8.15% in BERT score, 15.92% in Spiritual Insight, 18.61% in Sufficiency and 13.22% in Relevance compared to its zero-shot counterpart. While these results reflect substantial improvements across automated empathy and spirituality metrics, further validation in real world patient populations remains a necessary step. Our findings indicate a strong potential for AI systems enriched with spiritual guidance to enhance user satisfaction and perceived support outcomes. The code and dataset will be publicly available to advance further research in this emerging area.
📅 2025-06-22
Multi-robot systems are emerging as a promising solution to the growing demand for productivity, safety, and adaptability across industrial sectors. However, effectively coordinating multiple robots in dynamic and uncertain environments, such as construction sites, remains a challenge, particularly due to unpredictable factors like material delays, unexpected site conditions, and weather-induced disruptions. To address these challenges, this study proposes an adaptive task allocation framework that strategically leverages the synergistic potential of Digital Twins, Integer Programming (IP), and Large Language Models (LLMs). The multi-robot task allocation problem is formally defined and solved using an IP model that accounts for task dependencies, robot heterogeneity, scheduling constraints, and re-planning requirements. A mechanism for narrative-driven schedule adaptation is introduced, in which unstructured natural language inputs are interpreted by an LLM, and optimization constraints are autonomously updated, enabling human-in-the-loop flexibility without manual coding. A digital twin-based system has been developed to enable real-time synchronization between physical operations and their digital representations. This closed-loop feedback framework ensures that the system remains dynamic and responsive to ongoing changes on site. A case study demonstrates both the computational efficiency of the optimization algorithm and the reasoning performance of several LLMs, with top-performing models achieving over 97% accuracy in constraint and parameter extraction. The results confirm the practicality, adaptability, and cross-domain applicability of the proposed methods.
📅 2025-06-22
The increasing electricity demands of personal computers, communication networks, and data centers contribute to higher atmospheric greenhouse gas emissions, which in turn lead to global warming and climate change. Therefore the energy consumption of code must be minimized. Code can be generated by large language models. We look at the influence of prompt modification on the energy consumption of the code generated. We use three different Python code problems of varying difficulty levels. Prompt modification is done by adding the sentence ``Give me an energy-optimized solution for this problem'' or by using two Python coding best practices. The large language models used are CodeLlama-70b, CodeLlama-70b-Instruct, CodeLlama-70b-Python, DeepSeek-Coder-33b-base, and DeepSeek-Coder-33b-instruct. We find a decrease in energy consumption for a specific combination of prompt optimization, LLM, and Python code problem. However, no single optimization prompt consistently decreases energy consumption for the same LLM across the different Python code problems.
📅 2025-06-22
As Large language models (LLMs) are increasingly deployed in diverse applications, faithfully integrating evolving factual knowledge into these models remains a critical challenge. Continued pre-training on paraphrased data has shown empirical promise for enhancing knowledge acquisition. However, this approach is often costly and unreliable, as it relies on external models or manual effort for rewriting, and may inadvertently alter the factual content. In this work, we hypothesize and empirically show that an LLM's ability to continually predict the same factual knowledge tokens given diverse paraphrased contexts is positively correlated with its capacity to extract that knowledge via question-answering. Based on this view and aiming to improve generalization to diverse paraphrased contexts, we introduce two strategies to enhance LLMs' ability to predict the same knowledge tokens given varied contexts, thereby enhancing knowledge acquisition. First, we propose formatting-based data augmentation, which diversifies documents conveying the same knowledge by altering document formats rather than their content, thereby preserving factual integrity. Second, we adopt sharpness-aware minimization as the optimizer to better improve generalization. Extensive experiments demonstrate our methods' effectiveness in both continued pre-training and instruction tuning, and further gains can be achieved by combining with paraphrased data.
📅 2025-06-22 | 💬 19 Pages, 7 Figures, 4 Tables (Note: Under Review)
Large Language Models (LLMs) in mental healthcare risk propagating biases that reinforce stigma and harm marginalized groups. While previous research identified concerning trends, systematic methods for detecting intersectional biases remain limited. This work introduces a multi-hop question answering (MHQA) framework to explore LLM response biases in mental health discourse. We analyze content from the Interpretable Mental Health Instruction (IMHI) dataset across symptom presentation, coping mechanisms, and treatment approaches. Using systematic tagging across age, race, gender, and socioeconomic status, we investigate bias patterns at demographic intersections. We evaluate four LLMs: Claude 3.5 Sonnet, Jamba 1.6, Gemma 3, and Llama 4, revealing systematic disparities across sentiment, demographics, and mental health conditions. Our MHQA approach demonstrates superior detection compared to conventional methods, identifying amplification points where biases magnify through sequential reasoning. We implement two debiasing techniques: Roleplay Simulation and Explicit Bias Reduction, achieving 66-94% bias reductions through few-shot prompting with BBQ dataset examples. These findings highlight critical areas where LLMs reproduce mental healthcare biases, providing actionable insights for equitable AI development.
📅 2025-06-22
Assessing the quality of LLM-generated text remains a fundamental challenge in natural language processing. Current evaluation approaches often rely on isolated metrics or simplistic aggregations that fail to capture the nuanced trade-offs between coherence, diversity, fluency, and other relevant indicators of text quality. In this work, we adapt a recently proposed framework for statistical inference based on Generalized Stochastic Dominance (GSD) that addresses three critical limitations in existing benchmarking methodologies: the inadequacy of single-metric evaluation, the incompatibility between cardinal automatic metrics and ordinal human judgments, and the lack of inferential statistical guarantees. The GSD-front approach enables simultaneous evaluation across multiple quality dimensions while respecting their different measurement scales, building upon partial orders of decoding strategies, thus avoiding arbitrary weighting of the involved metrics. By applying this framework to evaluate common decoding strategies against human-generated text, we demonstrate its ability to identify statistically significant performance differences while accounting for potential deviations from the i.i.d. assumption of the sampling design.
📅 2025-06-22 | 💬 1st Workshop on Preparing Good Data for Generative AI: Challenges and Approaches@ AAAI 2025, ai4finance.org
Financial sentiment analysis is crucial for understanding the influence of news on stock prices. Recently, large language models (LLMs) have been widely adopted for this purpose due to their advanced text analysis capabilities. However, these models often only consider the news content itself, ignoring its dissemination, which hampers accurate prediction of short-term stock movements. Additionally, current methods often lack sufficient contextual data and explicit instructions in their prompts, limiting LLMs' ability to interpret news. In this paper, we propose a data-driven approach that enhances LLM-powered sentiment-based stock movement predictions by incorporating news dissemination breadth, contextual data, and explicit instructions. We cluster recent company-related news to assess its reach and influence, enriching prompts with more specific data and precise instructions. This data is used to construct an instruction tuning dataset to fine-tune an LLM for predicting short-term stock price movements. Our experimental results show that our approach improves prediction accuracy by 8\% compared to existing methods.
📅 2025-06-22 | 💬 Accepted by MICCAI 2025. Code: https://github.com/FengheTan9/LLM4Seg
With the advancement of Large Language Model (LLM) for natural language processing, this paper presents an intriguing finding: a frozen pre-trained LLM layer can process visual tokens for medical image segmentation tasks. Specifically, we propose a simple hybrid structure that integrates a pre-trained, frozen LLM layer within the CNN encoder-decoder segmentation framework (LLM4Seg). Surprisingly, this design improves segmentation performance with a minimal increase in trainable parameters across various modalities, including ultrasound, dermoscopy, polypscopy, and CT scans. Our in-depth analysis reveals the potential of transferring LLM's semantic awareness to enhance segmentation tasks, offering both improved global understanding and better local modeling capabilities. The improvement proves robust across different LLMs, validated using LLaMA and DeepSeek.
📅 2025-06-22 | 💬 16 pages, 12 figures, work in progress
Large Language Diffusion Models, or diffusion LLMs, have emerged as a significant focus in NLP research, with substantial effort directed toward understanding their scalability and downstream task performance. However, their long-context capabilities remain unexplored, lacking systematic analysis or methods for context extension. In this work, we present the first systematic investigation comparing the long-context performance of diffusion LLMs and traditional auto-regressive LLMs. We first identify a unique characteristic of diffusion LLMs, unlike auto-regressive LLMs, they maintain remarkably stable perplexity during direct context extrapolation. Moreover, where auto-regressive models fail outright during the Needle-In-A-Haystack task with context exceeding their pretrained length, we discover diffusion LLMs exhibit a distinct local perception phenomenon, enabling successful retrieval from recent context segments. We explain both phenomena through the lens of Rotary Position Embedding (RoPE) scaling theory. Building on these observations, we propose LongLLaDA, a training-free method that integrates LLaDA with the NTK-based RoPE extrapolation. Our results validate that established extrapolation scaling laws remain effective for extending the context windows of diffusion LLMs. Furthermore, we identify long-context tasks where diffusion LLMs outperform auto-regressive LLMs and others where they fall short. Consequently, this study establishes the first length extrapolation method for diffusion LLMs while providing essential theoretical insights and empirical benchmarks critical for advancing future research on long-context diffusion LLMs. The code is available at https://github.com/OpenMOSS/LongLLaDA.
📅 2025-06-22
Weight decay is a standard regularization technique for training large language models (LLMs). While it is common to assign a uniform decay rate to every layer, this approach overlooks the structural diversity of LLMs and the varying spectral properties across modules. In this paper, we introduce AlphaDecay, a simple yet effective method that adaptively assigns different weight decay strengths to each module of an LLM. Our approach is guided by Heavy-Tailed Self-Regularization (HT-SR) theory, which analyzes the empirical spectral density (ESD) of weight correlation matrices to quantify "heavy-tailedness." Modules exhibiting more pronounced heavy-tailed ESDs, reflecting stronger feature learning, are assigned weaker decay, while modules with lighter-tailed spectra receive stronger decay. Our method leverages tailored weight decay assignments to balance the module-wise differences in spectral properties, leading to improved performance. Extensive pre-training tasks with various model sizes from 60M to 1B demonstrate that AlphaDecay achieves better perplexity and generalization than conventional uniform decay and other adaptive decay baselines. Our code is available at https://github.com/hed-ucas/AlphaDecay.
📅 2025-06-22 | 💬 arXiv admin note: substantial text overlap with arXiv:2504.15085
Cross-Domain Sequential Recommendation (CDSR) predicts user behavior by leveraging historical interactions across multiple domains, focusing on modeling cross-domain preferences and capturing both intra- and inter-sequence item relationships. We propose LLM-Enhanced Multimodal Fusion for Cross-Domain Sequential Recommendation (LLM-EMF), a novel and advanced approach that enhances textual information with Large Language Models (LLM) knowledge and significantly improves recommendation performance through the fusion of visual and textual data. Using the frozen CLIP model, we generate image and text embeddings, thereby enriching item representations with multimodal data. A multiple attention mechanism jointly learns both single-domain and cross-domain preferences, effectively capturing and understanding complex user interests across diverse domains. Evaluations conducted on four e-commerce datasets demonstrate that LLM-EMF consistently outperforms existing methods in modeling cross-domain user preferences, thereby highlighting the effectiveness of multimodal data integration and its advantages in enhancing sequential recommendation systems. Our source code will be released.
📅 2025-06-22
Large Language Models (LLMs)-based hybrid retrieval uses LLMs to encode queries and documents into low-dimensional dense or high-dimensional sparse vectors. It retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based hybrid retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full-sized LLM on an H800 GPU, our approach achieves over a 1000x speedup for query inference with GPU acceleration, and even a 20x speedup without GPU. Experiments on large-scale retrieval benchmarks demonstrate that our method generalizes well across diverse retrieval tasks, retaining an average of 95% full-sized performance.
📅 2025-06-22 | 💬 Accepted in ICER 2025
Since the emergence of Large Language Models (LLMs) popularized by the release of GPT-3 and ChatGPT, LLMs have shown remarkable promise in programming-related tasks. While code generation using LLMs has become a popular field of research, code evaluation using LLMs remains under-explored. In this paper, we focus on LLM-based code evaluation and attempt to fill in the existing gaps. We propose multi-agentic novel approaches using \emph{question-specific rubrics} tailored to the problem statement, arguing that these perform better for logical assessment than the existing approaches that use \emph{question-agnostic rubrics}. To address the lack of suitable evaluation datasets, we introduce two datasets: a Data Structures and Algorithms dataset containing 150 student submissions from a popular Data Structures and Algorithms practice website, and an Object Oriented Programming dataset comprising 80 student submissions from undergraduate computer science courses. In addition to using standard metrics (Spearman Correlation, Cohen's Kappa), we additionally propose a new metric called as Leniency, which quantifies evaluation strictness relative to expert assessment. Our comprehensive analysis demonstrates that \emph{question-specific rubrics} significantly enhance logical assessment of code in educational settings, providing better feedback aligned with instructional goals beyond mere syntactic correctness.
📅 2025-06-22 | 💬 9 pages, 5 figures, 5 tables
Ensuring the security of modern System-on-Chip (SoC) designs poses significant challenges due to increasing complexity and distributed assets across the intellectual property (IP) blocks. Formal property verification (FPV) provides the capability to model and validate design behaviors through security properties with model checkers; however, current practices require significant manual efforts to create such properties, making them time-consuming, costly, and error-prone. The emergence of Large Language Models (LLMs) has showcased remarkable proficiency across diverse domains, including HDL code generation and verification tasks. Current LLM-based techniques often produce vacuous assertions and lack efficient prompt generation, comprehensive verification, and bug detection. This paper presents LASA, a novel framework that leverages LLMs and retrieval-augmented generation (RAG) to produce non-vacuous security properties and SystemVerilog Assertions (SVA) from design specifications and related documentation for bus-based SoC designs. LASA integrates commercial EDA tool for FPV to generate coverage metrics and iteratively refines prompts through a feedback loop to enhance coverage. The effectiveness of LASA is validated through various open-source SoC designs, demonstrating high coverage values with an average of ~88\%, denoting comprehensive verification through efficient generation of security properties and SVAs. LASA also demonstrates bug detection capabilities, identifying five unique bugs in the buggy OpenTitan SoC from Hack@DAC'24 competition.
📅 2025-06-22
Recently, large language models (LLMs) have demonstrated impressive results but still suffer from hallucinations. Model editing has been proposed to correct factual inaccuracies in LLMs. A challenging case is sequential model editing (SME), which aims to rectify errors continuously rather than treating them as a one-time task. During SME, the general capabilities of LLMs can be negatively affected due to the introduction of new parameters. In this paper, we propose a queue-based self-correction framework (QueueEDIT) that not only enhances SME performance by addressing long-sequence dependency but also mitigates the impact of parameter bias on the general capabilities of LLMs. Specifically, we first introduce a structural mapping editing loss to map the triplets to the knowledge-sensitive neurons within the Transformer layers of LLMs. We then store the located parameters for each piece of edited knowledge in a queue and dynamically align previously edited parameters. In each edit, we select queue parameters most relevant to the currently located parameters to determine whether previous knowledge needs realignment. Irrelevant parameters in the queue are frozen, and we update the parameters at the queue head to the LLM to ensure they do not harm general abilities. Experiments show that our framework significantly outperforms strong baselines across various SME settings and maintains competitiveness in single-turn editing. The resulting LLMs also preserve high capabilities in general NLP tasks throughout the SME process.
📅 2025-06-22
Effective multimodal reasoning depends on the alignment of visual and linguistic representations, yet the mechanisms by which vision-language models (VLMs) achieve this alignment remain poorly understood. Following the LiMBeR framework, we deliberately maintain a frozen large language model (LLM) and a frozen vision transformer (ViT), connected solely by training a linear adapter during visual instruction tuning. By keeping the language model frozen, we ensure it maintains its original language representations without adaptation to visual data. Consequently, the linear adapter must map visual features directly into the LLM's existing representational space rather than allowing the language model to develop specialized visual understanding through fine-tuning. Our experimental design uniquely enables the use of pre-trained sparse autoencoders (SAEs) of the LLM as analytical probes. These SAEs remain perfectly aligned with the unchanged language model and serve as a snapshot of the learned language feature-representations. Through systematic analysis of SAE reconstruction error, sparsity patterns, and feature SAE descriptions, we reveal the layer-wise progression through which visual representations gradually align with language feature representations, converging in middle-to-later layers. This suggests a fundamental misalignment between ViT outputs and early LLM layers, raising important questions about whether current adapter-based architectures optimally facilitate cross-modal representation learning.
📅 2025-06-22 | 💬 KDD LLM4ECommerce Workshop 2025
Offsite marketing is essential in e-commerce, enabling businesses to reach customers through external platforms and drive traffic to retail websites. However, most current offsite marketing content is overly generic, template-based, and poorly aligned with landing pages, limiting its effectiveness. To address these limitations, we propose MarketingFM, a retrieval-augmented system that integrates multiple data sources to generate keyword-specific ad copy with minimal human intervention. We validate MarketingFM via offline human and automated evaluations and large-scale online A/B tests. In one experiment, keyword-focused ad copy outperformed templates, achieving up to 9% higher CTR, 12% more impressions, and 0.38% lower CPC, demonstrating gains in ad ranking and cost efficiency. Despite these gains, human review of generated ads remains costly. To address this, we propose AutoEval-Main, an automated evaluation system that combines rule-based metrics with LLM-as-a-Judge techniques to ensure alignment with marketing principles. In experiments with large-scale human annotations, AutoEval-Main achieved 89.57% agreement with human reviewers. Building on this, we propose AutoEval-Update, a cost-efficient LLM-human collaborative framework to dynamically refine evaluation prompts and adapt to shifting criteria with minimal human input. By selectively sampling representative ads for human review and using a critic LLM to generate alignment reports, AutoEval-Update improves evaluation consistency while reducing manual effort. Experiments show the critic LLM suggests meaningful refinements, improving LLM-human agreement. Nonetheless, human oversight remains essential for setting thresholds and validating refinements before deployment.
📅 2025-06-21
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
📅 2025-06-21 | 💬 22 pages, 9 figures, 12 tables
This paper shows the benefits and fruitfulness of evaluating LLMs with multiple problems at once, a paradigm we call multi-problem evaluation (MPE). Unlike conventional single-problem evaluation, where a prompt presents a single problem and expects one specific answer, MPE places multiple problems together in a single prompt and assesses how well an LLM answers all these problems in a single output. Leveraging 6 classification and 12 reasoning benchmarks that already exist, we introduce a new benchmark called ZeMPE (Zero-shot Multi-Problem Evaluation), comprising 53,100 zero-shot multi-problem prompts. We experiment with a total of 13 LLMs from 5 model families on ZeMPE to present a comprehensive and systematic MPE. Our results show that LLMs are capable of handling multiple problems from a single data source as well as handling them separately, but there are conditions this multiple problem handling capability falls short. In addition, we perform in-depth further analyses and explore model-level factors that may enable multiple problem handling capabilities in LLMs. We release our corpus and code to facilitate future research.
📅 2025-06-21 | 💬 To appear at the Third Workshop on Large Language Models for Evaluation in Information Retrieval (LLM4Eval 2025), co-located with SIGIR 2025. 9 pages, 2 figures, 5 tables
Evaluating Information Retrieval (IR) systems relies on high-quality manual relevance judgments (qrels), which are costly and time-consuming to obtain. While pooling reduces the annotation effort, it results in only partially labeled datasets. Large Language Models (LLMs) offer a promising alternative to reducing reliance on manual judgments, particularly in complex domains like medical case-based retrieval, where relevance assessment requires analyzing both textual and visual information. In this work, we explore using a Multimodal Large Language Model (MLLM) to expand relevance judgments, creating a new dataset of automated judgments. Specifically, we employ Gemini 1.5 Pro on the ImageCLEFmed 2013 case-based retrieval task, simulating human assessment through an iteratively refined, structured prompting strategy that integrates binary scoring, instruction-based evaluation, and few-shot learning. We systematically experimented with various prompt configurations to maximize agreement with human judgments. To evaluate agreement between the MLLM and human judgments, we use Cohen's Kappa, achieving a substantial agreement score of 0.6, comparable to inter-annotator agreement typically observed in multimodal retrieval tasks. Starting from the original 15,028 manual judgments (4.72% relevant) across 35 topics, our MLLM-based approach expanded the dataset by over 37x to 558,653 judgments, increasing relevant annotations to 5,950. On average, each medical case query received 15,398 new annotations, with approximately 99% being non-relevant, reflecting the high sparsity typical in this domain. Our results demonstrate the potential of MLLMs to scale relevance judgment collection, offering a promising direction for supporting retrieval evaluation in medical and multimodal IR tasks.
📅 2025-06-21
Recent advances in reinforcement learning (RL)-based post-training have led to notable improvements in large language models (LLMs), particularly in enhancing their reasoning capabilities to handle complex tasks. However, most existing methods treat the training data as a unified whole, overlooking the fact that modern LLM training often involves a mixture of data from diverse distributions-varying in both source and difficulty. This heterogeneity introduces a key challenge: how to adaptively schedule training across distributions to optimize learning efficiency. In this paper, we present a principled curriculum learning framework grounded in the notion of distribution-level learnability. Our core insight is that the magnitude of policy advantages reflects how much a model can still benefit from further training on a given distribution. Based on this, we propose a distribution-level curriculum learning framework for RL-based LLM post-training, which leverages the Upper Confidence Bound (UCB) principle to dynamically adjust sampling probabilities for different distrubutions. This approach prioritizes distributions with either high average advantage (exploitation) or low sample count (exploration), yielding an adaptive and theoretically grounded training schedule. We instantiate our curriculum learning framework with GRPO as the underlying RL algorithm and demonstrate its effectiveness on logic reasoning datasets with multiple difficulties and sources. Our experiments show that our framework significantly improves convergence speed and final performance, highlighting the value of distribution-aware curriculum strategies in LLM post-training. Code: https://github.com/ZhentingWang/DUMP.
📅 2025-06-21 | 💬 Yifan and Haodi contributed equally to the work, accepted by PAKDD 2025
Large language model (LLM) has marked a pivotal moment in the field of machine learning and deep learning. Recently its capability for query planning has been investigated, including both single-modal and multi-modal queries. However, there is no work on the query optimization capability of LLM. As a critical (or could even be the most important) step that significantly impacts the execution performance of the query plan, such analysis and attempts should not be missed. From another aspect, existing query optimizers are usually rule-based or rule-based + cost-based, i.e., they are dependent on manually created rules to complete the query plan rewrite/transformation. Given the fact that modern optimizers include hundreds to thousands of rules, designing a multi-modal query optimizer following a similar way is significantly time-consuming since we will have to enumerate as many multi-modal optimization rules as possible, which has not been well addressed today. In this paper, we investigate the query optimization ability of LLM and use LLM to design LaPuda, a novel LLM and Policy based multi-modal query optimizer. Instead of enumerating specific and detailed rules, LaPuda only needs a few abstract policies to guide LLM in the optimization, by which much time and human effort are saved. Furthermore, to prevent LLM from making mistakes or negative optimization, we borrow the idea of gradient descent and propose a guided cost descent (GCD) algorithm to perform the optimization, such that the optimization can be kept in the correct direction. In our evaluation, our methods consistently outperform the baselines in most cases. For example, the optimized plans generated by our methods result in 1~3x higher execution speed than those by the baselines.
📅 2025-06-21
Large language models (LLMs) exhibit diverse response behaviors, costs, and strengths, making it challenging to select the most suitable LLM for a given user query. We study the problem of adaptive multi-LLM selection in an online setting, where the learner interacts with users through multi-step query refinement and must choose LLMs sequentially without access to offline datasets or model internals. A key challenge arises from unstructured context evolution: the prompt dynamically changes in response to previous model outputs via a black-box process, which cannot be simulated, modeled, or learned. To address this, we propose the first contextual bandit framework for sequential LLM selection under unstructured prompt dynamics. We formalize a notion of myopic regret and develop a LinUCB-based algorithm that provably achieves sublinear regret without relying on future context prediction. We further introduce budget-aware and positionally-aware (favoring early-stage satisfaction) extensions to accommodate variable query costs and user preferences for early high-quality responses. Our algorithms are theoretically grounded and require no offline fine-tuning or dataset-specific training. Experiments on diverse benchmarks demonstrate that our methods outperform existing LLM routing strategies in both accuracy and cost-efficiency, validating the power of contextual bandits for real-time, adaptive LLM selection.
📅 2025-06-21 | 💬 40 pages, 4 figures, ACL 2025 Findings
Despite the remarkable success of Transformer-based large language models (LLMs) across various domains, understanding and enhancing their mathematical capabilities remains a significant challenge. In this paper, we conduct a rigorous theoretical analysis of LLMs' mathematical abilities, with a specific focus on their arithmetic performances. We identify numerical precision as a key factor that influences their effectiveness in arithmetical tasks. Our results show that Transformers operating with low numerical precision fail to address arithmetic tasks, such as iterated addition and integer multiplication, unless the model size grows super-polynomially with respect to the input length. In contrast, Transformers with standard numerical precision can efficiently handle these tasks with significantly smaller model sizes. We further support our theoretical findings through empirical experiments that explore the impact of varying numerical precision on arithmetic tasks, providing valuable insights for improving the mathematical reasoning capabilities of LLMs.
📅 2025-06-21
Artificial Intelligence (AI) Infrastructures, represented by Deep Learning (DL) frameworks, have served as fundamental DL systems over the last decade. However, the bugs in DL frameworks could lead to catastrophic consequences in some critical scenarios (e.g., healthcare and autonomous driving). A simple yet effective way to find bugs in DL frameworks is fuzz testing (Fuzzing). Unfortunately, existing fuzzing techniques have not comprehensively considered multiple types of feedback. Additionally, they analyze feedback in a coarse-grained manner, such as mutating the test cases only according to whether the coverage increases. Recently, researchers introduced Large Language Models (LLMs) into fuzzing. However, current LLM-based fuzzing techniques only focus on using LLMs to generate test cases while overlooking their potential to analyze feedback information, failing to create more valid and diverse test cases. To fill this gap, we propose FUEL to break the seal of Feedback-driven fuzzing for DL frameworks. The backbone of FUEL comprises two LLM-based agents, namely analysis LLM and generation LLM. Analysis LLM agent infers analysis summaries from feedback information, while the generation LLM agent creates tests guided by these analysis summaries. So far, FUEL has detected 104 bugs for PyTorch and TensorFlow, with 93 confirmed as new bugs, 47 already fixed, and 5 assigned with CVE IDs. Our work indicates that considering multiple types of feedback is beneficial to fuzzing performance, and leveraging LLMs to analyze feedback information is a promising direction. Our artifact is available at https://github.com/NJU-iSE/FUEL
📅 2025-06-21 | 💬 17 pages, 12 figures
Large Language Models (LLMs) have revolutionized various domains but encounter substantial challenges in tackling optimization modeling tasks for Operations Research (OR), particularly when dealing with complex problem. In this work, we propose Step-Opt-Instruct, a framework that augments existing datasets and generates high-quality fine-tuning data tailored to optimization modeling. Step-Opt-Instruct employs iterative problem generation to systematically increase problem complexity and stepwise validation to rigorously verify data, preventing error propagation and ensuring the quality of the generated dataset. Leveraging this framework, we fine-tune open-source LLMs, including LLaMA-3-8B and Mistral-7B, to develop Step-Opt--a model that achieves state-of-the-art performance on benchmarks such as NL4OPT, MAMO, and IndustryOR. Extensive experiments demonstrate the superior performance of Step-Opt, especially in addressing complex OR tasks, with a notable 17.01\% improvement in micro average accuracy on difficult problems. These findings highlight the effectiveness of combining structured validation with gradual problem refinement to advance the automation of decision-making processes using LLMs.The code and dataset are available at https://github.com/samwu-learn/Step.
📅 2025-06-21 | 💬 Accepted at NeurIPS 2024 Safe Generative AI Workshop
Automated evaluation leveraging large language models (LLMs), commonly referred to as LLM evaluators or LLM-as-a-judge, has been widely used in measuring the performance of dialogue systems. However, the self-preference bias in LLMs has posed significant risks, including promoting specific styles or policies intrinsic to the LLMs. Despite the importance of this issue, there is a lack of established methods to measure the self-preference bias quantitatively, and its underlying causes are poorly understood. In this paper, we introduce a novel quantitative metric to measure the self-preference bias. Our experimental results demonstrate that GPT-4 exhibits a significant degree of self-preference bias. To explore the causes, we hypothesize that LLMs may favor outputs that are more familiar to them, as indicated by lower perplexity. We analyze the relationship between LLM evaluations and the perplexities of outputs. Our findings reveal that LLMs assign significantly higher evaluations to outputs with lower perplexity than human evaluators, regardless of whether the outputs were self-generated. This suggests that the essence of the bias lies in perplexity and that the self-preference bias exists because LLMs prefer texts more familiar to them.
📅 2025-06-21
Time series forecasting aims to model temporal dependencies among variables for future state inference, holding significant importance and widespread applications in real-world scenarios. Although deep learning-based methods have achieved remarkable progress, they still exhibit suboptimal performance in long-term forecasting and data-scarce scenarios. Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting. However, we find existing LLM-based methods still have shortcomings: (1) the absence of a unified paradigm for textual prompt formulation and (2) the neglect of modality discrepancies between textual prompts and time series. To address this, we propose LLM-Prompt, an LLM-based time series forecasting framework integrating multi-prompt information and cross-modal semantic alignment. Specifically, we first construct a unified textual prompt paradigm containing learnable soft prompts and textualized hard prompts. Second, to enhance LLMs' comprehensive understanding of the forecasting task, we design a semantic space embedding and cross-modal alignment module to achieve cross-modal fusion of temporal and textual information. Finally, the transformed time series from the LLMs are projected to obtain the forecasts. Comprehensive evaluations on 6 public datasets and 3 carbon emission datasets demonstrate that LLM-Prompt is a powerful framework for time series forecasting.
📅 2025-06-21 | 💬 14 pages, 8 figures
While Large Language Models (LLMs) demonstrate impressive reasoning capabilities, growing evidence suggests much of their success stems from memorized answer-reasoning patterns rather than genuine inference. In this work, we investigate a central question: are LLMs primarily anchored to final answers or to the textual pattern of reasoning chains? We propose a five-level answer-visibility prompt framework that systematically manipulates answer cues and probes model behavior through indirect, behavioral analysis. Experiments across state-of-the-art LLMs reveal a strong and consistent reliance on explicit answers. The performance drops by 26.90\% when answer cues are masked, even with complete reasoning chains. These findings suggest that much of the reasoning exhibited by LLMs may reflect post-hoc rationalization rather than true inference, calling into question their inferential depth. Our study uncovers the answer-anchoring phenomenon with rigorous empirical validation and underscores the need for a more nuanced understanding of what constitutes reasoning in LLMs.
📅 2025-06-21
Visual analytics (VA) requires analysts to iteratively propose analysis tasks based on observations and execute tasks by creating visualizations and interactive exploration to gain insights. This process demands skills in programming, data processing, and visualization tools, highlighting the need for a more intelligent, streamlined VA approach. Large language models (LLMs) have recently been developed as agents to handle various tasks with dynamic planning and tool-using capabilities, offering the potential to enhance the efficiency and versatility of VA. We propose LightVA, a lightweight VA framework that supports task decomposition, data analysis, and interactive exploration through human-agent collaboration. Our method is designed to help users progressively translate high-level analytical goals into low-level tasks, producing visualizations and deriving insights. Specifically, we introduce an LLM agent-based task planning and execution strategy, employing a recursive process involving a planner, executor, and controller. The planner is responsible for recommending and decomposing tasks, the executor handles task execution, including data analysis, visualization generation and multi-view composition, and the controller coordinates the interaction between the planner and executor. Building on the framework, we develop a system with a hybrid user interface that includes a task flow diagram for monitoring and managing the task planning process, a visualization panel for interactive data exploration, and a chat view for guiding the model through natural language instructions. We examine the effectiveness of our method through a usage scenario and an expert study.
📅 2025-06-21
Machine unlearning (MU) for large language models (LLMs), commonly referred to as LLM unlearning, seeks to remove specific undesirable data or knowledge from a trained model, while maintaining its performance on standard tasks. While unlearning plays a vital role in protecting data privacy, enforcing copyright, and mitigating sociotechnical harms in LLMs, we identify a new vulnerability post-unlearning: unlearning trace detection. We discover that unlearning leaves behind persistent ''fingerprints'' in LLMs, detectable traces in both model behavior and internal representations. These traces can be identified from output responses, even when prompted with forget-irrelevant inputs. Specifically, a simple supervised classifier can reliably determine whether a model has undergone unlearning based solely on its textual outputs. Further analysis shows that these traces are embedded in intermediate activations and propagate nonlinearly to the final layer, forming low-dimensional, learnable manifolds in activation space. Through extensive experiments, we show that forget-relevant prompts enable over 90% accuracy in detecting unlearning traces across all model sizes. Even with forget-irrelevant inputs, large LLMs maintain high detectability, demonstrating the broad applicability of unlearning trace detection. These findings reveal that unlearning leaves measurable signatures, introducing a new risk of reverse-engineering forgotten information when a model is identified as unlearned given an input query. Codes are available at https://github.com/OPTML-Group/Unlearn-Trace.
📅 2025-06-21
Large Language Models (LLMs) have shown promise in proving formal theorems using proof assistants like Lean. However, current state of the art language models struggles to predict next step in proofs leading practitioners to use different sampling techniques to improve LLMs capabilities. We observe that the LLM is capable of predicting the correct tactic; however, it faces challenges in ranking it appropriately within the set of candidate tactics, affecting the overall selection process. To overcome this hurdle, we use activation steering to guide LLMs responses to improve the generations at the time of inference. Our results suggest that activation steering offers a promising lightweight alternative to specialized fine-tuning for enhancing theorem proving capabilities in LLMs, particularly valuable in resource-constrained environments.
📅 2025-06-21 | 💬 ACL 2025 Main
Large language models (LLMs) have demonstrated exceptional performance across a wide range of natural language tasks. However, selecting the optimal LLM to respond to a user query often necessitates a delicate balance between performance and cost. While powerful models deliver better results, they come at a high cost, whereas smaller models are more cost-effective but less capable. To address this trade-off, we propose IRT-Router, a multi-LLM routing framework that efficiently routes user queries to the most suitable LLM. Inspired by Item Response Theory (IRT), a psychological measurement methodology, IRT-Router explicitly models the relationship between LLM capabilities and user query attributes. This not only enables accurate prediction of response performance but also provides interpretable insights, such as LLM abilities and query difficulty. Additionally, we design an online query warm-up technique based on semantic similarity, further enhancing the online generalization capability of IRT-Router. Extensive experiments on 20 LLMs and 12 datasets demonstrate that IRT-Router outperforms most baseline methods in terms of effectiveness and interpretability. Its superior performance in cold-start scenarios further confirms the reliability and practicality of IRT-Router in real-world applications. Code is available at https://github.com/Mercidaiha/IRT-Router.
📅 2025-06-21 | 💬 Technical report
Multimodal large language models (MLLMs) have shown promising capabilities in reasoning tasks, yet still struggle with complex problems requiring explicit self-reflection and self-correction, especially compared to their unimodal text-based counterparts. Existing reflection methods are simplistic and struggle to generate meaningful and instructive feedback, as the reasoning ability and knowledge limits of pre-trained models are largely fixed during initial training. To overcome these challenges, we propose Multimodal Self-Reflection enhanced reasoning with Group Relative Policy Optimization (SRPO), a two-stage reflection-aware reinforcement learning (RL) framework explicitly designed to enhance multimodal LLM reasoning. In the first stage, we construct a high-quality, reflection-focused dataset under the guidance of an advanced MLLM, which generates reflections based on initial responses to help the policy model learn both reasoning and self-reflection. In the second stage, we introduce a novel reward mechanism within the GRPO framework that encourages concise and cognitively meaningful reflection while avoiding redundancy. Extensive experiments across multiple multimodal reasoning benchmarks, including MathVista, MathVision, MathVerse, and MMMU-Pro, using Qwen-2.5-VL-7B and Qwen-2.5-VL-32B demonstrate that SRPO significantly outperforms state-of-the-art models, achieving notable improvements in both reasoning accuracy and reflection quality.
📅 2025-06-21
LLMs have demonstrated significant potential in Medical Report Generation (MRG), yet their development requires large amounts of medical image-report pairs, which are commonly scattered across multiple centers. Centralizing these data is exceptionally challenging due to privacy regulations, thereby impeding model development and broader adoption of LLM-driven MRG models. To address this challenge, we present FedMRG, the first framework that leverages Federated Learning (FL) to enable privacy-preserving, multi-center development of LLM-driven MRG models, specifically designed to overcome the critical challenge of communication-efficient LLM training under multi-modal data heterogeneity. To start with, our framework tackles the fundamental challenge of communication overhead in FL-LLM tuning by employing low-rank factorization to efficiently decompose parameter updates, significantly reducing gradient transmission costs and making LLM-driven MRG feasible in bandwidth-constrained FL settings. Furthermore, we observed the dual heterogeneity in MRG under the FL scenario: varying image characteristics across medical centers, as well as diverse reporting styles and terminology preferences. To address this, we further enhance FedMRG with (1) client-aware contrastive learning in the MRG encoder, coupled with diagnosis-driven prompts, which capture both globally generalizable and locally distinctive features while maintaining diagnostic accuracy; and (2) a dual-adapter mutual boosting mechanism in the MRG decoder that harmonizes generic and specialized adapters to address variations in reporting styles and terminology. Through extensive evaluation of our established FL-MRG benchmark, we demonstrate the generalizability and adaptability of FedMRG, underscoring its potential in harnessing multi-center data and generating clinically accurate reports while maintaining communication efficiency.
📅 2025-06-21
This work investigates the potential of tailoring Large Language Models (LLMs), specifically GPT3.5 and GPT4, for the domain of chip testing. A key aspect of chip design is functional testing, which relies on testbenches to evaluate the functionality and coverage of Register-Transfer Level (RTL) designs. We aim to enhance testbench generation by incorporating feedback from commercial-grade Electronic Design Automation (EDA) tools into LLMs. Through iterative feedback from these tools, we refine the testbenches to achieve improved test coverage. Our case studies present promising results, demonstrating that this approach can effectively enhance test coverage. By integrating EDA tool feedback, the generated testbenches become more accurate in identifying potential issues in the RTL design. Furthermore, we extended our study to use this enhanced test coverage framework for detecting bugs in the RTL implementations
📅 2025-06-21 | 💬 Accepted to International Conference on Software Engineering (ICSE 2026)
The growing dependence on mobile phones and their apps has made multi-user interactive features, like chat calls, live streaming, and video conferencing, indispensable for bridging the gaps in social connectivity caused by physical and situational barriers. However, automating these interactive features for testing is fraught with challenges, owing to their inherent need for timely, dynamic, and collaborative user interactions, which current automated testing methods inadequately address. Inspired by the concept of agents designed to autonomously and collaboratively tackle problems, we propose MAdroid, a novel multi-agent approach powered by the Large Language Models (LLMs) to automate the multi-user interactive task for app feature testing. Specifically, MAdroid employs two functional types of multi-agents: user agents (Operator) and supervisor agents (Coordinator and Observer). Each agent takes a specific role: the Coordinator directs the interactive task; the Operator mimics user interactions on the device; and the Observer monitors and reviews the task automation process. Our evaluation, which included 41 multi-user interactive tasks, demonstrates the effectiveness of our approach, achieving 82.9% of the tasks with 96.8% action similarity, outperforming the ablation studies and state-of-the-art baselines. Additionally, a preliminary investigation underscores MAdroid's practicality by helping identify 11 multi-user interactive bugs during regression app testing, confirming its potential value in real-world software development contexts.
📅 2025-06-21 | 💬 13 pages, 3 figures
Fine-tuning Large Language Models (LLMs) with Low-Rank Adaptation (LoRA) enhances adaptability while reducing computational costs. However, fine-tuning can compromise safety alignment, even with benign data, increasing susceptibility to harmful outputs. Existing safety alignment methods struggle to capture complex parameter shifts, leading to suboptimal safety-utility trade-offs. To address this issue, we propose Safe Pruning LoRA (SPLoRA), a novel pruning-based approach that selectively removes LoRA layers that weaken safety alignment, improving safety while preserving performance. At its core, we introduce Empirical-DIEM (E-DIEM), a dimension-insensitive similarity metric that effectively detects safety misalignment in LoRA-adapted models. We conduct extensive experiments on LLMs fine-tuned with mixed of benign and malicious data, and purely benign datasets, evaluating SPLoRA across utility, safety, and reliability metrics. Results demonstrate that SPLoRA outperforms state-of-the-art safety alignment techniques, significantly reducing safety risks while maintaining or improving model performance and reliability. Additionally, SPLoRA reduces inference overhead, making it a scalable and efficient solution for deploying safer and more reliable LLMs. The code is available at https://github.com/AoShuang92/SPLoRA.
📅 2025-06-21
Strategic randomization is a key principle in game theory, yet it remains underexplored in large language models (LLMs). Prior work often conflates the cognitive decision to randomize with the mechanical generation of randomness, leading to incomplete evaluations. To address this, we propose a novel zero-sum game inspired by the Tian Ji Horse Race, where the Nash equilibrium corresponds to a maximal entropy strategy. The game's complexity masks this property from untrained humans and underdeveloped LLMs. We evaluate five LLMs across prompt styles -- framed, neutral, and hinted -- using competitive multi-tournament gameplay with system-provided random choices, isolating the decision to randomize. Results show that weaker models remain deterministic regardless of prompts, while stronger models exhibit increased randomization under explicit hints. When facing weaker models, strong LLMs adopt deterministic strategies to exploit biases, but converge toward equilibrium play when facing peers. Through win/loss outcomes and Bayes factor analysis, we demonstrate meaningful variation in LLMs' strategic reasoning capabilities, highlighting opportunities for improvement in abstract reasoning and adaptive learning. We make our implementation publicly available at https://github.com/ocelopus/llm-when-to-throw-coin to ensure full reproducibility.
📅 2025-06-21 | 💬 Pre-print under-review
As large language models (LLMs) are used in complex writing workflows, users engage in multi-turn interactions to steer generations to better fit their needs. Rather than passively accepting output, users actively refine, explore, and co-construct text. We conduct a large-scale analysis of this collaborative behavior for users engaged in writing tasks in the wild with two popular AI assistants, Bing Copilot and WildChat. Our analysis goes beyond simple task classification or satisfaction estimation common in prior work and instead characterizes how users interact with LLMs through the course of a session. We identify prototypical behaviors in how users interact with LLMs in prompts following their original request. We refer to these as Prototypical Human-AI Collaboration Behaviors (PATHs) and find that a small group of PATHs explain a majority of the variation seen in user-LLM interaction. These PATHs span users revising intents, exploring texts, posing questions, adjusting style or injecting new content. Next, we find statistically significant correlations between specific writing intents and PATHs, revealing how users' intents shape their collaboration behaviors. We conclude by discussing the implications of our findings on LLM alignment.
📅 2025-06-21
Many researchers are working to address the worldwide mental health crisis by developing therapeutic technologies that increase the accessibility of care, including leveraging large language model (LLM) capabilities in chatbots and socially assistive robots (SARs) used for therapeutic applications. Yet, the effects of these technologies over time remain unexplored. In this study, we use a factorial design to assess the impact of embodiment and time spent engaging in therapeutic exercises on participant disclosures. We assessed transcripts gathered from a two-week study in which 26 university student participants completed daily interactive Cognitive Behavioral Therapy (CBT) exercises in their residences using either an LLM-powered SAR or a disembodied chatbot. We evaluated the levels of active engagement and high intimacy of their disclosures (opinions, judgments, and emotions) during each session and over time. Our findings show significant interactions between time and embodiment for both outcome measures: participant engagement and intimacy increased over time in the physical robot condition, while both measures decreased in the chatbot condition.
📅 2025-06-20
Reinforcement learning has emerged as a powerful paradigm for post-training large language models (LLMs) to improve reasoning. Approaches like Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) have shown strong results, but they require extensive external supervision. We investigate an alternative class of methods, Reinforcement Learning from Internal Feedback (RLIF), which relies solely on intrinsic model-derived signals instead of external rewards. In particular, we leverage unsupervised reward proxies such as token-level entropy, trajectory-level entropy, and self-certainty. Our theoretical analysis shows these internal objectives are partially equivalent, and we empirically evaluate various RLIF strategies on challenging math reasoning benchmarks. Experimental results demonstrate that RLIF can boost the reasoning performance of base LLMs at the beginning phase of the training, matching or surpassing RLVR techniques on these tasks. However, when training progresses, performance degrades even below the model before training. Moreover, we find that RLIF yields little improvement for instruction-tuned models, indicating diminishing returns of intrinsic feedback once an LLM is already instruction-tuned. We further analyze this limitation by mixing model weights and explain the reason of RLIF's training behaviors, providing practical guidelines for integrating internal feedback signals into LLM training. We hope our analysis of internal feedback will inform more principled and effective strategies for LLM post-training.
📅 2025-06-20
This paper introduces AQA-Bench, a novel benchmark to assess the sequential reasoning capabilities of large language models (LLMs) in algorithmic contexts, such as depth-first search (DFS). The key feature of our evaluation benchmark lies in its interactive evaluation protocol - for example, in DFS, the availability of each node's connected edge is contingent upon the model's traversal to that node, thereby necessitating the LLM's ability to effectively remember visited nodes and strategize subsequent moves considering the possible environmental feedback in the future steps. We comprehensively build AQA-Bench with three different algorithms, namely binary search, depth-first search, and breadth-first search, and to evaluate the sequential reasoning ability of 14 different LLMs. Our investigations reveal several interesting findings: (1) Closed-source models like GPT-4 and Gemini generally show much stronger sequential reasoning ability, significantly outperforming open-source LLMs. (2) Naively providing in-context examples may inadvertently hurt few-shot performance in an interactive environment due to over-fitting to examples. (3) Instead of using optimal steps from another test case as the in-context example, a very limited number of predecessor steps in the current test case following the optimal policy can substantially boost small models' performance. (4) The performance gap between weak models and strong models is greatly due to the incapability of weak models to start well. (5) The scaling correlation between performance and model size is not always significant, sometimes even showcasing an inverse trend. We hope our study can catalyze future work on advancing the understanding and enhancement of LLMs' capabilities in sequential reasoning. The code is available at https://github.com/UCSC-VLAA/AQA-Bench.
📅 2025-06-20 | 💬 accepted by KDD workshop AI for Supply Chain 2025
Large Language Models (LLMs) have recently enabled natural language interfaces that translate user queries into executable SQL, offering a powerful solution for non-technical stakeholders to access structured data. However, one of the limitation that LLMs do not natively express uncertainty makes it difficult to assess the reliability of their generated queries. This paper presents a case study that evaluates multiple approaches to estimate confidence scores for LLM-generated SQL in supply chain data retrieval. We investigated three strategies: (1) translation-based consistency checks; (2) embedding-based semantic similarity between user questions and generated SQL; and (3) self-reported confidence scores directly produced by the LLM. Our findings reveal that LLMs are often overconfident in their own outputs, which limits the effectiveness of self-reported confidence. In contrast, embedding-based similarity methods demonstrate strong discriminative power in identifying inaccurate SQL.
📅 2025-06-20 | 💬 Accepted for publication at the 19th European Conference on Technology Enhanced Learning (ECTEL 2025). This is the author's accepted manuscript
The increasing availability of large language models (LLMs) has raised concerns about their potential misuse in online learning. While tools for detecting LLM-generated text exist and are widely used by researchers and educators, their reliability varies. Few studies have compared the accuracy of detection methods, defined criteria to identify content generated by LLM, or evaluated the effect on learner performance from LLM misuse within learning. In this study, we define LLM-generated text within open responses as those produced by any LLM without paraphrasing or refinement, as evaluated by human coders. We then fine-tune GPT-4o to detect LLM-generated responses and assess the impact on learning from LLM misuse. We find that our fine-tuned LLM outperforms the existing AI detection tool GPTZero, achieving an accuracy of 80% and an F1 score of 0.78, compared to GPTZero's accuracy of 70% and macro F1 score of 0.50, demonstrating superior performance in detecting LLM-generated responses. We also find that learners suspected of LLM misuse in the open response question were more than twice as likely to correctly answer the corresponding posttest MCQ, suggesting potential misuse across both question types and indicating a bypass of the learning process. We pave the way for future work by demonstrating a structured, code-based approach to improve LLM-generated response detection and propose using auxiliary statistical indicators such as unusually high assessment scores on related tasks, readability scores, and response duration. In support of open science, we contribute data and code to support the fine-tuning of similar models for similar use cases.
📅 2025-06-20 | 💬 63 pages, 11 figures
Since its release in November 2022, ChatGPT has shaken up Stack Overflow, the premier platform for developers queries on programming and software development. Demonstrating an ability to generate instant, human-like responses to technical questions, ChatGPT has ignited debates within the developer community about the evolving role of human-driven platforms in the age of generative AI. Two months after ChatGPT release, Meta released its answer with its own Large Language Model (LLM) called LLaMA: the race was on. We conducted an empirical study analyzing questions from Stack Overflow and using these LLMs to address them. This way, we aim to (i) quantify the reliability of LLMs answers and their potential to replace Stack Overflow in the long term; (ii) identify and understand why LLMs fail; (iii) measure users activity evolution with Stack Overflow over time; and (iv) compare LLMs together. Our empirical results are unequivocal: ChatGPT and LLaMA challenge human expertise, yet do not outperform it for some domains, while a significant decline in user posting activity has been observed. Furthermore, we also discuss the impact of our findings regarding the usage and development of new LLMs and provide guidelines for future challenges faced by users and researchers.
📅 2025-06-20
Clinical robustness is critical to the safe deployment of medical Large Language Models (LLMs), but key questions remain about how LLMs and humans may differ in response to the real-world variability typified by clinical settings. To address this, we introduce MedPerturb, a dataset designed to systematically evaluate medical LLMs under controlled perturbations of clinical input. MedPerturb consists of clinical vignettes spanning a range of pathologies, each transformed along three axes: (1) gender modifications (e.g., gender-swapping or gender-removal); (2) style variation (e.g., uncertain phrasing or colloquial tone); and (3) format changes (e.g., LLM-generated multi-turn conversations or summaries). With MedPerturb, we release a dataset of 800 clinical contexts grounded in realistic input variability, outputs from four LLMs, and three human expert reads per clinical context. We use MedPerturb in two case studies to reveal how shifts in gender identity cues, language style, or format reflect diverging treatment selections between humans and LLMs. We find that LLMs are more sensitive to gender and style perturbations while human annotators are more sensitive to LLM-generated format perturbations such as clinical summaries. Our results highlight the need for evaluation frameworks that go beyond static benchmarks to assess the similarity between human clinician and LLM decisions under the variability characteristic of clinical settings.
📅 2025-06-20
Humans naturally understand moments in a video by integrating visual and auditory cues. For example, localizing a scene in the video like "A scientist passionately speaks on wildlife conservation as dramatic orchestral music plays, with the audience nodding and applauding" requires simultaneous processing of visual, audio, and speech signals. However, existing models often struggle to effectively fuse and interpret audio information, limiting their capacity for comprehensive video temporal understanding. To address this, we present TriSense, a triple-modality large language model designed for holistic video temporal understanding through the integration of visual, audio, and speech modalities. Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query, enabling robust performance under modality dropout and allowing flexible combinations of available inputs. To support TriSense's multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of over 2 million curated samples generated via an automated pipeline powered by fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality combinations, facilitating broad generalization. Extensive experiments across multiple benchmarks demonstrate the effectiveness of TriSense and its potential to advance multimodal video analysis. Code and dataset will be publicly released.
📅 2025-06-20 | 💬 Accepted at KDD'25
The traditional process of creating labeled datasets is labor-intensive and expensive. Recent breakthroughs in open-source large language models (LLMs) have opened up a new avenue in generating labeled datasets automatically for various natural language processing (NLP) tasks, providing an alternative to such an expensive annotation process. However, the reliability of such auto-generated labels remains a significant concern due to inherent inaccuracies. When learning from noisy labels, the model's generalization is likely to be harmed as it is prone to overfit to those label noises. While previous studies in learning from noisy labels mainly focus on synthetic noise and real-world noise, LLM-generated label noise receives less attention. In this paper, we propose SiDyP: Simplex Label Diffusion with Dynamic Prior to calibrate the classifier's prediction, thus enhancing its robustness towards LLM-generated noisy labels. SiDyP retrieves potential true label candidates by neighborhood label distribution in text embedding space and iteratively refines noisy candidates using a simplex diffusion model. Our framework can increase the performance of the BERT classifier fine-tuned on both zero-shot and few-shot LLM-generated noisy label datasets by an average of 7.21% and 7.30% respectively. We demonstrate the effectiveness of SiDyP by conducting extensive benchmarking for different LLMs over a variety of NLP tasks. Our code is available on Github.
📅 2025-06-20
Large language models (LLMs) have shown promising first-order logic (FOL) reasoning capabilities with applications in various areas. However, their effectiveness in complex mathematical reasoning involving multi-step FOL deductions is still under-researched. While LLMs perform competitively on established mathematical reasoning benchmarks, they struggle with multi-step FOL tasks, as demonstrated by Deepseek-Prover-V2-7B's low accuracy (4.2%) on our proposed theorem proving dataset. This issue arises from the limited exploration of diverse proof strategies and the potential for early reasoning mistakes to undermine entire proofs. To address these issues, we propose DREAM, a self-adaptive solution that enhances the Diversity and REAsonability of LLMs' generation strategies. DREAM incorporates an Axiom-Driven Strategy Diversification mechanism to promote varied strategic outcomes and a Sub-Proposition Error Feedback to help LLMs reflect on and correct their proofs. Our contributions include pioneering advancements in LLMs' mathematical reasoning through FOL theorem proving, introducing a novel inference stage solution that improves performance by 0.6% to 6.4%, and providing a curated dataset of 447 mathematical theorems in Lean 4 format for evaluation.
📅 2025-06-20
Large Language Models (LLMs)' search capabilities have garnered significant attention. Existing benchmarks, such as OpenAI's BrowseComp, primarily focus on general search scenarios and fail to adequately address the specific demands of academic search. These demands include deeper literature tracing and organization, professional support for academic databases, the ability to navigate long-tail academic knowledge, and ensuring academic rigor. Here, we proposed ScholarSearch, the first dataset specifically designed to evaluate the complex information retrieval capabilities of Large Language Models (LLMs) in academic research. ScholarSearch possesses the following key characteristics: Academic Practicality, where question content closely mirrors real academic learning and research environments, avoiding deliberately misleading models; High Difficulty, with answers that are challenging for single models (e.g., Grok DeepSearch or Gemini Deep Research) to provide directly, often requiring at least three deep searches to derive; Concise Evaluation, where limiting conditions ensure answers are as unique as possible, accompanied by clear sources and brief solution explanations, greatly facilitating subsequent audit and verification, surpassing the current lack of analyzed search datasets both domestically and internationally; and Broad Coverage, as the dataset spans at least 15 different academic disciplines. Through ScholarSearch, we expect to more precisely measure and promote the performance improvement of LLMs in complex academic information retrieval tasks. The data is available at: https://huggingface.co/datasets/PKU-DS-LAB/ScholarSearch
📅 2025-06-20
Fine-tuning pretrained LLMs has been shown to be an effective strategy for reaching state-of-the-art performance on specific tasks like machine translation. However, this process of adaptation often implies sacrificing general-purpose capabilities, such as conversational reasoning and instruction-following, hampering the utility of the system in real-world applications that require a mixture of skills. In this paper, we introduce Tower+, a suite of models designed to deliver strong performance across both translation and multilingual general-purpose text capabilities. We achieve a Pareto frontier between translation specialization and multilingual general-purpose capabilities by introducing a novel training recipe that builds on Tower (Alves et al., 2024), comprising continued pretraining, supervised fine-tuning, preference optimization, and reinforcement learning with verifiable rewards. At each stage of training, we carefully generate and curate data to strengthen performance on translation as well as general-purpose tasks involving code generation, mathematics problem solving, and general instruction-following. We develop models at multiple scales: 2B, 9B, and 72B. Our smaller models often outperform larger general-purpose open-weight and proprietary LLMs (e.g., Llama 3.3 70B, GPT-4o). Our largest model delivers best-in-class translation performance for high-resource languages and top results in multilingual Arena Hard evaluations and in IF-MT, a benchmark we introduce for evaluating both translation and instruction-following. Our findings highlight that it is possible to rival frontier models in general capabilities, while optimizing for specific business domains, such as translation and localization.
📅 2025-06-20
A wide range of participation is essential for democracy, as it helps prevent the dominance of extreme views, erosion of legitimacy, and political polarization. However, engagement in online political discussions often features a limited spectrum of views due to high levels of self-selection and the tendency of online platforms to facilitate exchanges primarily among like-minded individuals. This study examines whether an LLM-based bot can widen the scope of perspectives expressed by participants in online discussions through two pre-registered randomized experiments conducted in a chatroom. We evaluate the impact of a bot that actively monitors discussions, identifies missing arguments, and introduces them into the conversation. The results indicate that our bot significantly expands the range of arguments, as measured by both objective and subjective metrics. Furthermore, disclosure of the bot as AI does not significantly alter these effects. These findings suggest that LLM-based moderation tools can positively influence online political discourse.
📅 2025-06-20
The low-altitude economy (LAE) is gaining significant attention from academia and industry. Fortunately, LAE naturally aligns with near-field communications in extremely large-scale MIMO (XL-MIMO) systems. By leveraging near-field beamfocusing, LAE can precisely direct beam energy to unmanned aerial vehicles, while the additional distance dimension boosts overall spectrum efficiency. However, near-field communications in LAE still face several challenges, such as the increase in signal processing complexity and the necessity of distinguishing between far and near-field users. Inspired by the large language models (LLM) with powerful ability to handle complex problems, we apply LLM to solve challenges of near-field communications in LAE. The objective of this article is to provide a comprehensive analysis and discussion on LLM-empowered near-field communications in LAE. Specifically, we first introduce fundamentals of LLM and near-field communications, including the key advantages of LLM and key characteristics of near-field communications. Then, we reveal the opportunities and challenges of near-field communications in LAE. To address these challenges, we present a LLM-based scheme for near-field communications in LAE, and provide a case study which jointly distinguishes far and near-field users and designs multi-user precoding matrix. Finally, we outline and highlight several future research directions and open issues.
📅 2025-06-20
This paper evaluates geopolitical biases in LLMs with respect to various countries though an analysis of their interpretation of historical events with conflicting national perspectives (USA, UK, USSR, and China). We introduce a novel dataset with neutral event descriptions and contrasting viewpoints from different countries. Our findings show significant geopolitical biases, with models favoring specific national narratives. Additionally, simple debiasing prompts had a limited effect in reducing these biases. Experiments with manipulated participant labels reveal models' sensitivity to attribution, sometimes amplifying biases or recognizing inconsistencies, especially with swapped labels. This work highlights national narrative biases in LLMs, challenges the effectiveness of simple debiasing methods, and offers a framework and dataset for future geopolitical bias research.