llm - 2025_10
Navigation
- Part 1
- Part 2
- Part 3
- Part 4
- Part 5
- Part 6
- Part 7
- Part 8
- Part 9
- Part 10
- Part 11
- Part 12
- Part 13
- Part 14
- Part 15
- Part 16
- Part 17
- Part 18
Papers
      Large language models (LLMs) are highly sensitive to subtle changes in prompt phrasing, posing challenges for reliable auditing. Prior methods often apply unconstrained prompt paraphrasing, which risk missing linguistic and demographic factors that shape authentic user interactions. We introduce AUGMENT (Automated User-Grounded Modeling and Evaluation of Natural Language Transformations), a framework for generating controlled paraphrases, grounded in user behaviors. AUGMENT leverages linguistically informed rules and enforces quality through checks on instruction adherence, semantic similarity, and realism, ensuring paraphrases are both reliable and meaningful for auditing. Through case studies on the BBQ and MMLU datasets, we show that controlled paraphrases uncover systematic weaknesses that remain obscured under unconstrained variation. These results highlight the value of the AUGMENT framework for reliable auditing.
    
      Evaluating large language models (LLMs) in long-form, knowledge-grounded role-play dialogues remains challenging. This study compares LLM-generated and human-authored responses in multi-turn professional training simulations through human evaluation ($N=38$) and automated LLM-as-a-judge assessment. Human evaluation revealed significant degradation in LLM-generated response quality across turns, particularly in naturalness, context maintenance and overall quality, while human-authored responses progressively improved. In line with this finding, participants also indicated a consistent preference for human-authored dialogue. These human judgements were validated by our automated LLM-as-a-judge evaluation, where Gemini 2.0 Flash achieved strong alignment with human evaluators on both zero-shot pairwise preference and stochastic 6-shot construct ratings, confirming the widening quality gap between LLM and human responses over time. Our work contributes a multi-turn benchmark exposing LLM degradation in knowledge-grounded role-play dialogues and provides a validated hybrid evaluation framework to guide the reliable integration of LLMs in training simulations.
    
      Sequential multi-agent systems built with large language models (LLMs) can automate complex software tasks, but they are hard to trust because errors quietly pass from one stage to the next. We study a traceable and accountable pipeline, meaning a system with clear roles, structured handoffs, and saved records that let us trace who did what at each step and assign blame when things go wrong. Our setting is a Planner -> Executor -> Critic pipeline. We evaluate eight configurations of three state-of-the-art LLMs on three benchmarks and analyze where errors start, how they spread, and how they can be fixed. Our results show: (1) adding a structured, accountable handoff between agents markedly improves accuracy and prevents the failures common in simple pipelines; (2) models have clear role-specific strengths and risks (e.g., steady planning vs. high-variance critiquing), which we quantify with repair and harm rates; and (3) accuracy-cost-latency trade-offs are task-dependent, with heterogeneous pipelines often the most efficient. Overall, we provide a practical, data-driven method for designing, tracing, and debugging reliable, predictable, and accountable multi-agent systems.
    
      Rust is a memory-safe programming language that significantly improves software security. Existing codebases written in unsafe memory languages, such as C, must first be transpiled to Rust to take advantage of Rust's improved safety guarantees. RustAssure presents a system that uses Large Language Models (LLMs) to automatically transpile existing C codebases to Rust. RustAssure uses prompt engineering techniques to maximize the chances of the LLM generating idiomatic and safe Rust code. Moreover, because LLMs often generate code with subtle bugs that can be missed under traditional unit or fuzz testing, RustAssure performs differential symbolic testing to establish the semantic similarity between the original C and LLM-transpiled Rust code. We evaluated RustAssure with five real-world applications and libraries, and showed that our system is able to generate compilable Rust functions for 89.8% of all C functions, of which 69.9% produced equivalent symbolic return values for both the C and Rust functions.
    
      Despite rapid progress in vision-language and large language models (VLMs and LLMs), their effectiveness for AI-driven educational assessment in real-world, underrepresented classrooms remains largely unexplored. We evaluate state-of-the-art VLMs and LLMs on over 14K handwritten answers from grade-4 classrooms in Indonesia, covering Mathematics and English aligned with the local national curriculum. Unlike prior work on clean digital text, our dataset features naturally curly, diverse handwriting from real classrooms, posing realistic visual and linguistic challenges. Assessment tasks include grading and generating personalized Indonesian feedback guided by rubric-based evaluation. Results show that the VLM struggles with handwriting recognition, causing error propagation in LLM grading, yet LLM feedback remains pedagogically useful despite imperfect visual inputs, revealing limits in personalization and contextual relevance.
    
      Most discussions about Large Language Model (LLM) safety have focused on single-agent settings but multi-agent LLM systems now create novel adversarial risks because their behavior depends on communication between agents and decentralized reasoning. In this work, we innovatively focus on attacking pragmatic systems that have constrains such as limited token bandwidth, latency between message delivery, and defense mechanisms. We design a $\textit{permutation-invariant adversarial attack}$ that optimizes prompt distribution across latency and bandwidth-constraint network topologies to bypass distributed safety mechanisms within the system. Formulating the attack path as a problem of $\textit{maximum-flow minimum-cost}$, coupled with the novel $\textit{Permutation-Invariant Evasion Loss (PIEL)}$, we leverage graph-based optimization to maximize attack success rate while minimizing detection risk. Evaluating across models including $\texttt{Llama}$, $\texttt{Mistral}$, $\texttt{Gemma}$, $\texttt{DeepSeek}$ and other variants on various datasets like $\texttt{JailBreakBench}$ and $\texttt{AdversarialBench}$, our method outperforms conventional attacks by up to $7\times$, exposing critical vulnerabilities in multi-agent systems. Moreover, we demonstrate that existing defenses, including variants of $\texttt{Llama-Guard}$ and $\texttt{PromptGuard}$, fail to prohibit our attack, emphasizing the urgent need for multi-agent specific safety mechanisms.
    
      Large Language Models (LLMs) are powerful reasoners in natural language, but their actions are typically confined to outputting vocabulary tokens. As a result, interactions with external environments -- such as symbolic operators or simulators -- must be expressed through text in predefined formats, parsed, and routed to external interfaces. This overloads the model's language with both reasoning and control duties, and requires a hand-crafted parser, external to the LLM. To address this, we decouple environment interactions from language by internalizing them in an Expanded Action space (ExpA), beyond the vocabulary. The model starts reasoning in the default language environment, but may trigger routing actions and switch to an external environment at any time. From there, the model can only invoke environment-specific actions, receive feedback from the environment, and potentially route back to language as a result. To promote effective exploration of the expanded action space and new environments, we introduce ExpA Reinforcement Learning (EARL) with counterfactual policy optimization. On tasks requiring multi-turn interactions and contingent planning, EARL outperforms strong baselines with vocabulary-constrained actions. It performs robustly across calculator-based multi-task learning and, in the partially observed sorting problem, achieves perfect Sort-4 accuracy while self-discovering an efficient algorithm competitive with classical designs.
    
      LLMs are trained to refuse harmful instructions, but do they truly understand harmfulness beyond just refusing? Prior work has shown that LLMs' refusal behaviors can be mediated by a one-dimensional subspace, i.e., a refusal direction. In this work, we identify a new dimension to analyze safety mechanisms in LLMs, i.e., harmfulness, which is encoded internally as a separate concept from refusal. There exists a harmfulness direction that is distinct from the refusal direction. As causal evidence, steering along the harmfulness direction can lead LLMs to interpret harmless instructions as harmful, but steering along the refusal direction tends to elicit refusal responses directly without reversing the model's judgment on harmfulness. Furthermore, using our identified harmfulness concept, we find that certain jailbreak methods work by reducing the refusal signals without reversing the model's internal belief of harmfulness. We also find that adversarially finetuning models to accept harmful instructions has minimal impact on the model's internal belief of harmfulness. These insights lead to a practical safety application: The model's latent harmfulness representation can serve as an intrinsic safeguard (Latent Guard) for detecting unsafe inputs and reducing over-refusals that is robust to finetuning attacks. For instance, our Latent Guard achieves performance comparable to or better than Llama Guard 3 8B, a dedicated finetuned safeguard model, across different jailbreak methods. Our findings suggest that LLMs' internal understanding of harmfulness is more robust than their refusal decision to diverse input instructions, offering a new perspective to study AI safety.
    
      This study applies BERTopic, a transformer-based topic modeling technique, to the lmsys-chat-1m dataset, a multilingual conversational corpus built from head-to-head evaluations of large language models (LLMs). Each user prompt is paired with two anonymized LLM responses and a human preference label, used to assess user evaluation of competing model outputs. The main objective is uncovering thematic patterns in these conversations and examining their relation to user preferences, particularly if certain LLMs are consistently preferred within specific topics. A robust preprocessing pipeline was designed for multilingual variation, balancing dialogue turns, and cleaning noisy or redacted data. BERTopic extracted over 29 coherent topics including artificial intelligence, programming, ethics, and cloud infrastructure. We analysed relationships between topics and model preferences to identify trends in model-topic alignment. Visualization techniques included inter-topic distance maps, topic probability distributions, and model-versus-topic matrices. Our findings inform domain-specific fine-tuning and optimization strategies for improving real-world LLM performance and user satisfaction.
    
      LLM-as-a-Judge (LLMaaJ) enables scalable evaluation, yet we lack a decisive test of a judge's qualification: can it recover the hidden objective of a conversation and know when that inference is reliable? Large language models degrade with irrelevant or lengthy context, and multi-turn jailbreaks can scatter goals across turns. We present ObjexMT, a benchmark for objective extraction and metacognition. Given a multi-turn transcript, a model must output a one-sentence base objective and a self-reported confidence. Accuracy is scored by semantic similarity to gold objectives, then thresholded once on 300 calibration items ($\tau^\star = 0.66$; $F_1@\tau^\star = 0.891$). Metacognition is assessed with expected calibration error, Brier score, Wrong@High-Confidence (0.80 / 0.90 / 0.95), and risk--coverage curves. Across six models (gpt-4.1, claude-sonnet-4, Qwen3-235B-A22B-FP8, kimi-k2, deepseek-v3.1, gemini-2.5-flash) evaluated on SafeMTData\_Attack600, SafeMTData\_1K, and MHJ, kimi-k2 achieves the highest objective-extraction accuracy (0.612; 95\% CI [0.594, 0.630]), while claude-sonnet-4 (0.603) and deepseek-v3.1 (0.599) are statistically tied. claude-sonnet-4 offers the best selective risk and calibration (AURC 0.242; ECE 0.206; Brier 0.254). Performance varies sharply across datasets (16--82\% accuracy), showing that automated obfuscation imposes challenges beyond model choice. High-confidence errors remain: Wrong@0.90 ranges from 14.9\% (claude-sonnet-4) to 47.7\% (Qwen3-235B-A22B-FP8). ObjexMT therefore supplies an actionable test for LLM judges: when objectives are implicit, judges often misinfer them; exposing objectives or gating decisions by confidence is advisable. All experimental data are in the Supplementary Material and at https://github.com/hyunjun1121/ObjexMT_dataset.
    
      Recent research shows that LLM Agents can generate ``believable'' human behaviors via prompt-only methods, and such agents have been increasingly adopted in downstream applications. However, existing evaluation of these agents only focuses on qualitative believability (whether human raters think they are accurate), leaving open questions of whether LLM agents can accurately generate step-by-step actions mimicking a particular human's behavior in a multi-turn interaction task. In this work, we take shopping as a case study and present the first large-scale quantitative evaluation of state-of-the-art LLMs' ability to accurately simulate human behavior. Using real-world data from 31,865 online shopping sessions containing 230,965 user actions, our evaluation reveals that prompt-based LLMs (DeepSeek-R1, Llama, Claude) achieve only 11.86% accuracy in generating human actions, highlighting a substantial gap in actual behavioral accuracy. Through experiments, we also showcase that strategies as simple as fine-tuning LLMs on real human click-through data augmented with synthesized reasoning traces can greatly enhance models' performance. The fine-tuned Qwen2.5-7B achieves 17.26% action generation accuracy and 33.86% F1 score on final purchase prediction, representing substantial improvements of 5.4% and 13.85% over prompt-only baselines. This work establishes the first rigorous benchmark for human behavior simulation and provides actionable insights for developing more accurate LLM agents for future downstream applications.
    
      Obtaining high-quality outputs from Large Language Models (LLMs) often depends upon the choice of a sampling-based decoding strategy to probabilistically choose the next token at each generation step. While a variety of such sampling methods have been proposed, their performance can be sensitive to the selection of hyperparameters which may require different settings depending upon the generation task and temperature configuration. In this work, we introduce $p$-less sampling: an information-theoretic approach to sampling which dynamically sets a truncation threshold at each decoding step based on the entire token probability distribution. Unlike existing methods, $p$-less sampling has no hyperparameters and consistently produces high-quality outputs as temperature increases. We provide theoretical perspectives on $p$-less sampling to ground our proposed method and conduct experiments to empirically validate its effectiveness across a range of math, logical reasoning, and creative writing tasks. Our results demonstrate how $p$-less sampling consistently outperforms existing sampling approaches while exhibiting much less degradation in text quality at higher temperature values. We further show how $p$-less achieves greater inference-time efficiency than alternative methods through lower average token sampling times and shorter generation lengths, without sacrificing accuracy. Finally, we provide analyses to highlight the benefits of $p$-less through qualitative examples, case studies, and diversity assessments.
    
      Attention is foundational to large language models (LLMs), enabling different heads to have diverse focus on relevant input tokens. However, learned behaviors like attention sinks, where the first token receives the most attention despite limited semantic importance, suggest some heads may be inactive, and point to a significant source of computational redundancy. To analyze this phenomenon, we propose a taxonomy of 13 score functions that measure different ways a head can be inactive. Thresholding these scores allows us to analyze different sets of potentially inactive attention heads. We evaluate whether identified heads are inactive through model interventions, finding that more than 12% of attention heads are inactive on average, and can be ablated in specific contexts while maintaining MMLU accuracy to within 1% of the pretrained LLM. Across 3 model families, our score functions that measure the average norm of a head's output consistently identify inactive heads that would not have been found by score functions that rely solely on attention weights. We establish that relying on a score function that measures a first token attention sink would underestimate the prevalence of inactive heads, failing to identify more than 7% of inactive heads on average. We also show how measuring score distributions can provide insights into attention behavior. For instance, we find evidence that finetuning causes little to no change in attention behavior, and that even within the same model family, large model scales present markedly different attention behaviors.
    
      Recent advances in speech large language models (speech LLMs) have enabled seamless spoken interactions, but these systems still struggle with complex reasoning tasks. Previously, chain-of-thought (CoT) prompting or fine-tuning has been to shown to significantly improve the reasoning abilities of text-based LLMs. In this work, we investigate the effect of CoT fine-tuning for multi-stream speech LLMs, demonstrating that reasoning in text space improves the accuracy of speech LLMs by 2.4x, on average, over a suite of spoken reasoning tasks. Beyond accuracy, the latency of the spoken response is a crucial factor for interacting with voice-based agents. Inspired by the human behavior of "thinking while listening," we propose methods to reduce the additional latency from reasoning by allowing the model to start reasoning before the user query has ended. To achieve this, we introduce an entropy-based metric, "question completeness," which acts as an indicator to guide the model on the optimal time to start reasoning. This method provides greater control over the accuracy-latency trade-off compared with heuristic-based approaches and, under equivalent latency conditions, yields a 4% accuracy gain on ARC-Easy. Finally, we use Direct Preference Optimization (DPO) on preference data created using rejection sampling to push the accuracy-latency pareto frontier further, resulting in a 70% reduction in latency without loss in accuracy.
    
      Enhancing the mathematical reasoning capabilities of LLMs has garnered significant attention in both the mathematical and computer science communities. Recent works have made substantial progress in both Natural Language (NL) reasoning and Formal Language (FL) reasoning by leveraging the potential of pure Reinforcement Learning (RL) methods on base models. However, RL approaches struggle to impart new capabilities not presented in the base model, highlighting the need to integrate more knowledge like FL into NL math reasoning effectively. Yet, this integration is challenging due to inherent disparities in problem structure and reasoning format between NL and FL. To address these challenges, we introduce **NL-FL HybridReasoning (NFL-HR)**, an end-to-end framework designed to incorporate the FL expert into NL math problem-solving. To bridge the NL and FL input format gap, we propose the NL-FL Problem Alignment method, which reformulates the Question-Answering (QA) problems in NL as existence theorems in FL. Subsequently, the Mixed Problem Input technique we provide enables the FL reasoner to handle both QA and existence problems concurrently. Lastly, we mitigate the NL and FL output format gap in reasoning through an LLM-based Answer Extraction mechanism. Comprehensive experiments demonstrate that the NFL-HR framework achieves **89.80**% and **84.34%** accuracy rates on the MATH-500 and the AMC benchmarks, surpassing the NL baseline by **4.60%** and **4.82%**, respectively. Notably, some problems resolved by our framework remain unsolved by the NL baseline model even under a larger number of trials.
    
      In this paper, we report our experience with several LLMs for their ability to understand a process model in an interactive, conversational style, find syntactical and logical errors in it, and reason with it in depth through a natural language (NL) interface. Our findings show that a vanilla, untrained LLM like ChatGPT (model o3) in a zero-shot setting is effective in understanding BPMN process models from images and answering queries about them intelligently at syntactic, logic, and semantic levels of depth. Further, different LLMs vary in performance in terms of their accuracy and effectiveness. Nevertheless, our empirical analysis shows that LLMs can play a valuable role as assistants for business process designers and users. We also study the LLM's "thought process" and ability to perform deeper reasoning in the context of process analysis and optimization. We find that the LLMs seem to exhibit anthropomorphic properties.
    
      Various layer-skipping methods have been proposed to accelerate token generation in large language models (LLMs). However, limited attention has been paid to a fundamental question: How do computational demands vary across the generation of different tokens? In this work, we introduce FlexiDepth, a method that dynamically adjusts the number of Transformer layers used in text generation. By incorporating a plug-in router and adapter, FlexiDepth enables adaptive computation in LLMs without modifying their original parameters. Applied to Llama-3-8B, it skips 8 out of 32 layers while maintaining full benchmark performance. Our experiments reveal that computational demands in LLMs significantly vary based on token type. Specifically, generating repetitive tokens or fixed phrases requires fewer layers, whereas producing tokens involving computation or high uncertainty requires more layers. Despite the computational savings, FlexiDepth does not yet achieve wall-clock speedup due to varied skipping patterns and I/O overhead. To inspire future work and advance research on practical speedup, we open-sourced FlexiDepth and a dataset documenting its layer allocation patterns.
    
      Measuring the ideational content of populism remains a challenge. Traditional strategies based on textual analysis have been critical for building the field's foundations and providing a valid, objective indicator of populist framing. Yet these approaches are costly, time consuming, and difficult to scale across languages, contexts, and large corpora. Here we present the results from a rubric and anchor guided chain of thought (CoT) prompting approach that mirrors human coder training. By leveraging the Global Populism Database (GPD), a comprehensive dataset of global leaders' speeches annotated for degrees of populism, we replicate the process used to train human coders by prompting the LLM with an adapted version of the same documentation to guide the model's reasoning. We then test multiple proprietary and open weight models by replicating scores in the GPD. Our findings reveal that this domain specific prompting strategy enables the LLM to achieve classification accuracy on par with expert human coders, demonstrating its ability to navigate the nuanced, context sensitive aspects of populism.
    
      Large Language Models (LLMs) are increasingly used to generate user-tailored summaries, adapting outputs to specific stakeholders. In legal contexts, this raises important questions about motivated reasoning -- how models strategically frame information to align with a stakeholder's position within the legal system. Building on theories of legal realism and recent trends in legal practice, we investigate how LLMs respond to prompts conditioned on different legal roles (e.g., judges, prosecutors, attorneys) when summarizing judicial decisions. We introduce an evaluation framework grounded in legal fact and reasoning inclusion, also considering favorability towards stakeholders. Our results show that even when prompts include balancing instructions, models exhibit selective inclusion patterns that reflect role-consistent perspectives. These findings raise broader concerns about how similar alignment may emerge as LLMs begin to infer user roles from prior interactions or context, even without explicit role instructions. Our results underscore the need for role-aware evaluation of LLM summarization behavior in high-stakes legal settings.
    
      Standard ASR evaluation metrics like Word Error Rate (WER) tend to unfairly penalize morphological and syntactic nuances that do not significantly alter sentence semantics. We introduce an LLM-based scoring rubric LASER that leverages state-of-the-art LLMs' in-context learning abilities to learn from prompts with detailed examples. Hindi LASER scores using Gemini 2.5 Pro achieved a very high correlation score of 94% with human annotations. Hindi examples in the prompt were also effective in analyzing errors in other Indian languages such as Marathi, Kannada and Malayalam. We also demonstrate how a smaller LLM like Llama 3 can be finetuned on word-pair examples derived from reference and ASR predictions to predict what kind of penalty should be applied with close to 89% accuracy.
    
      Efficient use of large language models (LLMs) is critical for deployment at scale: without adaptive routing, systems either overpay for strong models or risk poor performance from weaker ones. Selecting the right LLM for each query is fundamentally an online decision problem: models differ in strengths, prices fluctuate, and users value accuracy and cost differently. Yet most routers are trained offline with labels for all candidate models, an assumption that breaks in deployment, where only the outcome of the chosen model is observed. We bridge this gap with BaRP, a Bandit-feedback Routing with Preferences approach that trains under the same partial-feedback restriction as deployment, while supporting preference-tunable inference: operators can dial the performance/cost trade-off at test time without retraining. Framed as a contextual bandit over prompt features and a user preference vector, our method simulates an online feedback setting during training and adapts its routing decisions to each new prompt, rather than depending on full-information offline supervision. Comprehensive experiments show that our method consistently outperforms strong offline routers by at least 12.46% and the largest LLM by at least 2.45%, and generalizes robustly for unseen tasks.
    
      The immense model sizes of large language models (LLMs) challenge deployment on memory-limited consumer GPUs. Although model compression and parameter offloading are common strategies to address memory limitations, compression can degrade quality, and offloading maintains quality but suffers from slow inference. Speculative decoding presents a promising avenue to accelerate parameter offloading, utilizing a fast draft model to propose multiple draft tokens, which are then verified by the target LLM in parallel with a single forward pass. This method reduces the time-consuming data transfers in forward passes that involve offloaded weight transfers. Existing methods often rely on pretrained weights of the same family, but require additional training to align with custom-trained models. Moreover, approaches that involve draft model training usually yield only modest speedups. This limitation arises from insufficient alignment with the target model, preventing higher token acceptance lengths. To address these challenges and achieve greater speedups, we propose SubSpec, a plug-and-play method to accelerate parameter offloading that is lossless and training-free. SubSpec constructs a highly aligned draft model by generating low-bit quantized substitute layers from offloaded target LLM portions. Additionally, our method shares the remaining GPU-resident layers and the KV-Cache, further reducing memory overhead and enhance alignment. SubSpec achieves a high average acceptance length, delivering 9.1x speedup for Qwen2.5 7B on MT-Bench (8GB VRAM limit) and an average of 12.5x speedup for Qwen2.5 32B on popular generation benchmarks (24GB VRAM limit).
    
      The ability to selectively remove knowledge from LLMs is highly desirable. However, existing methods often struggle with balancing unlearning efficacy and retain model utility, and lack controllability at inference time to emulate base model behavior as if it had never seen the unlearned data. In this paper, we propose LUNAR, a novel unlearning method grounded in the Linear Representation Hypothesis and operates by redirecting the representations of unlearned data to activation regions that expresses its inability to answer. We show that contrastive features are not a prerequisite for effective activation redirection, and LUNAR achieves state-of-the-art unlearning performance and superior controllability. Specifically, LUNAR achieves between 2.9x and 11.7x improvement in the combined unlearning efficacy and model utility score (Deviation Score) across various base models and generates coherent, contextually appropriate responses post-unlearning. Moreover, LUNAR effectively reduces parameter updates to a single down-projection matrix, a novel design that significantly enhances efficiency by 20x and robustness. Finally, we demonstrate that LUNAR is robust to white-box adversarial attacks and versatile in real-world scenarios, including handling sequential unlearning requests.
    
      Designing user-centered LLM systems requires understanding how people use them, but patterns of user behavior are often masked by the variability of queries. In this work, we introduce a new framework to describe request-making that segments user input into request content, roles assigned, query-specific context, and the remaining task-independent expressions. We apply the workflow to create and analyze a dataset of 211k real-world queries based on WildChat. Compared with similar human-human setups, we find significant differences in the language for request-making in the human-LLM scenario. Further, we introduce a novel and essential perspective of diachronic analyses with user expressions, which reveals fundamental and habitual user-LLM interaction patterns beyond individual task completion. We find that query patterns evolve from early ones emphasizing sole requests to combining more context later on, and individual users explore expression patterns but tend to converge with more experience. From there, we propose to understand communal trends of expressions underlying distinct tasks and discuss the preliminary findings. Finally, we discuss the key implications for user studies, computational pragmatics, and LLM alignment.
    
      Attention sinks and compression valleys have attracted significant attention as two puzzling phenomena in large language models, but have been studied in isolation. In this work, we present a surprising connection between attention sinks and compression valleys, tracing both to the formation of massive activations in the residual stream. We prove theoretically that massive activations necessarily produce representational compression and establish bounds on the resulting entropy reduction. Through experiments across several models (410M-120B parameters), we confirm that when the beginning-of-sequence token develops extreme activation norms in the middle layers, both compression valleys and attention sinks emerge simultaneously. Targeted ablation studies validate our theoretical predictions. This unified view motivates us to propose the Mix-Compress-Refine theory of information flow, as an attempt to explain how LLMs organize their computation in depth by controlling attention and representational compression via massive activations. Specifically, we posit that Transformer-based LLMs process tokens in three distinct phases: (1) broad mixing in the early layers, (2) compressed computation with limited mixing in the middle layers, and (3) selective refinement in the late layers. Our framework helps explain why embedding tasks perform best at intermediate layers, whereas generation tasks benefit from full-depth processing, clarifying differences in task-dependent representations.
    
      Controlling undesirable Large Language Model (LLM) behaviors, such as the generation of unsafe content or failing to adhere to safety guidelines, often relies on costly fine-tuning. Activation steering provides an alternative for inference-time control, but existing methods typically lack fine-grained, adaptive mechanisms. We introduce a novel approach using a lightweight, trainable controller network integrated during inference. This controller network observes specific intermediate LLM activations and predicts both a global scaling factor and layer-specific weights. The predicted global scaling factor and layer-specific weights then dynamically modulate the intensity of a steering patch, derived from a pre-computed "refusal direction" vector, applied across the LLM's layers during generation. Trained on activations from both harmful and benign prompts, our controller learns to discriminatively apply nuanced, layer-aware interventions, activating steering primarily for harmful inputs. Experiments using safety benchmarks like ToxicChat & In-The-Wild Jailbreak Prompts demonstrate that our weighted steering controller significantly increases refusal rates compared to the base LLM, achieving targeted behavioral modification without altering the original model parameters. Our experiments with Llama-3.1-8B, Llama-3.2-1B & Mistral-7B show our approach outperforms existing methods, presenting an efficient and adaptive method for fine-grained control over LLM behavior at inference time.
    
      Large Language Models (LLMs) often struggle with producing factually consistent answers due to limitations in their parametric memory. Retrieval-Augmented Generation (RAG) paradigms mitigate this issue by incorporating external knowledge at inference time. However, such methods typically handle knowledge as unstructured text, which reduces retrieval accuracy, hinders compositional reasoning, and amplifies the influence of irrelevant information on the factual consistency of LLM outputs. To overcome these limitations, we propose a novel framework that dynamically constructs and expands knowledge graphs (KGs) during inference, integrating both internal knowledge extracted from LLMs and external knowledge retrieved from external sources. Our method begins by extracting a seed KG from the question via prompting, followed by iterative expansion using the LLM's internal knowledge. The KG is then selectively refined through external retrieval, enhancing factual coverage and correcting inaccuracies. We evaluate our approach on three diverse Factual QA benchmarks, demonstrating consistent gains in factual accuracy over baselines. Our findings reveal that inference-time KG construction is a promising direction for enhancing LLM factuality in a structured, interpretable, and scalable manner.
    
      Large Language Models (LLMs) frequently hallucinate to long-form questions, producing plausible yet factually incorrect answers. A common mitigation strategy is to provide attribution to LLM outputs. However, existing benchmarks primarily focus on simple attribution that retrieves supporting textual evidence as references. We argue that in real-world scenarios such as financial applications, attribution goes beyond reference retrieval. We introduce FinLFQA, a benchmark designed to evaluate the ability of LLMs to generate long-form answers to complex financial questions with reliable and nuanced attributions. FinLFQA evaluates three critical aspects of attribution through human annotations: (1) supporting evidence extracted from financial reports, (2) intermediate numerical reasoning steps, and (3) domain-specific financial knowledge that informs the reasoning process. We further provide an automatic evaluation framework covering both answer quality and attribution quality. Through extensive experiments on eight LLMs across multiple attribution-generation paradigms, we find that fine-grained metrics are important to distinguish model capabilities, that end-to-end generation achieves comparable performance to post-hoc approaches, and that iterative refinement only helps when guided by external feedback.
    
      Social biases and belief-driven behaviors can significantly impact Large Language Models (LLMs) decisions on several tasks. As LLMs are increasingly used in multi-agent systems for societal simulations, their ability to model fundamental group psychological characteristics remains critical yet under-explored. In this study, we present a multi-agent framework that simulates belief congruence, a classical group psychology theory that plays a crucial role in shaping societal interactions and preferences. Our findings reveal that LLMs exhibit amplified belief congruence compared to humans, across diverse contexts. We further investigate the implications of this behavior on two downstream tasks: (1) misinformation dissemination and (2) LLM learning, finding that belief congruence in LLMs increases misinformation dissemination and impedes learning. To mitigate these negative impacts, we propose strategies inspired by: (1) contact hypothesis, (2) accuracy nudges, and (3) global citizenship framework. Our results show that the best strategies reduce misinformation dissemination by up to 37% and enhance learning by 11%. Bridging social psychology and AI, our work provides insights to navigate real-world interactions using LLMs while addressing belief-driven biases.
    
      Virtual Labs offer valuable opportunities for hands-on, inquiry-based science learning, yet teachers often struggle to adapt them to fit their instructional goals. Third-party materials may not align with classroom needs, and developing custom resources can be time-consuming and difficult to scale. Recent advances in Large Language Models (LLMs) offer a promising avenue for addressing these limitations. In this paper, we introduce a novel alignment framework for instructional goal-aligned question generation, enabling teachers to leverage LLMs to produce simulation-aligned, pedagogically meaningful questions through natural language interaction. The framework integrates four components: instructional goal understanding via teacher-LLM dialogue, lab understanding via knowledge unit and relationship analysis, a question taxonomy for structuring cognitive and pedagogical intent, and the TELeR taxonomy for controlling prompt detail. Early design choices were informed by a small teacher-assisted case study, while our final evaluation analyzed over 1,100 questions from 19 open-source LLMs. With goal and lab understanding grounding questions in teacher intent and simulation context, the question taxonomy elevates cognitive demand (open-ended formats and relational types raise quality by 0.29-0.39 points), and optimized TELeR prompts enhance format adherence (80% parsability, >90% adherence). Larger models yield the strongest gains: parsability +37.1%, adherence +25.7%, and average quality +0.8 Likert points.
    
      Reasoning LLMs are trained to verbalize their reasoning process, yielding strong gains on complex tasks. This transparency also opens a promising direction: multiple reasoners can directly collaborate on each other's thinking within a shared trajectory, yielding better inference efficiency and exploration. A key prerequisite, however, is the ability to assess the usefulness and build on another model's partial thinking -- we call this off-trajectory reasoning. Our paper investigates a critical question: can standard solo-reasoning training pipelines deliver desired off-trajectory behaviors? We propose twin tests that capture the two extremes of the off-trajectory spectrum, namely Recoverability, which tests whether LLMs can backtrack from "distractions" induced by misleading reasoning traces, and Guidability, which tests their ability to build upon correct reasoning from stronger collaborators. Our study evaluates 15 open-weight LLMs (1.5B-32B) and reveals a counterintuitive finding -- "stronger" LLMs on benchmarks are often more fragile under distraction. Moreover, all models tested fail to effectively leverage guiding steps from collaborators on problems beyond their inherent capabilities with solve rates remaining under 9.2%. Finally, we conduct control studies to isolate the effects of three factors in post-training on these behaviors: the choice of distillation teacher, the use of RL, and data selection strategy. Our results provide actionable insights for training natively strong reasoning collaborators; e.g., we find that suboptimal recoverability behaviors of teacher models are transferred to distilled students even if the distillation trajectories are correct. Taken together, this work lays the groundwork for evaluating multi-model collaborations in shared reasoning trajectories and highlights the limitations of off-the-shelf reasoning LLMs.
    
      Automated interpretability aims to translate large language model (LLM) features into human understandable descriptions. However, these natural language feature descriptions are often vague, inconsistent, and require manual relabeling. In response, we introduce semantic regexes, structured language descriptions of LLM features. By combining primitives that capture linguistic and semantic feature patterns with modifiers for contextualization, composition, and quantification, semantic regexes produce precise and expressive feature descriptions. Across quantitative benchmarks and qualitative analyses, we find that semantic regexes match the accuracy of natural language while yielding more concise and consistent feature descriptions. Moreover, their inherent structure affords new types of analyses, including quantifying feature complexity across layers, scaling automated interpretability from insights into individual features to model-wide patterns. Finally, in user studies, we find that semantic regex descriptions help people build accurate mental models of LLM feature activations.
    
      Although prior work on bias mitigation has focused on promoting social equality and demographic parity, less attention has been given to aligning LLM's outputs to desired distributions. For example, we might want to align a model with real-world distributions to support factual grounding. Thus, we define bias as deviation from a desired distribution, which may be an equal or real-world distribution, depending on application goals. We propose a weighted adaptive loss based fine-tuning method that aligns LLM's gender-profession output distribution with the desired distribution, while preserving language modeling capability. Using 3 profession sets -- male-dominated, female-dominated, and gender-balanced -- derived from U.S. labor statistics (2024), we assess both our adaptive method for reflecting reality and a non-adaptive variant for equality. Across three masked language models, bias is observed under both distributions. We achieve near-complete mitigation under equality and 30-75% reduction under real-world settings. Autoregressive LLMs show no bias under equality but notable bias under real-world settings, with the Llama Instruct models (3.2-3B, 3.1-8B) achieving a 50-62% reduction.
    
      Large language model (LLM) agents increasingly rely on external tools such as search engines to solve complex, multi-step problems, and reinforcement learning (RL) has become a key paradigm for training them. However, the trajectories of search agents are structurally heterogeneous, where variations in the number, placement, and outcomes of search calls lead to fundamentally different answer directions and reward distributions. Standard policy gradient methods, which use a single global baseline, suffer from what we identify and formalize as cross-stratum bias-an "apples-to-oranges" comparison of heterogeneous trajectories. This cross-stratum bias distorts credit assignment and hinders exploration of complex, multi-step search strategies. To address this, we propose Stratified GRPO, whose central component, Stratified Advantage Normalization (SAN), partitions trajectories into homogeneous strata based on their structural properties and computes advantages locally within each stratum. This ensures that trajectories are evaluated only against their true peers. Our analysis proves that SAN eliminates cross-stratum bias, yields conditionally unbiased unit-variance estimates inside each stratum, and retains the global unbiasedness and unit-variance properties enjoyed by standard normalization, resulting in a more pure and scale-stable learning signal. To improve practical stability under finite-sample regimes, we further linearly blend SAN with the global estimator. Extensive experiments on diverse single-hop and multi-hop question-answering benchmarks demonstrate that Stratified GRPO consistently and substantially outperforms GRPO by up to 11.3 points, achieving higher training rewards, greater training stability, and more effective search policies. These results establish stratification as a principled remedy for structural heterogeneity in RL for LLM search agents.
    
      Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
    
      The Key-Value (KV) cache introduces substantial memory overhead during large language model (LLM) inference. Although existing vector quantization (VQ) methods reduce KV cache usage and provide flexible representational capacity across bit-widths, they suffer severe performance degradation at ultra-low bit-widths due to key cache outliers that hinder effective codebook utilization. To address this challenge, we propose VecInfer, a novel VQ method for aggressive KV cache compression while enabling efficient inference. By applying smooth and Hadamard transformations, VecInfer suppresses outliers in the key cache, enabling the codebook to comprehensively cover the original data distribution and thereby reducing quantization difficulty. To facilitate efficient deployment, we design an optimized CUDA kernel that fuses computation with dequantization to minimize memory access overhead. Extensive evaluations demonstrate that VecInfer consistently outperforms existing quantization baselines across both long-context understanding and mathematical reasoning tasks. With only 2-bit quantization, VecInfer achieves performance comparable to full precision, while delivering up to $\mathbf{2.7\times}$ speedup in large-batch self-attention computation and $\mathbf{8.3\times}$ reduction in single-batch end-to-end latency on Llama-3.1-8B with a 196k sequence length.
    
      A critical challenge in modelling Heterogeneous-Agent Teams is training agents to collaborate with teammates whose policies are inaccessible or non-stationary, such as humans. Traditional approaches rely on expensive human-in-the-loop data, which limits scalability. We propose using Large Language Models (LLMs) as policy-agnostic human proxies to generate synthetic data that mimics human decision-making. To evaluate this, we conduct three experiments in a grid-world capture game inspired by Stag Hunt, a game theory paradigm that balances risk and reward. In Experiment 1, we compare decisions from 30 human participants and 2 expert judges with outputs from LLaMA 3.1 and Mixtral 8x22B models. LLMs, prompted with game-state observations and reward structures, align more closely with experts than participants, demonstrating consistency in applying underlying decision criteria. Experiment 2 modifies prompts to induce risk-sensitive strategies (e.g. "be risk averse"). LLM outputs mirror human participants' variability, shifting between risk-averse and risk-seeking behaviours. Finally, Experiment 3 tests LLMs in a dynamic grid-world where the LLM agents generate movement actions. LLMs produce trajectories resembling human participants' paths. While LLMs cannot yet fully replicate human adaptability, their prompt-guided diversity offers a scalable foundation for simulating policy-agnostic teammates.
    
      LLMs are powerful generators of synthetic data, which are used for training smaller, specific models. This is especially valuable for low-resource languages, where human-labelled data is scarce but LLMs can still produce high-quality text. However, LLMs differ in how useful their outputs are for training. Selecting the best LLM as a generator is challenging because extrinsic evaluation requires costly human annotations (which are often unavailable for low-resource languages), while intrinsic metrics correlate poorly with downstream performance. We introduce Round robin Synthetic data Evaluation (RoSE), a proxy metric for selecting the best LLM generator without human test sets. RoSE trains a small model on the outputs of a candidate generator (LLM) and then evaluates it on generated synthetic examples from all other candidate LLMs. The final RoSE score is the mean performance of this small model. Across six LLMs, eleven languages, and three tasks (sentiment, topic, intent), RoSE identifies the optimal generator more often than any other intrinsic heuristics. RoSE outperforms intrinsic heuristics and comes within 0.76 percentage points of the optimal generator baseline. This result is measured in terms of downstream performance, obtained by training a small model on the chosen generator's outputs (optimal vs. proxy metric selected) and evaluating it on human-labelled test data. Additionally, RoSE is the only metric to achieve a positive correlation with performance on human test data.
    
      Large language models (LLMs) are increasingly shaping how information is created and disseminated, from companies using them to craft persuasive advertisements, to election campaigns optimizing messaging to gain votes, to social media influencers boosting engagement. These settings are inherently competitive, with sellers, candidates, and influencers vying for audience approval, yet it remains poorly understood how competitive feedback loops influence LLM behavior. We show that optimizing LLMs for competitive success can inadvertently drive misalignment. Using simulated environments across these scenarios, we find that, 6.3% increase in sales is accompanied by a 14.0% rise in deceptive marketing; in elections, a 4.9% gain in vote share coincides with 22.3% more disinformation and 12.5% more populist rhetoric; and on social media, a 7.5% engagement boost comes with 188.6% more disinformation and a 16.3% increase in promotion of harmful behaviors. We call this phenomenon Moloch's Bargain for AI--competitive success achieved at the cost of alignment. These misaligned behaviors emerge even when models are explicitly instructed to remain truthful and grounded, revealing the fragility of current alignment safeguards. Our findings highlight how market-driven optimization pressures can systematically erode alignment, creating a race to the bottom, and suggest that safe deployment of AI systems will require stronger governance and carefully designed incentives to prevent competitive dynamics from undermining societal trust.
    
      Open Source Software (OSS) has become a very important and crucial infrastructure worldwide because of the value it provides. OSS typically depends on contributions from developers across diverse backgrounds and levels of experience. Making safe changes, such as fixing a bug or implementing a new feature, can be challenging, especially in object-oriented systems where components are interdependent. Static analysis and defect-prediction tools produce metrics (e.g., complexity,coupling) that flag potentially fault-prone components, but these signals are often hard for contributors new or unfamiliar with the codebase to interpret. Large Language Models (LLMs) have shown strong performance on software engineering tasks such as code summarization and documentation generation. Building on this progress, we investigate whether LLMs can translate fault-prediction metrics into clear, human-readable risk explanations and actionable guidance to help OSS contributors plan and review code modifications. We outline explanation types that an LLM-generated assistant could provide (descriptive, contextual, and actionable explanations). We also outline our next steps to assess usefulness through a task-based study with OSS contributors, comparing metric-only baselines to LLM-generated explanations on decision quality, time-to-completion, and error rates
    
      The objectives that Large Language Models (LLMs) implicitly optimize remain dangerously opaque, making trustworthy alignment and auditing a grand challenge. While Inverse Reinforcement Learning (IRL) can infer reward functions from behaviour, existing approaches either produce a single, overconfident reward estimate or fail to address the fundamental ambiguity of the task (non-identifiability). This paper introduces a principled auditing framework that re-frames reward inference from a simple estimation task to a comprehensive process for verification. Our framework leverages Bayesian IRL to not only recover a distribution over objectives but to enable three critical audit capabilities: (i) Quantifying and systematically reducing non-identifiability by demonstrating posterior contraction over sequential rounds of evidence; (ii) Providing actionable, uncertainty-aware diagnostics that expose spurious shortcuts and identify out-of-distribution prompts where the inferred objective cannot be trusted; and (iii) Validating policy-level utility by showing that the refined, low-uncertainty reward can be used directly in RLHF to achieve training dynamics and toxicity reductions comparable to the ground-truth alignment process. Empirically, our framework successfully audits a detoxified LLM, yielding a well-calibrated and interpretable objective that strengthens alignment guarantees. Overall, this work provides a practical toolkit for auditors, safety teams, and regulators to verify what LLMs are truly trying to achieve, moving us toward more trustworthy and accountable AI.
    
      As algorithmic decision-makers are increasingly applied to high-stakes domains, AI alignment research has evolved from a focus on universal value alignment to context-specific approaches that account for decision-maker attributes. Prior work on Decision-Maker Alignment (DMA) has explored two primary strategies: (1) classical AI methods integrating case-based reasoning, Bayesian reasoning, and naturalistic decision-making, and (2) large language model (LLM)-based methods leveraging prompt engineering. While both approaches have shown promise in limited domains such as medical triage, their generalizability to novel contexts remains underexplored. In this work, we implement a prior classical AI model and develop an LLM-based algorithmic decision-maker evaluated using a large reasoning model (GPT-5) and a non-reasoning model (GPT-4) with weighted self-consistency under a zero-shot prompting framework, as proposed in recent literature. We evaluate both approaches on a health insurance decision-making dataset annotated for three target decision-makers with varying levels of risk tolerance (0.0, 0.5, 1.0). In the experiments reported herein, classical AI and LLM-based models achieved comparable alignment with attribute-based targets, with classical AI exhibiting slightly better alignment for a moderate risk profile. The dataset and open-source implementation are publicly available at: https://github.com/TeX-Base/ClassicalAIvsLLMsforDMAlignment and https://github.com/Parallax-Advanced-Research/ITM/tree/feature_insurance.
    
      Reinforcement Learning from Human Feedback (RLHF) aligns Large Language Models (LLMs) with human preferences, yet the underlying reward signals they internalize remain hidden, posing a critical challenge for interpretability and safety. Existing approaches attempt to extract these latent incentives using Inverse Reinforcement Learning (IRL), but treat all preference pairs equally, often overlooking the most informative signals: those examples the extracted reward model misclassifies or assigns nearly equal scores, which we term \emph{failures}. We introduce a novel \emph{failure-aware} IRL algorithm that focuses on misclassified or difficult examples to recover the latent rewards defining model behaviors. By learning from these failures, our failure-aware IRL extracts reward functions that better reflect the true objectives behind RLHF. We demonstrate that failure-aware IRL outperforms existing IRL baselines across multiple metrics when applied to LLM detoxification, without requiring external classifiers or supervision. Crucially, failure-aware IRL yields rewards that better capture the true incentives learned during RLHF, enabling more effective re-RLHF training than standard IRL. This establishes failure-aware IRL as a robust, scalable method for auditing model alignment and reducing ambiguity in the IRL process.
    
      Route recommendation aims to provide users with optimal travel plans that satisfy diverse and complex requirements. Classical routing algorithms (e.g., shortest-path and constraint-aware search) are efficient but assume structured inputs and fixed objectives, limiting adaptability to natural-language queries. Recent LLM-based approaches enhance flexibility but struggle with spatial reasoning and the joint modeling of route-level and POI-level preferences. To address these limitations, we propose RouteLLM, a hierarchical multi-agent framework that grounds natural-language intents into constraint-aware routes. It first parses user queries into structured intents including POIs, paths, and constraints. A manager agent then coordinates specialized sub-agents: a constraint agent that resolves and formally check constraints, a POI agent that retrieves and ranks candidate POIs, and a path refinement agent that refines routes via a routing engine with preference-conditioned costs. A final verifier agent ensures constraint satisfaction and produces the final route with an interpretable rationale. This design bridges linguistic flexibility and spatial structure, enabling reasoning over route feasibility and user preferences. Experiments show that our method reliably grounds textual preferences into constraint-aware routes, improving route quality and preference satisfaction over classical methods.
    
      Large Language Models (LLMs) have achieved remarkable success across a wide range of natural language processing tasks. However, Chinese LLMs face unique challenges, primarily due to the dominance of unstructured free text and the lack of structured representations in Chinese corpora. While existing benchmarks for LLMs partially assess Chinese LLMs, they are still predominantly English-centric and fail to address the unique linguistic characteristics of Chinese, lacking structured datasets essential for robust evaluation. To address these challenges, we present a Comprehensive Benchmark for Evaluating Chinese Large Language Models (CB-ECLLM) based on the newly constructed Chinese Data-Text Pair (CDTP) dataset. Specifically, CDTP comprises over 7 million aligned text pairs, each consisting of unstructured text coupled with one or more corresponding triples, alongside a total of 15 million triples spanning four critical domains. The core contributions of CDTP are threefold: (i) enriching Chinese corpora with high-quality structured information; (ii) enabling fine-grained evaluation tailored to knowledge-driven tasks; and (iii) supporting multi-task fine-tuning to assess generalization and robustness across scenarios, including Knowledge Graph Completion, Triple-to-Text generation, and Question Answering. Furthermore, we conduct rigorous evaluations through extensive experiments and ablation studies to assess the effectiveness, Supervised Fine-Tuning (SFT), and robustness of the benchmark. To support reproducible research, we offer an open-source codebase and outline potential directions for future investigations based on our insights.
    
      Recent studies employing Large Language Models (LLMs) to test the Argument from the Poverty of the Stimulus (APS) have yielded contrasting results across syntactic phenomena. This paper investigates the hypothesis that characteristics of the stimuli used in recent studies, including lexical ambiguities and structural complexities, may confound model performance. A methodology is proposed for re-evaluating LLM competence on syntactic prediction, focusing on GPT-2. This involves: 1) establishing a baseline on previously used (both filtered and unfiltered) stimuli, and 2) generating a new, refined dataset using a state-of-the-art (SOTA) generative LLM (Gemini 2.5 Pro Preview) guided by linguistically-informed templates designed to mitigate identified confounds. Our preliminary findings indicate that GPT-2 demonstrates notably improved performance on these refined PG stimuli compared to baselines, suggesting that stimulus quality significantly influences outcomes in surprisal-based evaluations of LLM syntactic competency.
    
      LLM web agents now browse and take actions on the open web, yet current agent evaluations are constrained to sandboxed environments or artificial tasks. We introduce BrowserArena, a live open-web agent evaluation platform that collects user-submitted tasks, runs Arena-style head-to-head comparisons, and uses step-level human feedback to surface failure modes. Collecting and analyzing step-level annotations on the agent traces, we identify three consistent failure modes: captcha resolution, pop-up banner removal, and direct navigation to URLs. By constructing targeted datasets to further study these tasks, we discover variations in how different language models navigate these failure modes. We find, for example, that o4-mini deploys a wider variety of strategies to circumvent captcha resolution than other models and DeepSeek-R1 consistently misleads users about pop-up banner closure. Our findings surface both the diversity and brittleness of current web agents. More broadly, our benchmarking methodology provides an approach to evaluating and understanding web agent failure modes at scale.
    
      Recent studies probing the Argument from the Poverty of the Stimulus (APS) have applied Large Language Models (LLMs) to test the learnability of complex syntax through surprisal-based metrics. However, divergent conclusions raise questions concerning the insights these metrics offer. While Wilcox et al. (2024) used direct minimal pair comparisons (the "wh-effect") to demonstrate that models successfully generalise knowledge of filler-gap dependencies, Lan et al. (2024) used a Difference-in-Differences (DiD) metric and found that models largely fail on parasitic gaps (PGs). This paper argues that the direct minimal pair approach offers greater diagnostic transparency. We demonstrate this by generating a full 8-permutation paradigm of refined PG stimuli and evaluating the GPT-2 model used in previous studies with a systematic Wilcox-style wh-effect analysis. Our results show that GPT-2 succeeds across all four tested conditions, indicating robust knowledge of filler-gap licensing principles even in complex PG environments. This finding, which contrasts with the more ambiguous results from DiD-style metrics, suggests that the choice of evaluation metric is critical for assessing an LLM's syntactic competence.
    
      Large Language Models (LLMs) are increasingly applied to complex tasks that require extended reasoning. In such settings, models often benefit from diverse chains-of-thought to arrive at multiple candidate solutions. This requires two competing objectives: to inject enough stochasticity to explore multiple reasoning chains, and to ensure sufficient accuracy and quality in each path. Existing works pursue the first objective by increasing exploration at highly uncertain steps with higher temperature or larger candidate token sets, while others improve reliability by rejecting samples with low confidence post-generation, implying that low confidence correlates with low answer quality. These two lines of thought are in conflict, as they conflate different sources of uncertainty. To resolve this, we argue that the decoding rule should be calibrated by correctness, not confidence alone. We should sample from tokens with higher estimated correctness, and reduce sampling where expected correctness is low. We propose simple strategies that achieve this goal: Greedy-Threshold makes sampling greedy at very low confidence steps. Calibrated-TopK and Calibrated-epsilon set truncation threshold based on estimated rank-wise correctness. Together, our findings challenge prevailing heuristics about decoding under uncertainty and show gains across math and general reasoning benchmarks.
    
      Time series classification (TSC) spans diverse application scenarios, yet labeled data are often scarce, making task-specific training costly and inflexible. Recent reasoning-oriented large language models (LLMs) show promise in understanding temporal patterns, but purely zero-shot usage remains suboptimal. We propose FETA, a multi-agent framework for training-free TSC via exemplar-based in-context reasoning. FETA decomposes a multivariate series into channel-wise subproblems, retrieves a few structurally similar labeled examples for each channel, and leverages a reasoning LLM to compare the query against these exemplars, producing channel-level labels with self-assessed confidences; a confidence-weighted aggregator then fuses all channel decisions. This design eliminates the need for pretraining or fine-tuning, improves efficiency by pruning irrelevant channels and controlling input length, and enhances interpretability through exemplar grounding and confidence estimation. On nine challenging UEA datasets, FETA achieves strong accuracy under a fully training-free setting, surpassing multiple trained baselines. These results demonstrate that a multi-agent in-context reasoning framework can transform LLMs into competitive, plug-and-play TSC solvers without any parameter training. The code is available at https://github.com/SongyuanSui/FETATSC.
    
      Recent studies have investigated whether large language models (LLMs) can support obscured communication, which is characterized by core aspects such as inferring subtext and evading suspicions. To conduct the investigation, researchers have used social deduction games (SDGs) as their experimental environment, in which players conceal and infer specific information. However, prior work has often overlooked how LLMs should be evaluated in such settings. Specifically, we point out two limitations with the evaluation methods they employed. First, metrics used in prior studies are coarse-grained as they are based on overall game outcomes that often fail to capture event-level behaviors; Second, error analyses have lacked structured methodologies capable of producing insights that meaningfully support evaluation outcomes. To address these limitations, we propose a microscopic and systematic approach to the investigation. Specifically, we introduce six fine-grained metrics that resolve the first issue. To tackle the second issue, we conducted a thematic analysis and identified four major reasoning failures that undermine LLMs' performance in obscured communication.
    
      High-dimensional data remains a pervasive challenge in machine learning, often undermining model interpretability and computational efficiency. While Large Language Models (LLMs) have shown promise for dimensionality reduction through feature selection, existing LLM-based approaches frequently lack structured reasoning and transparent justification for their decisions. This paper introduces LLM-FS-Agent, a novel multi-agent architecture designed for interpretable and robust feature selection. The system orchestrates a deliberative "debate" among multiple LLM agents, each assigned a specific role, enabling collective evaluation of feature relevance and generation of detailed justifications. We evaluate LLM-FS-Agent in the cybersecurity domain using the CIC-DIAD 2024 IoT intrusion detection dataset and compare its performance against strong baselines, including LLM-Select and traditional methods such as PCA. Experimental results demonstrate that LLM-FS-Agent consistently achieves superior or comparable classification performance while reducing downstream training time by an average of 46% (statistically significant improvement, p = 0.028 for XGBoost). These findings highlight that the proposed deliberative architecture enhances both decision transparency and computational efficiency, establishing LLM-FS-Agent as a practical and reliable solution for real-world applications.
    
      Large Language Models (LLMs) optimized to output truthful answers often overfit, producing brittle reasoning that fails to generalize. While persuasion-based optimization has shown promise in debate settings, it has not been systematically compared against mainstream truth-based approaches. We introduce DebateQD, a minimal Quality-Diversity (QD) evolutionary algorithm that evolves diverse debate strategies across different categories (rationality, authority, emotional appeal, etc.) through tournament-style competitions where two LLMs debate while a third judges. Unlike previously proposed methods that require a population of LLMs, our approach maintains diversity of opponents through prompt-based strategies within a single LLM architecture, making it more accessible for experiments while preserving the key benefits of population-based optimization. In contrast to prior work, we explicitly isolate the role of the optimization objective by fixing the debate protocol and swapping only the fitness function: persuasion rewards strategies that convince the judge irrespective of truth, whereas truth rewards collaborative correctness. Across three model scales (7B, 32B, 72B parameters) and multiple dataset sizes from the QuALITY benchmark, persuasion-optimized strategies achieve up to 13.94% smaller train-test generalization gaps, while matching or exceeding truth optimization's test performance. These results provide the first controlled evidence that competitive pressure to persuade, rather than seek the truth collaboratively, fosters more transferable reasoning skills, offering a promising path for improving LLM generalization.
    
      Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback. However, current RLVR methods typically assign the same reward to every token. This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure, and often results in suboptimal policies. Methods like PPO provide credit assignment by value estimation, but yield inaccurate and unverifiable signals due to limited sampling. On the other hand, methods using Process Reward Models can provide step-wise rewards but suffer from several key limitations: they require high-quality process supervision labels, the feedback is unreliable due to probabilistic reward modeling, and their application in online reinforcement learning (RL) is time-consuming. To overcome these limitations, we introduce a simple but efficient method-Credit Assignment Policy Optimization (CAPO). Instead of training auxiliary models, CAPO directly leverages an off-the-shelf, general-purpose LLM as a Generative Process Reward Model (LLM-as-GenPRM) to generate all step-wise critique by one pass only based on the correctness of the step itself, providing deterministic token-level credits to refine the tokens that were originally assigned identical rule-based rewards. To further enhance the accuracy and robustness, we employ voting mechanisms that scale with the number of generated critiques. Extensive experiments on various backbones like Llama and Qwen models show that CAPO consistently outperforms supervised learning-based and RL-based fine-tuning methods across four challenging mathematical benchmarks and three out-of-domain benchmarks. Further analysis shows that CAPO can help the model to foster the learning of correct reasoning pathways leading to correct answers.
    
      Effective model and hyperparameter selection remains a major challenge in deep learning, often requiring extensive expertise and computation. While AutoML and large language models (LLMs) promise automation, current LLM-based approaches rely on trial and error and expensive APIs, which provide limited interpretability and generalizability. We propose MetaLLMiX, a zero-shot hyperparameter optimization framework combining meta-learning, explainable AI, and efficient LLM reasoning. By leveraging historical experiment outcomes with SHAP explanations, MetaLLMiX recommends optimal hyperparameters and pretrained models without additional trials. We further employ an LLM-as-judge evaluation to control output format, accuracy, and completeness. Experiments on eight medical imaging datasets using nine open-source lightweight LLMs show that MetaLLMiX achieves competitive or superior performance to traditional HPO methods while drastically reducing computational cost. Our local deployment outperforms prior API-based approaches, achieving optimal results on 5 of 8 tasks, response time reductions of 99.6-99.9%, and the fastest training times on 6 datasets (2.4-15.7x faster), maintaining accuracy within 1-5% of best-performing baselines.
    
      In a recent study, Lu, Song, and Zhang (2025) (LSZ) propose that large language models (LLMs), when prompted in different languages, display culturally specific tendencies. They report that the two models (i.e., GPT and ERNIE) respond in more interdependent and holistic ways when prompted in Chinese, and more independent and analytic ways when prompted in English. LSZ attribute these differences to deep-seated cultural patterns in the models, claiming that prompt language alone can induce substantial cultural shifts. While we acknowledge the empirical patterns they observed, we find their experiments, methods, and interpretations problematic. In this paper, we critically re-evaluate the methodology, theoretical framing, and conclusions of LSZ. We argue that the reported "cultural tendencies" are not stable traits but fragile artifacts of specific models and task design. To test this, we conducted targeted replications using a broader set of LLMs and a larger number of test items. Our results show that prompt language has minimal effect on outputs, challenging LSZ's claim that these models encode grounded cultural beliefs.
    
      Large language models (LLMs) increasingly support applications that rely on extended context, from document processing to retrieval-augmented generation. While their long-context capabilities are well studied for reasoning and retrieval, little is known about their behavior in safety-critical scenarios. We evaluate LLMs' sensitivity to harmful content under extended context, varying type (explicit vs. implicit), position (beginning, middle, end), prevalence (0.01-0.50 of the prompt), and context length (600-6000 tokens). Across harmful content categories such as toxic, offensive, and hate speech, with LLaMA-3, Qwen-2.5, and Mistral, we observe similar patterns: performance peaks at moderate harmful prevalence (0.25) but declines when content is very sparse or dominant; recall decreases with increasing context length; harmful sentences at the beginning are generally detected more reliably; and explicit content is more consistently recognized than implicit. These findings provide the first systematic view of how LLMs prioritize and calibrate harmful content in long contexts, highlighting both their emerging strengths and the challenges that remain for safety-critical use.
    
      Large language models (LLMs) are typically aligned to refuse harmful instructions through safety fine-tuning. A recent attack, termed abliteration, identifies and suppresses the single latent direction most responsible for refusal behavior, thereby enabling models to generate harmful content. We propose a defense that fundamentally alters how models express refusal. We construct an extended-refusal dataset in which responses to harmful prompts provide detailed justifications before refusing, distributing the refusal signal across multiple token positions. Fine-tuning Llama-2-7B-Chat and Qwen2.5-Instruct (1.5B and 3B parameters) on this dataset yields models that maintain high refusal rates under abliteration: refusal rates drop by at most 10%, compared to 70-80% drops in baseline models. Comprehensive evaluations of safety and utility demonstrate that extended-refusal fine-tuning effectively neutralizes abliteration attacks while preserving general model performance and enhancing robustness across multiple alignment scenarios.
    
      With the rapid growth of academic publications, peer review has become an essential yet time-consuming responsibility within the research community. Large Language Models (LLMs) have increasingly been adopted to assist in the generation of review comments; however, current LLM-based review tasks lack a unified evaluation benchmark to rigorously assess the models' ability to produce comprehensive, accurate, and human-aligned assessments, particularly in scenarios involving multimodal content such as figures and tables. To address this gap, we propose \textbf{MMReview}, a comprehensive benchmark that spans multiple disciplines and modalities. MMReview includes multimodal content and expert-written review comments for 240 papers across 17 research domains within four major academic disciplines: Artificial Intelligence, Natural Sciences, Engineering Sciences, and Social Sciences. We design a total of 13 tasks grouped into four core categories, aimed at evaluating the performance of LLMs and Multimodal LLMs (MLLMs) in step-wise review generation, outcome formulation, alignment with human preferences, and robustness to adversarial input manipulation. Extensive experiments conducted on 16 open-source models and 5 advanced closed-source models demonstrate the thoroughness of the benchmark. We envision MMReview as a critical step toward establishing a standardized foundation for the development of automated peer review systems.
    
      Recent LLM-based TTS systems achieve strong quality and zero-shot ability, but lack fine-grained emotional control due to their reliance on discrete speech tokens. Existing approaches either limit emotions to categorical labels or cannot generalize to LLM-based architectures. We propose EMORL-TTS (Fine-grained Emotion-controllable TTS with Reinforcement Learning), a framework that unifies global intensity control in the VAD space with local emphasis regulation. Our method combines supervised fine-tuning with reinforcement learning guided by task-specific rewards for emotion category, intensity, and emphasis. Moreover, we further investigate how emphasis placement modulates fine-grained emotion intensity. Experiments show that EMORL-TTS improves emotion accuracy, intensity differentiation, and emphasis clarity, while preserving synthesis quality comparable to strong LLM-based baselines.
    
      Text clustering serves as a fundamental technique for organizing and interpreting unstructured textual data, particularly in contexts where manual annotation is prohibitively costly. With the rapid advancement of Large Language Models (LLMs) and their demonstrated effectiveness across a broad spectrum of NLP tasks, an emerging body of research has begun to explore their potential in the domain of text clustering. However, existing LLM-based approaches still rely on fine-tuned embedding models and sophisticated similarity metrics, rendering them computationally intensive and necessitating domain-specific adaptation. To address these limitations, we propose a novel framework that reframes text clustering as a classification task by harnessing the in-context learning capabilities of LLMs. Our framework eliminates the need for fine-tuning embedding models or intricate clustering algorithms. It comprises two key steps: first, the LLM is prompted to generate a set of candidate labels based on the dataset and then merges semantically similar labels; second, it assigns the most appropriate label to each text sample. By leveraging the advanced natural language understanding and generalization capabilities of LLMs, the proposed approach enables effective clustering with minimal human intervention. Experimental results on diverse datasets demonstrate that our framework achieves comparable or superior performance to state-of-the-art embedding-based clustering techniques, while significantly reducing computational complexity and resource requirements. These findings underscore the transformative potential of LLMs in simplifying and enhancing text clustering tasks. We make our code available to the public for utilization at https://github.com/ECNU-Text-Computing/Text-Clustering-via-LLM. We also provide the supplementary Appendix within the repository.
    
      Eliciting cooperation in multi-agent LLM systems is critical for AI alignment. We investigate two approaches: direct communication and curriculum learning. In a 4-player Stag Hunt, a one-word "cheap talk" channel increases cooperation from 0% to 48.3%, demonstrating communication as a robust coordination mechanism. In contrast, we find that curriculum learning is highly sensitive to design choices: our pedagogical curriculum through progressively complex games reduced agent payoffs by 27.4% in an Iterated Public Goods Game with Punishment. Qualitative analysis reveals that curricula emphasizing defection-equilibrium games can induce "learned pessimism" in agents. These findings suggest that for coordination problems, simple communication protocols may be more reliable than experience-based training, and that curriculum design for social dilemmas requires careful attention to the strategic lessons embedded in game sequences.
    
      Despite their increasing capabilities, text-to-image generative AI systems are known to produce biased, offensive, and otherwise problematic outputs. While recent advancements have supported testing and auditing of generative AI, existing auditing methods still face challenges in supporting effectively explore the vast space of AI-generated outputs in a structured way. To address this gap, we conducted formative studies with five AI auditors and synthesized five design goals for supporting systematic AI audits. Based on these insights, we developed Vipera, an interactive auditing interface that employs multiple visual cues including a scene graph to facilitate image sensemaking and inspire auditors to explore and hierarchically organize the auditing criteria. Additionally, Vipera leverages LLM-powered suggestions to facilitate exploration of unexplored auditing directions. Through a controlled experiment with 24 participants experienced in AI auditing, we demonstrate Vipera's effectiveness in helping auditors navigate large AI output spaces and organize their analyses while engaging with diverse criteria.
    
      Industrial fault diagnosis faces the dual challenges of data scarcity and the difficulty of deploying large AI models in resource-constrained environments. This paper introduces Syn-Diag, a novel cloud-edge synergistic framework that leverages Large Language Models to overcome these limitations in few-shot fault diagnosis. Syn-Diag is built on a three-tiered mechanism: 1) Visual-Semantic Synergy, which aligns signal features with the LLM's semantic space through cross-modal pre-training; 2) Content-Aware Reasoning, which dynamically constructs contextual prompts to enhance diagnostic accuracy with limited samples; and 3) Cloud-Edge Synergy, which uses knowledge distillation to create a lightweight, efficient edge model capable of online updates via a shared decision space. Extensive experiments on six datasets covering different CWRU and SEU working conditions show that Syn-Diag significantly outperforms existing methods, especially in 1-shot and cross-condition scenarios. The edge model achieves performance comparable to the cloud version while reducing model size by 83% and latency by 50%, offering a practical, robust, and deployable paradigm for modern intelligent diagnostics.
    
      Cognitive diagnostics in the Web-based Intelligent Education System (WIES) aims to assess students' mastery of knowledge concepts from heterogeneous, noisy interactions. Recent work has tried to utilize Large Language Models (LLMs) for cognitive diagnosis, yet LLMs struggle with structured data and are prone to noise-induced misjudgments. Specially, WIES's open environment continuously attracts new students and produces vast amounts of response logs, exacerbating the data imbalance and noise issues inherent in traditional educational systems. To address these challenges, we propose DLLM, a Diffusion-based LLM framework for noise-robust cognitive diagnosis. DLLM first constructs independent subgraphs based on response correctness, then applies relation augmentation alignment module to mitigate data imbalance. The two subgraph representations are then fused and aligned with LLM-derived, semantically augmented representations. Importantly, before each alignment step, DLLM employs a two-stage denoising diffusion module to eliminate intrinsic noise while assisting structural representation alignment. Specifically, unconditional denoising diffusion first removes erroneous information, followed by conditional denoising diffusion based on graph-guided to eliminate misleading information. Finally, the noise-robust representation that integrates semantic knowledge and structural information is fed into existing cognitive diagnosis models for prediction. Experimental results on three publicly available web-based educational platform datasets demonstrate that our DLLM achieves optimal predictive performance across varying noise levels, which demonstrates that DLLM achieves noise robustness while effectively leveraging semantic knowledge from LLM.
    
      Large language models (LLMs) have demonstrated significant capabilities in solving mathematical problems expressed in natural language. However, multilingual and culturally-grounded mathematical reasoning in low-resource languages lags behind English due to the scarcity of socio-cultural task datasets that reflect accurate native entities such as person names, organization names, and currencies. Existing multilingual benchmarks are predominantly produced via translation and typically retain English-centric entities, owing to the high cost associated with human annotater-based localization. Moreover, automated localization tools are limited, and hence, truly localized datasets remain scarce. To bridge this gap, we introduce a framework for LLM-driven cultural localization of math word problems that automatically constructs datasets with native names, organizations, and currencies from existing sources. We find that translated benchmarks can obscure true multilingual math ability under appropriate socio-cultural contexts. Through extensive experiments, we also show that our framework can help mitigate English-centric entity bias and improves robustness when native entities are introduced across various languages.
    
      Before adopting a new large language model (LLM) architecture, it is critical to understand vulnerabilities accurately. Existing evaluations can be difficult to trust, often drawing conclusions from LLMs that are not meaningfully comparable, relying on heuristic inputs or employing metrics that fail to capture the inherent uncertainty. In this paper, we propose a principled and practical end-to-end framework for evaluating LLM vulnerabilities to prompt injection attacks. First, we propose practical approaches to experimental design, tackling unfair LLM comparisons by considering two practitioner scenarios: when training an LLM and when deploying a pre-trained LLM. Second, we address the analysis of experiments and propose a Bayesian hierarchical model with embedding-space clustering. This model is designed to improve uncertainty quantification in the common scenario that LLM outputs are not deterministic, test prompts are designed imperfectly, and practitioners only have a limited amount of compute to evaluate vulnerabilities. We show the improved inferential capabilities of the model in several prompt injection attack settings. Finally, we demonstrate the pipeline to evaluate the security of Transformer versus Mamba architectures. Our findings show that consideration of output variability can suggest less definitive findings. However, for some attacks, we find notably increased Transformer and Mamba-variant vulnerabilities across LLMs with the same training data or mathematical ability.
    
      The widespread application of Large Language Models (LLMs) imposes increasing demands on safety, such as reducing harmful content and fake information, and avoiding certain forbidden tokens due to rules and laws. While there have been several recent works studying safe alignment of LLMs, these works either require the training of reward and cost models and incur high memory and computational costs, or need prior knowledge about the optimal solution. Motivated by this fact, we study the problem of constrained alignment in LLMs, i.e., maximizing the output reward while restricting the cost due to potentially unsafe content to stay below a threshold. For this problem, we propose a novel primal-dual DPO approach, which first trains a model using standard DPO on reward preference data to provide reward information, and then adopts a rearranged Lagrangian DPO objective utilizing the provided reward information to fine-tune LLMs on cost preference data. Our approach significantly reduces memory and computational costs, and does not require extra prior knowledge. Moreover, we establish rigorous theoretical guarantees on the suboptimality and constraint violation of the output policy. We also extend our approach to an online data setting by incorporating exploration bonuses, which enables our approach to explore uncovered prompt-response space, and then provide theoretical results that get rid of the dependence on preference data coverage. Experimental results on the widely-used preference dataset PKU-SafeRLHF demonstrate the effectiveness of our approach.
    
      With the widespread adoption of Large Language Models (LLMs), the demand for high-performance LLM inference services continues to grow. To meet this demand, a growing number of AI accelerators have been proposed, such as Google TPU, Huawei NPU, Graphcore IPU, and Cerebras WSE, etc. Most of these accelerators adopt multi-core architectures to achieve enhanced scalability, but lack the flexibility of SIMT architectures. Therefore, without careful configuration of the hardware architecture, as well as deliberate design of tensor parallelism and core placement strategies, computational resources may be underutilized, resulting in suboptimal inference performance. To address these challenges, we first present a multi-level simulation framework with both transaction-level and performance-model-based simulation for multi-core NPUs. Using this simulator, we conduct a systematic analysis and further propose the optimal solutions for tensor parallelism strategies, core placement policies, memory management methods, as well as the selection between PD-disaggregation and PD-fusion on multi-core NPUs. We conduct comprehensive experiments on representative LLMs and various NPU configurations. The evaluation results demonstrate that, our solution can achieve 1.32x-6.03x speedup compared to SOTA designs for multi-core NPUs across different hardware configurations. As for LLM serving, our work offers guidance on designing optimal hardware architectures and serving strategies for multi-core NPUs across various LLM workloads.
    
      Identifying LLM-generated code through watermarking poses a challenge in preserving functional correctness. Previous methods rely on the assumption that watermarking high-entropy tokens effectively maintains output quality. Our analysis reveals a fundamental limitation of this assumption: syntax-critical tokens such as keywords often exhibit the highest entropy, making existing approaches vulnerable to logic corruption. We present STONE, a syntax-aware watermarking method that embeds watermarks only in non-syntactic tokens and preserves code integrity. For its rigorous assessment, we also introduce STEM, a comprehensive framework that balances three critical dimensions: correctness, detectability, and imperceptibility. Across Python, C++, and Java, STONE preserves correctness, sustains strong detectability, and achieves balanced performance with minimal overhead. Our implementation is available at https://anonymous.4open.science/r/STONE-watermarking-AB4B/.
    
      Penetration testing and vulnerability assessment are essential industry practices for safeguarding computer systems. As cyber threats grow in scale and complexity, the demand for pentesting has surged, surpassing the capacity of human professionals to meet it effectively. With advances in AI, particularly Large Language Models (LLMs), there have been attempts to automate the pentesting process. However, existing tools such as PentestGPT are still semi-manual, requiring significant professional human interaction to conduct pentests. To this end, we propose a novel LLM agent-based framework, AutoPentester, which automates the pentesting process. Given a target IP, AutoPentester automatically conducts pentesting steps using common security tools in an iterative process. It can dynamically generate attack strategies based on the tool outputs from the previous iteration, mimicking the human pentester approach. We evaluate AutoPentester using Hack The Box and custom-made VMs, comparing the results with the state-of-the-art PentestGPT. Results show that AutoPentester achieves a 27.0% better subtask completion rate and 39.5% more vulnerability coverage with fewer steps. Most importantly, it requires significantly fewer human interactions and interventions compared to PentestGPT. Furthermore, we recruit a group of security industry professional volunteers for a user survey and perform a qualitative analysis to evaluate AutoPentester against industry practices and compare it with PentestGPT. On average, AutoPentester received a score of 3.93 out of 5 based on user reviews, which was 19.8% higher than PentestGPT.
    
      Recent agent-based recommendation frameworks aim to simulate user behaviors by incorporating memory mechanisms and prompting strategies, but they struggle with hallucinating non-existent items and full-catalog ranking. Besides, a largely underexplored opportunity lies in leveraging LLMs'commonsense reasoning to capture user intent through substitute and complement relationships between items, which are usually implicit in datasets and difficult for traditional ID-based recommenders to capture. In this work, we propose a novel LLM-agent framework, AgenDR, which bridges LLM reasoning with scalable recommendation tools. Our approach delegates full-ranking tasks to traditional models while utilizing LLMs to (i) integrate multiple recommendation outputs based on personalized tool suitability and (ii) reason over substitute and complement relationships grounded in user history. This design mitigates hallucination, scales to large catalogs, and enhances recommendation relevance through relational reasoning. Through extensive experiments on three public grocery datasets, we show that our framework achieves superior full-ranking performance, yielding on average a twofold improvement over its underlying tools. We also introduce a new LLM-based evaluation metric that jointly measures semantic alignment and ranking correctness.
    
      Privacy-sensitive users require deploying large language models (LLMs) within their own infrastructure (on-premises) to safeguard private data and enable customization. However, vulnerabilities in local environments can lead to unauthorized access and potential model theft. To address this, prior research on small models has explored securing only the output layer within hardware-secured devices to balance model confidentiality and customization. Yet this approach fails to protect LLMs effectively. In this paper, we discover that (1) query-based distillation attacks targeting the secured top layer can produce a functionally equivalent replica of the victim model; (2) securing the same number of layers, bottom layers before a transition layer provide stronger protection against distillation attacks than top layers, with comparable effects on customization performance; and (3) the number of secured layers creates a trade-off between protection and customization flexibility. Based on these insights, we propose SOLID, a novel deployment framework that secures a few bottom layers in a secure environment and introduces an efficient metric to optimize the trade-off by determining the ideal number of hidden layers. Extensive experiments on five models (1.3B to 70B parameters) demonstrate that SOLID outperforms baselines, achieving a better balance between protection and downstream customization.
    
      Federated instruction tuning of large language models (LLMs) is challenged by significant data heterogeneity across clients, demanding robust personalization. The Mixture of Experts (MoE) architecture, where experts can specialize in distinct data patterns, presents a natural architectural solution to this challenge. The inherent sparsity of the MoE architecture, achieved by selectively activating experts, poses a significant challenge to its integration with federated learning (FL). Conventional FL frameworks, designed for dense models, naively aggregate all expert parameters irrespective of their local activation patterns. This naive approach not only undermines MoE's dynamic sparsity but also risks corrupting the world knowledge within pretrained experts. To address this, we propose FLEx (Federated LLMs with Personalized Experts), a novel framework that leverages pretrained MoE-based LLMs for efficient personalization. By aggregating only the shared non-expert parameters, FLEx significantly reduces communication overhead and preserves the world knowledge stored within the frozen pretrained experts. For personalization, we introduce a novel expert grafting mechanism that leverages dynamic sparsity to construct a client-specific expert from selected components of pretrained experts, tailored to local data. This grafted expert is then fine-tuned locally alongside the gating mechanism. This joint training enables the model to learn when to leverage the shared knowledge from frozen experts and when to employ the personalized one. Evaluations on diverse, non-IID instruction tuning datasets show that FLEx consistently outperforms federated baselines on average, while demonstrating strong knowledge preservation on the knowledge-driven benchmark MMLU. Our code is available at \href{https://anonymous.4open.science/r/FLEx-8F12}{\texttt{https://anonymous.4open.science/r/FLEx-8F12}}.
    
      Machine learning models are known to leak sensitive information, as they inevitably memorize (parts of) their training data. More alarmingly, large language models (LLMs) are now trained on nearly all available data, which amplifies the magnitude of information leakage and raises serious privacy risks. Hence, it is more crucial than ever to quantify privacy risk before the release of LLMs. The standard method to quantify privacy is via membership inference attacks, where the state-of-the-art approach is the Robust Membership Inference Attack (RMIA). In this paper, we present InfoRMIA, a principled information-theoretic formulation of membership inference. Our method consistently outperforms RMIA across benchmarks while also offering improved computational efficiency. In the second part of the paper, we identify the limitations of treating sequence-level membership inference as the gold standard for measuring leakage. We propose a new perspective for studying membership and memorization in LLMs: token-level signals and analyses. We show that a simple token-based InfoRMIA can pinpoint which tokens are memorized within generated outputs, thereby localizing leakage from the sequence level down to individual tokens, while achieving stronger sequence-level inference power on LLMs. This new scope rethinks privacy in LLMs and can lead to more targeted mitigation, such as exact unlearning.
    
      Recent advancements in language agents have led to significant improvements in multi-hop reasoning tasks. However, existing approaches often struggle with handling open-domain problems, which require massive information retrieval due to their reliance on a fixed sequence of actions. To address this, we propose Feedback-Guided Dynamic Interactive Planning (FGDIP), a novel framework tailored to enhance reasoning in LLMs by utilizing dynamic and adaptive strategies for information exploration in open-domain multi-hop reasoning tasks. Our approach begins by identifying key entities relevant to the problem, which serve as the initial nodes in the reasoning process. From these initial nodes, we then generate reasoning child nodes with the process being refined through a combination of historical error analysis and real-time feedback, which allows the framework to dynamically adjust and optimize its reasoning strategies. By integrating depth-first search with an innovative node generation technique, our framework adapts based on both prior error paths and concurrently generated nodes at the same hierarchical level. This dynamic strategy effectively expands the search space while ensuring the reasoning process systematically converges toward accurate solutions. Experimental results show that FGDIP achieved up to 54.47% F1 score on the HotpotQA dataset and 70.05% on the StrategyQA dataset, surpassing the best baseline by 5.03% and 7.25% respectively, highlighting its versatility and potential to enhance language agents in multi-hop reasoning tasks.
    
      Large Language Models (LLMs) are usually aligned with "human values/preferences" to prevent harmful output. Discussions around the alignment of Large Language Models (LLMs) generally focus on preventing harmful outputs. However, in this paper, we argue that in health-related queries, over-alignment-leading to overly cautious responses-can itself be harmful, especially for people with anxiety and obsessive-compulsive disorder (OCD). This is not only unethical but also dangerous to the user, both mentally and physically. We also showed qualitative results that some LLMs exhibit varying degrees of alignment. Finally, we call for the development of LLMs with stronger reasoning capabilities that provide more tailored and nuanced responses to health queries. Warning: This paper contains materials that could trigger health anxiety or OCD. Dataset and full results can be found in https://github.com/weathon/over-alignment.
    
      This paper investigates algorithmic bias in language-based models for automated depression detection, focusing on socio-demographic disparities related to gender and race/ethnicity. Models trained using deep neural networks (DNN) based embeddings are compared to few-shot learning approaches with large language models (LLMs), evaluating both performance and fairness on clinical interview transcripts from the Distress Analysis Interview Corpus/Wizard-of-Oz (DAIC-WOZ). To mitigate bias, fairness-aware loss functions are applied to DNN-based models, while in-context learning with varied prompt framing and shot counts is explored for LLMs. Results indicate that LLMs outperform DNN-based models in depression classification, particularly for underrepresented groups such as Hispanic participants. LLMs also exhibit reduced gender bias compared to DNN-based embeddings, though racial disparities persist. Among fairness-aware techniques for mitigating bias in DNN-based embeddings, the worst-group loss, which is designed to minimize loss for the worst-performing demographic group, achieves a better balance between performance and fairness. In contrast, the fairness-regularized loss minimizes loss across all groups but performs less effectively. In LLMs, guided prompting with ethical framing helps mitigate gender bias in the 1-shot setting. However, increasing the number of shots does not lead to further reductions in disparities. For race/ethnicity, neither prompting strategy nor increasing $N$ in $N$-shot learning effectively reduces disparities.
    
      Large language models (LLM) and vision-language models (VLM) have achieved state-of-the-art performance, but they impose significant memory and computing challenges in deployment. We present a novel low-rank compression framework to address this challenge. First, we upper bound the change of network loss via layer-wise activation-based compression errors, filling a theoretical gap in the literature. We then formulate low-rank model compression as a bi-objective optimization and prove that a single uniform tolerance yields surrogate Pareto-optimal heterogeneous ranks. Based on our theoretical insights, we propose Pareto-Guided Singular Value Decomposition (PGSVD), a zero-shot pipeline that improves activation-aware compression via Pareto-guided rank selection and alternating least-squares implementation. We apply PGSVD to both LLM and VLM, showing better accuracy at the same compression levels and inference speedup.
    
      Large language models (LLMs) are increasingly used for decision-making tasks under uncertainty; however, their risk profiles and how they are influenced by prompting and alignment methods remain underexplored. Existing studies have primarily examined personality prompting or multi-agent interactions, leaving open the question of how post-training influences the risk behavior of LLMs. In this work, we propose a new pipeline for eliciting, steering, and modulating LLMs' risk profiles, drawing on tools from behavioral economics and finance. Using utility-theoretic models, we compare pre-trained, instruction-tuned, and RLHF-aligned LLMs, and find that while instruction-tuned models exhibit behaviors consistent with some standard utility formulations, pre-trained and RLHF-aligned models deviate more from any utility models fitted. We further evaluate modulation strategies, including prompt engineering, in-context learning, and post-training, and show that post-training provides the most stable and effective modulation of risk preference. Our findings provide insights into the risk profiles of different classes and stages of LLMs and demonstrate how post-training modulates these profiles, laying the groundwork for future research on behavioral alignment and risk-aware LLM design.
    
      Current Large Language Models (LLMs) are confronted with overwhelming information volume when comprehending long-form documents. This challenge raises the imperative of a cohesive memory module, which can elevate vanilla LLMs into autonomous reading agents. Despite the emergence of some heuristic approaches, a systematic design principle remains absent. To fill this void, we draw inspiration from Jean Piaget's Constructivist Theory, illuminating three traits of the agentic memory -- structured schemata, flexible assimilation, and dynamic accommodation. This blueprint forges a clear path toward a more robust and efficient memory system for LLM-based reading comprehension. To this end, we develop CAM, a prototype implementation of Constructivist Agentic Memory that simultaneously embodies the structurality, flexibility, and dynamicity. At its core, CAM is endowed with an incremental overlapping clustering algorithm for structured memory development, supporting both coherent hierarchical summarization and online batch integration. During inference, CAM adaptively explores the memory structure to activate query-relevant information for contextual response, akin to the human associative process. Compared to existing approaches, our design demonstrates dual advantages in both performance and efficiency across diverse long-text reading comprehension tasks, including question answering, query-based summarization, and claim verification.
    
      Prompt underspecification is a common challenge when interacting with LLMs. In this paper, we present an in-depth analysis of this problem, showing that while LLMs can often infer unspecified requirements by default (41.1%), such behavior is fragile: Under-specified prompts are 2x as likely to regress across model or prompt changes, sometimes with accuracy drops exceeding 20%. This instability makes it difficult to reliably build LLM applications. Moreover, simply specifying all requirements does not consistently help, as models have limited instruction-following ability and requirements can conflict. Standard prompt optimizers likewise provide little benefit. To address these issues, we propose requirements-aware prompt optimization mechanisms that improve performance by 4.8% on average over baselines. We further advocate for a systematic process of proactive requirements discovery, evaluation, and monitoring to better manage prompt underspecification in practice.
    
      Large Language Models (LLMs) with Mixture of Experts (MoE) architectures achieve remarkable performance improvements, but their random expert selection mechanism introduces significant data movement overhead that becomes the dominant bottleneck in multi-unit serving systems. To forecast the patterns underlying this data movement, we conduct comprehensive data-movement-centric profiling across three state-of-the-art large-scale MoE models (200B- 671B) using over 24,000 requests spanning diverse workloads. With the resulting 150GB+ trace files, we perform systematic analysis from both temporal and spatial perspectives and distill six key insights to guide the design of diverse future serving systems. Taking wafer-scale GPUs as a case study, we demonstrate that minor architectural modifications leveraging our insights achieve substantial performance gains, delivering 6.3X and 4.0X average speedups on DeepSeek V3 and Qwen3, respectively. Our work provides the first comprehensive data-centric analysis of MoE models at scale. Our profiling traces and analysis results are publicly available at {https://huggingface.co/datasets/core12345/MoE_expert_selection_trace. We will also release our simulation framework shortly to facilitate future research in this area.
    
      Large Language Models (LLMs) are rapidly becoming part of tools used by children; however, existing benchmarks fail to capture how these models manage language, reasoning, and safety needs that are specific to various ages. We present ChildSafe, a benchmark that evaluates LLM safety through simulated child agents that embody four developmental stages. These agents, grounded in developmental psychology, enable a systematic study of child safety without the ethical implications of involving real children. ChildSafe assesses responses across nine safety dimensions (including privacy, misinformation, and emotional support) using age-weighted scoring in both sensitive and neutral contexts. Multi-turn experiments with multiple LLMs uncover consistent vulnerabilities that vary by simulated age, exposing shortcomings in existing alignment practices. By releasing agent templates, evaluation protocols, and an experimental corpus, we provide a reproducible framework for age-aware safety research. We encourage the community to expand this work with real child-centered data and studies, advancing the development of LLMs that are genuinely safe and developmentally aligned.
    
      The exponential increase in software vulnerabilities has created an urgent need for automatic vulnerability repair (AVR) solutions. Recent research has formulated AVR as a sequence generation problem and has leveraged large language models (LLMs) to address this problem. Typically, these approaches prompt or fine-tune LLMs to generate repairs for vulnerabilities directly. Although these methods show state-of-the-art performance, they face the following challenges: (1) Lack of high-quality, vulnerability-related reasoning data. Current approaches primarily rely on foundation models that mainly encode general programming knowledge. Without vulnerability-related reasoning data, they tend to fail to capture the diverse vulnerability repair patterns. (2) Hard to verify the intermediate vulnerability repair process during LLM training. Existing reinforcement learning methods often leverage intermediate execution feedback from the environment (e.g., sandbox-based execution results) to guide reinforcement learning training. In contrast, the vulnerability repair process generally lacks such intermediate, verifiable feedback, which poses additional challenges for model training.
    
      Large language models (LLMs) still struggle across tasks outside of high-resource languages. In this work, we investigate cross-lingual transfer to lower-resource languages where task-specific post-training data is scarce. Building on prior work, we first validate that the subsets of model parameters that matter most for mathematical reasoning and multilingual capabilities are distinctly non-overlapping. To exploit this implicit separability between task and target language parameterization, we develop and analyze numerous modular frameworks to improve the composition of the two during fine-tuning. These methods generally employ freezing parameters or post hoc model merging to assign math and language improvement to different key parts of the LLM. In the absence of in-language math data, we demonstrate that the modular approaches successfully improve upon baselines across three languages, four models, and two fine-tuning paradigms (full and LoRA). Furthermore, we identify the most consistently successful modular method to be fine-tuning separate language and math experts and model merging via Layer-Swapping, somewhat surprisingly. We offer possible explanations for this result via recent works on the linearity of task vectors. We further explain this by empirically showing that reverting less useful fine-tuning updates after training often outperforms freezing them from the start.
    
      As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.
    
      We introduce LEGOMem, a modular procedural memory framework for multi-agent large language model (LLM) systems in workflow automation. LEGOMem decomposes past task trajectories into reusable memory units and flexibly allocates them across orchestrators and task agents to support planning and execution. To explore the design space of memory in multi-agent systems, we use LEGOMem as a lens and conduct a systematic study of procedural memory in multi-agent systems, examining where memory should be placed, how it should be retrieved, and which agents benefit most. Experiments on the OfficeBench benchmark show that orchestrator memory is critical for effective task decomposition and delegation, while fine-grained agent memory improves execution accuracy. We find that even teams composed of smaller language models can benefit substantially from procedural memory, narrowing the performance gap with stronger agents by leveraging prior execution traces for more accurate planning and tool use. These results position LEGOMem as both a practical framework for memory-augmented agent systems and a research tool for understanding memory design in multi-agent workflow automation.
    
      When training large language models (LLMs), it is common practice to track downstream task performance throughout the training process and select the checkpoint with the highest validation score. However, downstream metrics often exhibit substantial fluctuations, making it difficult to identify the checkpoint that truly represents the best-performing model. In this study, we empirically analyze the stability of downstream task performance in an LLM trained on diverse web-scale corpora. We find that task scores frequently fluctuate throughout training, both at the aggregate and example levels. To address this instability, we investigate two post-hoc checkpoint integration methods: checkpoint averaging and ensemble, motivated by the hypothesis that aggregating neighboring checkpoints can reduce performance volatility. We demonstrate both empirically and theoretically that these methods improve downstream performance stability without requiring any changes to the training procedure.
    
      Decoding strategies significantly influence the quality and diversity of the generated text in Large Language Models (LLMs), yet their impact on computational resources, particularly GPU energy consumption, is insufficiently studied. This paper investigates the relationship between text generation decoding techniques and energy efficiency, focusing on the trade-off between generation quality and GPU energy usage across diverse tasks and decoding configurations. By benchmarking multiple strategies across various tasks, including Translation, Math Problem Solving, Coding, and Open-ended text generation, we reveal how selecting appropriate decoding techniques with their tuned hyperparameters affects text quality and has measurable implications for energy consumption. Our findings show that the choice of decoding strategy can greatly impact GPU energy usage, even when it has a minimal effect on output quality. Different strategies also involve trade-offs between quality and energy efficiency, and no single decoding method is best in all cases across every metric. To the best of our knowledge, this is one of the first studies to examine decoding strategies in LLMs from the perspective of energy consumption, providing useful insights for building energy-efficient applications without compromising text generation quality.
    
      Evaluating the quality of open-domain chatbots has become increasingly reliant on LLMs acting as automatic judges. However, existing meta-evaluation benchmarks are static, outdated, and lacking in multilingual coverage, limiting their ability to fully capture subtle weaknesses in evaluation. We introduce MEDAL, an automated multi-agent framework for curating more representative and diverse open-domain dialogue evaluation benchmarks. Our approach leverages several state-of-the-art LLMs to generate user-chatbot multilingual dialogues, conditioned on varied seed contexts. Then, a strong LLM (GPT-4.1) is used for a multidimensional analysis of the performance of the chatbots, uncovering noticeable cross-lingual performance differences. Guided by this large-scale evaluation, we curate a new meta-evaluation multilingual benchmark and human-annotate samples with nuanced quality judgments. This benchmark is then used to assess the ability of several reasoning and non-reasoning LLMs to act as evaluators of open-domain dialogues. Using MEDAL, we uncover that state-of-the-art judges fail to reliably detect nuanced issues such as lack of empathy, commonsense, or relevance.
    
      Radiology report evaluation is a crucial part of radiologists' training and plays a key role in ensuring diagnostic accuracy. As part of the standard reporting workflow, a junior radiologist typically prepares a preliminary report, which is then reviewed and edited by a senior radiologist to produce the final report. Identifying semantic differences between preliminary and final reports is essential for junior doctors, both as a training tool and to help uncover gaps in clinical knowledge. While AI in radiology is a rapidly growing field, the application of large language models (LLMs) remains challenging due to the need for specialised domain knowledge. In this paper, we explore the ability of LLMs to provide explainable and accurate comparisons of reports in the radiology domain. We begin by comparing the performance of several LLMs in comparing radiology reports. We then assess a more traditional approach based on Named-Entity-Recognition (NER). However, both approaches exhibit limitations in delivering accurate feedback on semantic similarity. To address this, we propose Llama-EntScore, a semantic similarity scoring method using a combination of Llama 3.1 and NER with tunable weights to emphasise or de-emphasise specific types of differences. Our approach generates a quantitative similarity score for tracking progress and also gives an interpretation of the score that aims to offer valuable guidance in reviewing and refining their reporting. We find our method achieves 67% exact-match accuracy and 93% accuracy within +/- 1 when compared to radiologist-provided ground truth scores - outperforming both LLMs and NER used independently. Code is available at: https://github.com/otmive/llama_reports
    
      Empirical research on code review processes is increasingly central to understanding software quality and collaboration. However, collecting and analyzing review data remains a time-consuming and technically intensive task. Most researchers follow similar workflows - writing ad hoc scripts to extract, filter, and analyze review data from platforms like GitHub and GitLab. This paper introduces RevMine, a conceptual tool that streamlines the entire code review mining pipeline using large language models (LLMs). RevMine guides users through authentication, endpoint discovery, and natural language-driven data collection, significantly reducing the need for manual scripting. After retrieving review data, it supports both quantitative and qualitative analysis based on user-defined filters or LLM-inferred patterns. This poster outlines the tool's architecture, use cases, and research potential. By lowering the barrier to entry, RevMine aims to democratize code review mining and enable a broader range of empirical software engineering studies.
    
      Post-training compression of large language models (LLMs) largely relies on low-rank weight approximation, which represents each column of a weight matrix in a shared low-dimensional subspace. While this is a computationally efficient strategy, the imposed structural constraint is rigid and can lead to a noticeable model accuracy drop. In this work, we propose CoSpaDi (Compression via Sparse Dictionary Learning), a novel training-free compression framework that replaces low-rank decomposition with a more flexible structured sparse factorization in which each weight matrix is represented with a dense dictionary and a column-sparse coefficient matrix. This formulation enables a union-of-subspaces representation: different columns of the original weight matrix are approximated in distinct subspaces spanned by adaptively selected dictionary atoms, offering greater expressiveness than a single invariant basis. Crucially, CoSpaDi leverages a small calibration dataset to optimize the factorization such that the output activations of compressed projection layers closely match those of the original ones, thereby minimizing functional reconstruction error rather than mere weight approximation. This data-aware strategy preserves better model fidelity without any fine-tuning under reasonable compression ratios. Moreover, the resulting structured sparsity allows efficient sparse-dense matrix multiplication and is compatible with post-training quantization for further memory and latency gains. We evaluate CoSpaDi across multiple Llama and Qwen models under per-layer and per-group settings at 20-50\% compression ratios, demonstrating consistent superiority over state-of-the-art data-aware low-rank methods both in accuracy and perplexity. Our results establish structured sparse dictionary learning as a powerful alternative to conventional low-rank approaches for efficient LLM deployment.
    
      Our recently introduced self-organizing nervous system (SoNS) provides robot swarms with 1) ease of behavior design and 2) global estimation of the swarm configuration and its collective environment, facilitating the implementation of online automatic code generation for robot swarms. In a demonstration with 6 real robots and simulation trials with >30 robots, we show that when a SoNS-enhanced robot swarm gets stuck, it can automatically solicit and run code generated by an external LLM on the fly, completing its mission with an 85% success rate.
    
      As Large Language Models (LLMs) demonstrate remarkable capabilities learned from vast corpora, concerns regarding data privacy and safety are receiving increasing attention. LLM unlearning, which aims to remove the influence of specific data while preserving overall model utility, is becoming an important research area. One of the mainstream unlearning classes is optimization-based methods, which achieve forgetting directly through fine-tuning, exemplified by Negative Preference Optimization (NPO). However, NPO's effectiveness is limited by its inherent lack of explicit positive preference signals. Attempts to introduce such signals by constructing preferred responses often necessitate domain-specific knowledge or well-designed prompts, fundamentally restricting their generalizability. In this paper, we shift the focus to the distribution-level, directly targeting the next-token probability distribution instead of entire responses, and derive a novel unlearning algorithm termed \textbf{Di}stribution \textbf{P}reference \textbf{O}ptimization (DiPO). We show that the requisite preference distribution pairs for DiPO, which are distributions over the model's output tokens, can be constructed by selectively amplifying or suppressing the model's high-confidence output logits, thereby effectively overcoming NPO's limitations. We theoretically prove the consistency of DiPO's loss function with the desired unlearning direction. Extensive experiments demonstrate that DiPO achieves a strong trade-off between model utility and forget quality. Notably, DiPO attains the highest forget quality on the TOFU benchmark, and maintains leading scalability and sustainability in utility preservation on the MUSE benchmark.
    
      Padding tokens are widely used in large language models (LLMs) to equalize sequence lengths during batched inference. While they should be fully masked, implementation errors can cause them to influence computation, and the extent of this influence is not well understood. We systematically study this effect across three open-source model families (Llama, Gemma, Qwen), inserting controlled amounts of padding and evaluating outcomes along four axes: activations, generation quality, bias, and safety. Even small amounts of padding shift hidden representations, degrade quality in smaller models, alter bias in unpredictable ways, and weaken safety guardrails. These findings demonstrate that padding is not a harmless detail but a robustness risk that must be carefully handled in deployment.
    
      While most autoregressive LLMs are constrained to one-by-one decoding, diffusion LLMs (dLLMs) have attracted growing interest for their potential to dramatically accelerate inference through parallel decoding. Despite this promise, the conditional independence assumption in dLLMs causes parallel decoding to ignore token dependencies, inevitably degrading generation quality when these dependencies are strong. However, existing works largely overlook these inherent challenges, and evaluations on standard benchmarks (e.g., math and coding) are not sufficient to capture the quality degradation caused by parallel decoding. To address this gap, we first provide an information-theoretic analysis of parallel decoding. We then conduct case studies on analytically tractable synthetic list operations from both data distribution and decoding strategy perspectives, offering quantitative insights that highlight the fundamental limitations of parallel decoding. Building on these insights, we propose ParallelBench, the first benchmark specifically designed for dLLMs, featuring realistic tasks that are trivial for humans and autoregressive LLMs yet exceptionally challenging for dLLMs under parallel decoding. Using ParallelBench, we systematically analyze both dLLMs and autoregressive LLMs, revealing that: (i) dLLMs under parallel decoding can suffer dramatic quality degradation in real-world scenarios, and (ii) current parallel decoding strategies struggle to adapt their degree of parallelism based on task difficulty, thus failing to achieve meaningful speedup without compromising quality. Our findings underscore the pressing need for innovative decoding methods that can overcome the current speed-quality trade-off. We release our benchmark to help accelerate the development of truly efficient dLLMs.
    
      Large Language Models (LLMs) have become an increasingly important tool in research and society at large. While LLMs are regularly used all over the world by experts and lay-people alike, they are predominantly developed with English-speaking users in mind, performing well in English and other wide-spread languages while less-resourced languages such as Luxembourgish are seen as a lower priority. This lack of attention is also reflected in the sparsity of available evaluation tools and datasets. In this study, we investigate the viability of language proficiency exams as such evaluation tools for the Luxembourgish language. We find that large models such as Claude and DeepSeek-R1 typically achieve high scores, while smaller models show weak performances. We also find that the performances in such language exams can be used to predict performances in other NLP tasks in Luxembourgish.
    
LLM-Based Information Extraction to Support Scientific Literature Research and Publication Workflows
    
    
      The increasing volume of scholarly publications requires advanced tools for efficient knowledge discovery and management. This paper introduces ongoing work on a system using Large Language Models (LLMs) for the semantic extraction of key concepts from scientific documents. Our research, conducted within the German National Research Data Infrastructure for and with Computer Science (NFDIxCS) project, seeks to support FAIR (Findable, Accessible, Interoperable, and Reusable) principles in scientific publishing. We outline our explorative work, which uses in-context learning with various LLMs to extract concepts from papers, initially focusing on the Business Process Management (BPM) domain. A key advantage of this approach is its potential for rapid domain adaptation, often requiring few or even zero examples to define extraction targets for new scientific fields. We conducted technical evaluations to compare the performance of commercial and open-source LLMs and created an online demo application to collect feedback from an initial user-study. Additionally, we gathered insights from the computer science research community through user stories collected during a dedicated workshop, actively guiding the ongoing development of our future services. These services aim to support structured literature reviews, concept-based information retrieval, and integration of extracted knowledge into existing knowledge graphs.