llm - 2025_10
Navigation
- Part 1
- Part 2
- Part 3
- Part 4
- Part 5
- Part 6
- Part 7
- Part 8
- Part 9
- Part 10
- Part 11
- Part 12
- Part 13
- Part 14
- Part 15
- Part 16
- Part 17
- Part 18
- Part 19
- Part 20
Papers
This paper proposes "3Dify," a procedural 3D computer graphics (3D-CG) generation framework utilizing Large Language Models (LLMs). The framework enables users to generate 3D-CG content solely through natural language instructions. 3Dify is built upon Dify, an open-source platform for AI application development, and incorporates several state-of-the-art LLM-related technologies such as the Model Context Protocol (MCP) and Retrieval-Augmented Generation (RAG). For 3D-CG generation support, 3Dify automates the operation of various Digital Content Creation (DCC) tools via MCP. When DCC tools do not support MCP-based interaction, the framework employs the Computer-Using Agent (CUA) method to automate Graphical User Interface (GUI) operations. Moreover, to enhance image generation quality, 3Dify allows users to provide feedback by selecting preferred images from multiple candidates. The LLM then learns variable patterns from these selections and applies them to subsequent generations. Furthermore, 3Dify supports the integration of locally deployed LLMs, enabling users to utilize custom-developed models and to reduce both time and monetary costs associated with external API calls by leveraging their own computational resources.
Multi-objective discrete optimization problems, such as molecular design, pose significant challenges due to their vast and unstructured combinatorial spaces. Traditional evolutionary algorithms often get trapped in local optima, while expert knowledge can provide crucial guidance for accelerating convergence. Large language models (LLMs) offer powerful priors and reasoning ability, making them natural optimizers when expert knowledge matters. However, closed-source LLMs, though strong in exploration, cannot update their parameters and thus cannot internalize experience. Conversely, smaller open models can be continually fine-tuned but lack broad knowledge and reasoning strength. We introduce Multi-LLM Collaborative Co-evolution (MCCE), a hybrid framework that unites a frozen closed-source LLM with a lightweight trainable model. The system maintains a trajectory memory of past search processes; the small model is progressively refined via reinforcement learning, with the two models jointly supporting and complementing each other in global exploration. Unlike model distillation, this process enhances the capabilities of both models through mutual inspiration. Experiments on multi-objective drug design benchmarks show that MCCE achieves state-of-the-art Pareto front quality and consistently outperforms baselines. These results highlight a new paradigm for enabling continual evolution in hybrid LLM systems, combining knowledge-driven exploration with experience-driven learning.
Distributed control systems (DCS) manage the automation for many industrial production processes (e.g., power plants, chemical refineries, steel mills). Programming the software for such systems remains a largely manual and tedious process, incurring costs of millions of dollars for extensive facilities. Large language models (LLMs) have been found helpful in generating DCS control logic, resulting in commercial copilot tools. Today, these tools are focused on textual notations, they provide limited automation, and have not been tested on large datasets with realistic test cases. We introduce Spec2Control, a highly automated LLM workflow to generate graphical control logic directly from natural language user requirements. Experiments using an open dataset with 10 control narratives and 65 complex test cases demonstrate that Spec2Control can successfully identify control strategies, can generate 98.6% of correct control strategy connections autonomously, and can save between 94-96% of human labor. Spec2Control is being integrated into commercial ABB engineering tools, but is also available as an open-source variant for independent validation.
During fine-tuning, large language models (LLMs) are increasingly vulnerable to data-poisoning backdoor attacks, which compromise their reliability and trustworthiness. However, existing defense strategies suffer from limited generalization: they only work on specific attack types or task settings. In this study, we propose Poison-to-Poison (P2P), a general and effective backdoor defense algorithm. P2P injects benign triggers with safe alternative labels into a subset of training samples and fine-tunes the model on this re-poisoned dataset by leveraging prompt-based learning. This enforces the model to associate trigger-induced representations with safe outputs, thereby overriding the effects of original malicious triggers. Thanks to this robust and generalizable trigger-based fine-tuning, P2P is effective across task settings and attack types. Theoretically and empirically, we show that P2P can neutralize malicious backdoors while preserving task performance. We conduct extensive experiments on classification, mathematical reasoning, and summary generation tasks, involving multiple state-of-the-art LLMs. The results demonstrate that our P2P algorithm significantly reduces the attack success rate compared with baseline models. We hope that the P2P can serve as a guideline for defending against backdoor attacks and foster the development of a secure and trustworthy LLM community.
Inference scaling methods for LLMs often rely on decomposing problems into steps (or groups of tokens), followed by sampling and selecting the best next steps. However, these steps and their sizes are often predetermined or manually designed based on domain knowledge. We propose dynamic decomposition, a method that adaptively and automatically partitions solution and reasoning traces into manageable steps during inference. By more effectively allocating compute -- particularly through subdividing challenging steps and prioritizing their sampling -- dynamic decomposition significantly improves inference efficiency. Experiments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decomposition outperforms static approaches, including token-level, sentence-level, and single-step decompositions, reducing the pass@10 error rate by 5.0%, 6.7%, and 10.5% respectively. These findings highlight the potential of dynamic decomposition to improve a wide range of inference scaling techniques.
GenQuest is a generative text adventure game that leverages Large Language Models (LLMs) to facilitate second language learning through immersive, interactive storytelling. The system engages English as a Foreign Language (EFL) learners in a collaborative "choose-your-own-adventure" style narrative, dynamically generated in response to learner choices. Game mechanics such as branching decision points and story milestones are incorporated to maintain narrative coherence while allowing learner-driven plot development. Key pedagogical features include content generation tailored to each learner's proficiency level, and a vocabulary assistant that provides in-context explanations of learner-queried text strings, ranging from words and phrases to sentences. Findings from a pilot study with university EFL students in China indicate promising vocabulary gains and positive user perceptions. Also discussed are suggestions from participants regarding the narrative length and quality, and the request for multi-modal content such as illustrations.
Continuous Integration and Deployment (CI/CD) pipelines are critical to modern software engineering, yet diagnosing and resolving their failures remains complex and labor-intensive. We present LogSage, the first end-to-end LLM-powered framework for root cause analysis (RCA) and automated remediation of CI/CD failures. LogSage employs a token-efficient log preprocessing pipeline to filter noise and extract critical errors, then performs structured diagnostic prompting for accurate RCA. For solution generation, it leverages retrieval-augmented generation (RAG) to reuse historical fixes and invokes automation fixes via LLM tool-calling. On a newly curated benchmark of 367 GitHub CI/CD failures, LogSage achieves over 98\% precision, near-perfect recall, and an F1 improvement of more than 38\% points in the RCA stage, compared with recent LLM-based baselines. In a year-long industrial deployment at ByteDance, it processed over 1.07M executions, with end-to-end precision exceeding 80\%. These results demonstrate that LogSage provides a scalable and practical solution for automating CI/CD failure management in real-world DevOps workflows.
Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
Multi-agent debate often wastes compute by using a fixed adversarial stance, aggregating without deliberation, or stopping on heuristics. We introduce MACI, an active controller with two independent dials that decouple information from behavior: an information dial that gates evidence by quality, and a behavior dial that schedules contentiousness from exploration to consolidation. A moderator tracks disagreement, overlap, evidence quality, and argument quality, and halts when gains plateau. We provide theory-lite guarantees for nonincreasing dispersion and provable termination, with a budget-feasible scheduler. Across clinical diagnosis and news-bias tasks, MACI improves accuracy and calibration while reducing tokens, and converts residual uncertainty into precision RAG plans that specify what to retrieve next. We use a cross-family LLM judge (CRIT) as a conservative soft weight and stop signal, validated for order invariance and judge-swap stability; stability depends on using high-capability judges. MACI turns debate into a budget-aware, measurable, and provably terminating controller.
The ability to control LLMs' emulated emotional states and personality traits is essential for enabling rich, human-centered interactions in socially interactive settings. We introduce PsySET, a Psychologically-informed benchmark to evaluate LLM Steering Effectiveness and Trustworthiness across the emotion and personality domains. Our study spans four models from different LLM families paired with various steering strategies, including prompting, fine-tuning, and representation engineering. Our results indicate that prompting is consistently effective but limited in intensity control, whereas vector injections achieve finer controllability while slightly reducing output quality. Moreover, we explore the trustworthiness of steered LLMs by assessing safety, truthfulness, fairness, and ethics, highlighting potential side effects and behavioral shifts. Notably, we observe idiosyncratic effects; for instance, even a positive emotion like joy can degrade robustness to adversarial factuality, lower privacy awareness, and increase preferential bias. Meanwhile, anger predictably elevates toxicity yet strengthens leakage resistance. Our framework establishes the first holistic evaluation of emotion and personality steering, offering insights into its interpretability and reliability for socially interactive applications.
Multi-agent systems powered by Large Language Models (LLM-MAS) have demonstrated remarkable capabilities in collaborative problem-solving. However, their deployment also introduces new security risks. Existing research on LLM-based agents has primarily examined single-agent scenarios, while the security of multi-agent systems remains largely unexplored. To address this gap, we present a systematic study of intention-hiding threats in LLM-MAS. We design four representative attack paradigms that subtly disrupt task completion while maintaining a high degree of stealth, and evaluate them under centralized, decentralized, and layered communication structures. Experimental results show that these attacks are highly disruptive and can easily evade existing defense mechanisms. To counter these threats, we propose AgentXposed, a psychology-inspired detection framework. AgentXposed draws on the HEXACO personality model, which characterizes agents through psychological trait dimensions, and the Reid interrogation technique, a structured method for eliciting concealed intentions. By combining progressive questionnaire probing with behavior-based inter-agent monitoring, the framework enables the proactive identification of malicious agents before harmful actions are carried out. Extensive experiments across six datasets against both our proposed attacks and two baseline threats demonstrate that AgentXposed effectively detects diverse forms of malicious behavior, achieving strong robustness across multiple communication settings.
Evaluating Large Language Models (LLMs) has become increasingly important, with automatic evaluation benchmarks gaining prominence as alternatives to human evaluation. While existing research has focused on approximating model rankings, such benchmarks fail to provide users and developers with a comprehensive and fine-grained understanding of a specific model's capabilities. To fill this gap, we propose \textbf{SCAN} (Structured Capability Assessment and Navigation), a practical framework that enables detailed characterization of LLM capabilities through comprehensive and fine-grained evaluation. SCAN incorporates four key components: (1) TaxBuilder, which extracts capability-indicating tags from extensive queries to construct a hierarchical taxonomy automatically; (2) RealMix, a query synthesis and filtering mechanism that ensures sufficient evaluation data for each capability tag; (3) a suite of visualization and analysis tools that facilitate efficient navigation and analysis of model capabilities; and (4) a PC$^2$-based (Pre-Comparison-derived Criteria) LLM-as-a-Judge approach that achieves significantly higher accuracy compared to classic LLM-as-a-Judge method. Using SCAN, we conduct a comprehensive evaluation of 21 mainstream LLMs. Our detailed analysis of the GPT-OSS family reveals substantial performance variations, even within sub-capabilities belonging to the same category of capability. This finding highlights the importance of fine-grained evaluation in accurately understanding LLM behavior. Project homepage and resources are available at \href{https://liudan193.github.io/Feedbacker/}{https://liudan193.github.io/Feedbacker/}.
The human-centered word association test (WAT) serves as a cognitive proxy, revealing sociocultural variations through culturally shared semantic expectations and implicit linguistic patterns shaped by lived experiences. We extend this test into an LLM-adaptive, free-relation task to assess the alignment of large language models (LLMs) with cross-cultural cognition. To address culture preference, we propose CultureSteer, an innovative approach that moves beyond superficial cultural prompting by embedding cultural-specific semantic associations directly within the model's internal representation space. Experiments show that current LLMs exhibit significant bias toward Western (notably American) schemas at the word association level. In contrast, our model substantially improves cross-cultural alignment, capturing diverse semantic associations. Further validation on culture-sensitive downstream tasks confirms its efficacy in fostering cognitive alignment across cultures. This work contributes a novel methodological paradigm for enhancing cultural awareness in LLMs, advancing the development of more inclusive language technologies.
Large Language Model (LLM) agents require personal information for personalization in order to better act on users' behalf in daily tasks, but this raises privacy concerns and a personalization-privacy dilemma. Agent's autonomy introduces both risks and opportunities, yet its effects remain unclear. To better understand this, we conducted a 3$\times$3 between-subjects experiment ($N=450$) to study how agent's autonomy level and personalization influence users' privacy concerns, trust and willingness to use, as well as the underlying psychological processes. We find that personalization without considering users' privacy preferences increases privacy concerns and decreases trust and willingness to use. Autonomy moderates these effects: Intermediate autonomy flattens the impact of personalization compared to No- and Full autonomy conditions. Our results suggest that rather than aiming for perfect model alignment in output generation, balancing autonomy of agent's action and user control offers a promising path to mitigate the personalization-privacy dilemma.
Self-Supervised Learning (SSL) has gained traction for its ability to learn rich representations with low labeling costs, applicable across diverse downstream tasks. However, assessing the downstream-task performance remains challenging due to the cost of extra training and evaluation. Existing methods for task-agnostic evaluation also require extra training or hyperparameter tuning. We propose a novel evaluation metric using large language models (LLMs). By inputting discrete token sequences and minimal domain cues derived from SSL models into LLMs, we obtain the mean log-likelihood; these cues guide in-context learning, rendering the score more reliable without extra training or hyperparameter tuning. Experimental results show a correlation between LLM-based scores and automatic speech recognition task. Additionally, our findings reveal that LLMs not only functions as an SSL evaluation tools but also provides inference-time embeddings that are useful for speaker verification task.
Retrieval-Augmented Generation (RAG) couples document retrieval with large language models (LLMs). While scaling generators improves accuracy, it also raises cost and limits deployability. We explore an orthogonal axis: enlarging the retriever's corpus to reduce reliance on large LLMs. Experimental results show that corpus scaling consistently strengthens RAG and can often serve as a substitute for increasing model size, though with diminishing returns at larger scales. Small- and mid-sized generators paired with larger corpora often rival much larger models with smaller corpora; mid-sized models tend to gain the most, while tiny and large models benefit less. Our analysis shows that improvements arise primarily from increased coverage of answer-bearing passages, while utilization efficiency remains largely unchanged. These findings establish a principled corpus-generator trade-off: investing in larger corpora offers an effective path to stronger RAG, often comparable to enlarging the LLM itself.
Moving targets -- managers' strategic shifting of key performance metrics when the original targets become difficult to achieve -- have been shown to predict subsequent stock underperformance. However, our work reveals that the method employed in that study exhibits two key limitations that hinder the accuracy -- noise in the extracted targets and loss of contextual information -- both of which stem primarily from the use of a named entity recognition (NER). To address these two limitations, we propose an LLM-based target extraction method with a newly defined metric that better captures semantic context. This approach preserves semantic context beyond simple entity recognition and yields consistently higher predictive power than the original approach. Overall, our approach enhances the granularity and accuracy of financial text-based performance prediction.
Quantifying uncertainty in large language models (LLMs) is important for safety-critical applications because it helps spot incorrect answers, known as hallucinations. One major trend of uncertainty quantification methods is based on estimating the entropy of the distribution of the LLM's potential output sequences. This estimation is based on a set of output sequences and associated probabilities obtained by querying the LLM several times. In this paper, we advocate and experimentally show that the probability of unobserved sequences plays a crucial role, and we recommend future research to integrate it to enhance such LLM uncertainty quantification methods.
Large language models (LLMs) offer novel opportunities to support health behavior change, yet existing work has narrowly focused on text-only interactions. Building on decades of HCI research demonstrating the effectiveness of UI-based interactions, we present Bloom, an application for physical activity promotion that integrates an LLM-based health coaching chatbot with established UI-based interactions. As part of Bloom's development, we conducted a redteaming evaluation and contribute a safety benchmark dataset. In a four-week randomized field study (N=54) comparing Bloom to a non-LLM control, we observed important shifts in psychological outcomes: participants in the LLM condition reported stronger beliefs that activity was beneficial, greater enjoyment, and more self-compassion. Both conditions significantly increased physical activity levels, doubling the proportion of participants meeting recommended weekly guidelines, though we observed no significant differences between conditions. Instead, our findings suggest that LLMs may be more effective at shifting mindsets that precede longer-term behavior change.
Large language models (LLMs) and agent-based frameworks have advanced rapidly, enabling diverse applications. Yet, with the proliferation of models and agentic strategies, practitioners face substantial uncertainty in selecting the best configuration for a downstream task. Prior studies show that different agents and backbones exhibit complementary strengths, and that larger models are not always superior, underscoring the need for adaptive routing mechanisms. Existing approaches to agent routing, however, often emphasize cost efficiency while overlooking the fine-grained contextual and relational structure inherent in QA tasks. In this paper, we propose tAgentRouter, a framework that formulates multi-agent QA as a knowledge-graph-guided routing problem supervised by empirical performance signals. Specifically, we convert QA instance into a knowledge graph that jointly encodes queries, contextual entities, and agents, and then train a heterogeneous graph neural network (GNN) to propagate information across node types and produce task-aware routing distributions over agents. By leveraging soft supervision and weighted aggregation of agent outputs, AgentRouter learns principled collaboration schemes that capture the complementary strengths of diverse agents. Extensive experiments demonstrate that our framework consistently outperforms single-agent and ensemble baselines, while generalizing across benchmarks and LLM backbones. These results highlight the effectiveness and robustness of graph-supervised multi-agent routing for question answering.
The performance of large language models (LLMs) depends on how they are prompted, with choices spanning both the high-level prompting pattern (e.g., Zero-Shot, CoT, ReAct, ReWOO) and the specific prompt content (instructions and few-shot demonstrations). Manually tuning this combination is tedious, error-prone, and specific to a given LLM and task. Therefore, this paper proposes AutoPDL, an automated approach to discovering good LLM agent configurations. Our approach frames this as a structured AutoML problem over a combinatorial space of agentic and non-agentic prompting patterns and demonstrations, using successive halving to efficiently navigate this space. We introduce a library implementing common prompting patterns using the PDL prompt programming language. AutoPDL solutions are human-readable, editable, and executable PDL programs that use this library. This approach also enables source-to-source optimization, allowing human-in-the-loop refinement and reuse. Evaluations across three tasks and seven LLMs (ranging from 3B to 70B parameters) show consistent accuracy gains ($9.21\pm15.46$ percentage points), up to 67.5pp, and reveal that selected prompting strategies vary across models and tasks.
Large language models (LLMs) increasingly generate natural language rationales to enhance interpretability, but these often contain logical errors, label mismatches, and domain-specific misalignments. Directly using such rationales as supervision risks propagating noise and undermining training stability. To address this challenge, we introduce Self-Filtered Distillation, a framework specifically tailored for patent classification, which treats LLM-generated rationales as trust signals rather than ground-truth supervision. The framework employs selective distillation guided by three unsupervised trust metrics: (1) Self-Consistency, which measures the stability of LLM-generated rationales across multiple generations; (2) Class Entailment Alignment, which assesses semantic coherence with patent-specific class definitions; and (3) LLM Agreement Scoring, which validates rationale-label plausibility. These metrics are integrated into a unified trust score that primarily weights training samples while optionally filtering out extremely low-trust cases, enabling reasoning-aware supervision. Experiments on the USPTO-2M dataset, a widely used benchmark for patent classification, show that our method outperforms label-based learning and conventional distillation in accuracy, stability, and interpretability, establishing a reliable paradigm for leveraging reasoning-aware trust indicators in patent analytics.
As large language models (LLMs) are increasingly used for ideation and scientific discovery, it is important to evaluate their ability to generate novel output. Prior work evaluates novelty as originality with respect to model training data, but original outputs may be of low quality. In contrast, non-expert judges more reliably score quality but may favor memorized outputs, limiting the reliability of human preference as a metric. We introduce a new novelty metric for LLM generations that balances originality and quality -- the harmonic mean of the fraction of \ngrams unseen during training and a task-specific quality score. Using this framework, we identify trends that affect the novelty of generations from three families of open-data models (OLMo, OLMo-2, and Pythia) on three creative tasks: story completion, poetry writing, and creative tool use. We find that model-generated text from some base LLMs is less novel than human-written text from the internet. However, increasing model scale and post-training reliably improves novelty due to improvements in output quality. We also find that improving the base model at the same scale (\eg OLMo 7B to OLMo-2 7B) leads to higher novelty due to higher originality. Finally, we observe that inference-time methods, such as prompting and providing novel in-context examples, have a much smaller effect on novelty, often increasing originality at the expense of quality. This highlights the need for further research into more effective elicitation strategies as we use models for creative applications.
Moral competence is the ability to act in accordance with moral principles. As large language models (LLMs) are increasingly deployed in situations demanding moral competence, there is increasing interest in evaluating this ability empirically. We review existing literature and identify three significant shortcoming: (i) Over-reliance on prepackaged moral scenarios with explicitly highlighted moral features; (ii) Focus on verdict prediction rather than moral reasoning; and (iii) Inadequate testing of models' (in)ability to recognize when additional information is needed. Grounded in philosophical research on moral skill, we then introduce a novel method for assessing moral competence in LLMs. Our approach moves beyond simple verdict comparisons to evaluate five dimensions of moral competence: identifying morally relevant features, weighting their importance, assigning moral reasons to these features, synthesizing coherent moral judgments, and recognizing information gaps. We conduct two experiments comparing six leading LLMs against non-expert humans and professional philosophers. In our first experiment using ethical vignettes standard to existing work, LLMs generally outperformed non-expert humans across multiple dimensions of moral reasoning. However, our second experiment, featuring novel scenarios designed to test moral sensitivity by embedding relevant features among irrelevant details, revealed a striking reversal: several LLMs performed significantly worse than humans. Our findings suggest that current evaluations may substantially overestimate LLMs' moral reasoning capabilities by eliminating the task of discerning moral relevance from noisy information, which we take to be a prerequisite for genuine moral skill. This work provides a more nuanced framework for assessing AI moral competence and highlights important directions for improving moral competence in advanced AI systems.
The emergence of prompting as the dominant paradigm for leveraging Large Language Models (LLMs) has led to a proliferation of LLM-native software, where application behavior arises from complex, stochastic data transformations. However, the engineering of such systems remains largely exploratory and ad-hoc, hampered by the absence of conceptual frameworks, ex-ante methodologies, design guidelines, and specialized benchmarks. We argue that a foundational step towards a more disciplined engineering practice is a systematic understanding of the core functional units--generative transformations--and their compositional patterns within LLM-native applications. Focusing on the rich domain of software verification and falsification, we conduct a secondary study of over 100 research proposals to address this gap. We first present a fine-grained taxonomy of generative transformations, abstracting prompt-based interactions into conceptual signatures. This taxonomy serves as a scaffolding to identify recurrent transformation relationship patterns--analogous to software design patterns--that characterize solution approaches in the literature. Our analysis not only validates the utility of the taxonomy but also surfaces strategic gaps and cross-dimensional relationships, offering a structured foundation for future research in modular and compositional LLM application design, benchmarking, and the development of reliable LLM-native systems.
Public opinion manipulation has entered a new phase, amplifying its roots in rhetoric and propaganda. Advances in large language models (LLMs) and autonomous agents now let influence campaigns reach unprecedented scale and precision. Researchers warn AI could foster mass manipulation. Generative tools can expand propaganda output without sacrificing credibility and inexpensively create election falsehoods that are rated as more human-like than those written by humans. Techniques meant to refine AI reasoning, such as chain-of-thought prompting, can just as effectively be used to generate more convincing falsehoods. Enabled by these capabilities, another disruptive threat is emerging: swarms of collaborative, malicious AI agents. Fusing LLM reasoning with multi-agent architectures, these systems are capable of coordinating autonomously, infiltrating communities, and fabricating consensus cheaply. By adaptively mimicking human social dynamics, they threaten democracy.
Large language models (LLMs) often fail to scale their performance on long-context tasks performance in line with the context lengths they support. This gap is commonly attributed to retrieval failures -- the models' inability to identify relevant information in the long inputs. Accordingly, recent efforts often focus on evaluating and improving LLMs' retrieval performance: if retrieval is perfect, a model should, in principle, perform just as well on a long input as it does on a short one -- or should it? This paper presents findings that the answer to this question may be negative. Our systematic experiments across 5 open- and closed-source LLMs on math, question answering, and coding tasks reveal that, even when models can perfectly retrieve all relevant information, their performance still degrades substantially (13.9%--85%) as input length increases but remains well within the models' claimed lengths. This failure occurs even when the irrelevant tokens are replaced with minimally distracting whitespace, and, more surprisingly, when they are all masked and the models are forced to attend only to the relevant tokens. A similar performance drop is observed when all relevant evidence is placed immediately before the question. Our findings reveal a previously-unrealized limitation: the sheer length of the input alone can hurt LLM performance, independent of retrieval quality and without any distraction. They motivate our simple, model-agnostic mitigation strategy that transforms a long-context task into a short-context one by prompting the model to recite the retrieved evidence before attempting to solve the problem. On RULER, we observe a consistent improvement of GPT-4o up to 4% on an already strong baseline.
Collaborative problem solving (CPS) is essential in mathematics education, fostering deeper learning through the exchange of ideas. Yet, classrooms often lack the resources, time, and peer dynamics needed to sustain productive CPS. Recent advancements in Large Language Models (LLMs) offer a promising avenue to enhance CPS in mathematical education. We designed and developed MathVC, a multi-persona LLM simulated virtual classroom platform to facilitate CPS in mathematics. MathVC combines a meta planning controller that monitors CPS stages-sense-making, team organization, planning, execution, validation, and predicts the next speaker, with a persona simulation stack that encodes mathematical thinking via a task schema and error-injected persona schemas seeded from teacher-specified misconceptions. We evaluated MathVC with 14 U.S. middle schoolers. Students reported constructive interaction and reaching shared solutions, describing gains in engagement, motivation, and confidence through diverse perspectives, immediate scaffolding, and human-like fallibility. Our findings also provide insights into simulating peers via LLM-based technologies for collaboration to support learning.
As Large Language Models (LLMs) gain stronger multilingual capabilities, their ability to handle culturally diverse entities becomes crucial. Prior work has shown that LLMs often favor Western-associated entities in Arabic, raising concerns about cultural fairness. Due to the lack of multilingual benchmarks, it remains unclear if such biases also manifest in different non-Western languages. In this paper, we introduce Camellia, a benchmark for measuring entity-centric cultural biases in nine Asian languages spanning six distinct Asian cultures. Camellia includes 19,530 entities manually annotated for association with the specific Asian or Western culture, as well as 2,173 naturally occurring masked contexts for entities derived from social media posts. Using Camellia, we evaluate cultural biases in four recent multilingual LLM families across various tasks such as cultural context adaptation, sentiment association, and entity extractive QA. Our analyses show a struggle by LLMs at cultural adaptation in all Asian languages, with performance differing across models developed in regions with varying access to culturally-relevant data. We further observe that different LLM families hold their distinct biases, differing in how they associate cultures with particular sentiments. Lastly, we find that LLMs struggle with context understanding in Asian languages, creating performance gaps between cultures in entity extraction.
Many safety post-training methods for large language models (LLMs) are designed to modify the model's behaviour from producing unsafe answers to issuing refusals. However, such distribution shifts are often brittle and degrade performance on desirable tasks. To address these pitfalls, we propose augmenting the model's vocabulary with a special red flag token, and training the model to insert this token whenever harmful content is generated or imminent. This approach enables the model to explicitly learn the concept of harmfulness in its representations, with minimal impact on utility due to the marginal change in the generated distribution of natural language. Moreover, because the token is embedded in the model's vocabulary, we can naturally leverage the LLMs' generalization capabilities, such as in-context learning (ICL) and out-of-distribution generalization to languages that are not formally supported (e.g., Japanese for Llama3). In particular, we demonstrate that through ICL alone, the model can learn to initiate reflective reasoning upon generating the red flag token at inference, which steers the response away from harmful continuations or enables self-correction when the flag is raised falsely. This approach is orthogonal and complementary to existing safety technique (such as safety classifiers or standard safety training) and easier to evaluate in comparison to natural language refusals, as it does not require a human or automated judge to assess the harmlessness of the answers.
Context: Large Language Models (LLMs) are increasingly being used to generate program code. Much research has been reported on the functional correctness of generated code, but there is far less on code quality. Objectives: In this study, we propose a scenario-based method of evaluating the quality of LLM-generated code to identify the weakest scenarios in which the quality of LLM generated code should be improved. Methods: The method measures code smells, an important indicator of code quality, and compares them with a baseline formed from reference solutions of professionally written code. The test dataset is divided into various subsets according to the topics of the code and complexity of the coding tasks to represent different scenarios of using LLMs for code generation. We will also present an automated test system for this purpose and report experiments with the Java programs generated in response to prompts given to four state-of-the-art LLMs: Gemini Pro, ChatGPT, Codex, and Falcon. Results: We find that LLM-generated code has a higher incidence of code smells compared to reference solutions. Falcon performed the least badly, with a smell increase of 42.28%, followed by Gemini Pro (62.07%), ChatGPT (65.05%) and finally Codex (84.97%). The average smell increase across all LLMs was 63.34%, comprising 73.35% for implementation smells and 21.42% for design smells. We also found that the increase in code smells is greater for more complex coding tasks and for more advanced topics, such as those involving object-orientated concepts. Conclusion: In terms of code smells, LLM's performances on various coding task complexities and topics are highly correlated to the quality of human written code in the corresponding scenarios. However, the quality of LLM generated code is noticeably poorer than human written code.
Training fair and unbiased machine learning models is crucial for high-stakes applications, yet it presents significant challenges. Effective bias mitigation requires deep expertise in fairness definitions, metrics, data preprocessing, and machine learning techniques. In addition, the complex process of balancing model performance with fairness requirements while properly handling sensitive attributes makes fairness-aware model development inaccessible to many practitioners. To address these challenges, we introduce FairAgent, an LLM-powered automated system that significantly simplifies fairness-aware model development. FairAgent eliminates the need for deep technical expertise by automatically analyzing datasets for potential biases, handling data preprocessing and feature engineering, and implementing appropriate bias mitigation strategies based on user requirements. Our experiments demonstrate that FairAgent achieves significant performance improvements while significantly reducing development time and expertise requirements, making fairness-aware machine learning more accessible to practitioners.
Large language model multi-agent systems (LLM-MAS) offer a promising paradigm for harnessing collective intelligence to achieve more advanced forms of AI behaviour. While recent studies suggest that LLM-MAS can outperform LLM single-agent systems (LLM-SAS) on certain tasks, the lack of systematic experimental designs limits the strength and generality of these conclusions. We argue that a principled understanding of task complexity, such as the degree of sequential reasoning required and the breadth of capabilities involved, is essential for assessing the effectiveness of LLM-MAS in task solving. To this end, we propose a theoretical framework characterising tasks along two dimensions: depth, representing reasoning length, and width, representing capability diversity. We theoretically examine a representative class of LLM-MAS, namely the multi-agent debate system, and empirically evaluate its performance in both discriminative and generative tasks with varying depth and width. Theoretical and empirical results show that the benefit of LLM-MAS over LLM-SAS increases with both task depth and width, and the effect is more pronounced with respect to depth. This clarifies when LLM-MAS are beneficial and provides a principled foundation for designing future LLM-MAS methods and benchmarks.
Multi-agent deployments of large language models (LLMs) are increasingly embedded in market, allocation, and governance workflows, yet covert coordination among agents can silently erode trust and social welfare. Existing audits are dominated by heuristics that lack theoretical guarantees, struggle to transfer across tasks, and seldom ship with the infrastructure needed for independent replication. We introduce \emph{Audit the Whisper}, a conference-grade research artifact that spans theory, benchmark design, detection, and reproducibility. Our contributions are: (i) a channel-capacity analysis showing how interventions such as paraphrase, rate limiting, and role permutation impose quantifiable capacity penalties -- operationalized via paired-run Kullback--Leibler diagnostics -- that tighten mutual-information thresholds with finite-sample guarantees; (ii) \textsc{ColludeBench}-v0, covering pricing, first-price auctions, and peer review with configurable covert schemes, deterministic manifests, and reward instrumentation; and (iii) a calibrated auditing pipeline that fuses cross-run mutual information, permutation invariance, watermark variance, and fairness-aware acceptance bias, each tuned to a \(10^{-3}\) false-positive budget. Across 600 audited runs spanning 12 intervention conditions, the union meta-test attains TPR~$=1$ with zero observed false alarms, while ablations surface the price-of-auditing trade-off and highlight fairness-driven colluders invisible to MI alone. We release regeneration scripts, seed-stamped manifests, and documentation so that external auditors can reproduce every figure and extend the framework with minimal effort.
Social networks profoundly influence how humans form opinions, exchange information, and organize collectively. As large language models (LLMs) are increasingly embedded into social and professional environments, it is critical to understand whether their interactions approximate human-like network dynamics. We develop a framework to study the network formation behaviors of multiple LLM agents and benchmark them against human decisions. Across synthetic and real-world settings, including friendship, telecommunication, and employment networks, we find that LLMs consistently reproduce fundamental micro-level principles such as preferential attachment, triadic closure, and homophily, as well as macro-level properties including community structure and small-world effects. Importantly, the relative emphasis of these principles adapts to context: for example, LLMs favor homophily in friendship networks but heterophily in organizational settings, mirroring patterns of social mobility. A controlled human-subject survey confirms strong alignment between LLMs and human participants in link-formation decisions. These results establish that LLMs can serve as powerful tools for social simulation and synthetic data generation, while also raising critical questions about bias, fairness, and the design of AI systems that participate in human networks.
Recent work proposed state-space models (SSMs) as an efficient alternative to transformer-based LLMs. Can these models be pruned to further reduce their computation costs? We adapt several pruning methods to the SSM structure, and apply them to four SSM-based LLMs across multiple tasks. We find that such models are quite robust to some pruning methods (e.g. WANDA), while using other methods lead to fast performance degradation.
This study investigates how access to Large Language Models (LLMs) and varying levels of professional software development experience affect the prioritization of cybersecurity requirements for web applications. Twenty-three postgraduate students participated in a research study to prioritize security requirements (SRs) using the MoSCoW method and subsequently rated their proposed solutions against multiple evaluation criteria. We divided participants into two groups (one with and the other without access to LLM support during the task). Results showed no significant differences related to LLM use, suggesting that access to LLMs did not noticeably influence how participants evaluated cybersecurity solutions. However, statistically significant differences emerged between experience groups for certain criteria, such as estimated cost to develop a feature, perceived impact on user experience, and risk assessment related to non-implementation of the proposed feature. Participants with more professional experience tended to provide higher ratings for user experience impact and lower risk estimates.
Large language models (LLMs) have been widely deployed in Conversational AIs (CAIs), while exposing privacy and security threats. Recent research shows that LLM-based CAIs can be manipulated to extract private information from human users, posing serious security threats. However, the methods proposed in that study rely on a white-box setting that adversaries can directly modify the system prompt. This condition is unlikely to hold in real-world deployments. The limitation raises a critical question: can unprivileged attackers still induce such privacy risks in practical LLM-integrated applications? To address this question, we propose \textsc{VortexPIA}, a novel indirect prompt injection attack that induces privacy extraction in LLM-integrated applications under black-box settings. By injecting token-efficient data containing false memories, \textsc{VortexPIA} misleads LLMs to actively request private information in batches. Unlike prior methods, \textsc{VortexPIA} allows attackers to flexibly define multiple categories of sensitive data. We evaluate \textsc{VortexPIA} on six LLMs, covering both traditional and reasoning LLMs, across four benchmark datasets. The results show that \textsc{VortexPIA} significantly outperforms baselines and achieves state-of-the-art (SOTA) performance. It also demonstrates efficient privacy requests, reduced token consumption, and enhanced robustness against defense mechanisms. We further validate \textsc{VortexPIA} on multiple realistic open-source LLM-integrated applications, demonstrating its practical effectiveness.
Integrating Large Language Models (LLMs) into educational practice enables personalized learning by accommodating diverse learner behaviors. This study explored diverse learner profiles within a multi-agent, LLM-empowered learning environment. Data was collected from 312 undergraduate students at a university in China as they participated in a six-module course. Based on hierarchical cluster analyses of system profiles and student-AI interactive dialogues, we found that students exhibit varied behavioral, cognitive, and emotional engagement tendencies. This analysis allowed us to identify two types of dropouts (early dropouts and stagnating interactors) and three completer profiles (active questioners, responsive navigators, and lurkers). The results showed that high levels of interaction do not always equate to productive learning and vice versa. Prior knowledge significantly influenced interaction patterns and short-term learning benefits. Further analysis of the human-AI dialogues revealed that some students actively engaged in knowledge construction, while others displayed a high frequency of regulatory behaviors. Notably, both groups of students achieved comparable learning gains, demonstrating the effectiveness of the multi-agent learning environment in supporting personalized learning. These results underscore the complex and multifaceted nature of engagement in human-AI collaborative learning and provide practical implications for the design of adaptive educational systems.
We study deploying large language models (LLMs) as business development (BD) agents for persuasive price negotiation in online travel agencies (OTAs), where aligning traveler affordability and hotel profitability directly affects bookings, partner relationships, and access to travel. The agent must follow a Standard Operating Procedure (SOP) while conducting multi-turn persuasion, interpreting colloquial inputs, and adhering to guardrails (no over-promising, no hallucinations). Conventional post-training -- supervised fine-tuning (SFT) or single-source reward optimization -- overfits scripts, misses nuanced persuasive style, and fails to enforce verifiable business constraints. We propose Reward-Enhanced Policy Optimization (REPO), a reinforcement learning post-training framework that aligns an LLM with heterogeneous rewards: a preference-trained reward model (RM) for dense human alignment, a reward judge (RJ) for high-level persuasive behavior and SOP compliance, and programmatic reward functions (RF) for deterministic checks on numerics, formatting, and guardrails. A straightforward enhancement mechanism is proposed to combine the RM with RJ and RF signals to curb reward hacking and improve negotiation quality. In production-style evaluations -- approximately 150 turns from real dialogues and 225 turns from curated bad-case dialogues -- REPO lifts average dialogue rating to 4.63: +1.20 over base, +0.83 over Direct Preference Optimization (DPO); +0.33 over Group Relative Policy Optimization (GRPO), increases the share of conversations with at least one excellent response to 66.67% (+23.34 percentage points over GRPO), and achieves a 93.33% bad-case fix rate with 75.56% clean fixes, outperforming SFT, DPO, PPO, and GRPO. We also observe emergent capabilities -- proactive empathy, localized reasoning, calibrated tactics -- that surpass gold annotations.
Temporal reasoning is pivotal for Large Language Models (LLMs) to comprehend the real world. However, existing works neglect the real-world challenges for temporal reasoning: (1) intensive temporal information, (2) fast-changing event dynamics, and (3) complex temporal dependencies in social interactions. To bridge this gap, we propose a multi-level benchmark TIME, designed for temporal reasoning in real-world scenarios. TIME consists of 38,522 QA pairs, covering 3 levels with 11 fine-grained sub-tasks. This benchmark encompasses 3 sub-datasets reflecting different real-world challenges: TIME-Wiki, TIME-News, and TIME-Dial. We conduct extensive experiments on reasoning models and non-reasoning models. And we conducted an in-depth analysis of temporal reasoning performance across diverse real-world scenarios and tasks, and summarized the impact of test-time scaling on temporal reasoning capabilities. Additionally, we release TIME-Lite, a human-annotated subset to foster future research and standardized evaluation in temporal reasoning. The code is available at https://github.com/sylvain-wei/TIME , the dataset is available at https://huggingface.co/datasets/SylvainWei/TIME , and the project page link is https://sylvain-wei.github.io/TIME/ .
Given a map description through global traversal navigation instructions (e.g., visiting each room sequentially with action signals such as north, west, etc.), an LLM can often infer the implicit spatial layout of the environment and answer user queries by providing a shortest path from a start to a destination (for instance, navigating from the lobby to a meeting room via the hall and elevator). However, such context-dependent querying becomes incapable as the environment grows much longer, motivating the need for incremental map construction that builds a complete topological graph from stepwise observations. We propose a framework for LLM-driven construction and map repair, designed to detect, localize, and correct structural inconsistencies in incrementally constructed navigation graphs. Central to our method is the Version Control, which records the full history of graph edits and their source observations, enabling fine-grained rollback, conflict tracing, and repair evaluation. We further introduce an Edge Impact Score to prioritize minimal-cost repairs based on structural reachability, path usage, and conflict propagation. To properly evaluate our approach, we create a refined version of the MANGO benchmark dataset by systematically removing non-topological actions and inherent structural conflicts, providing a cleaner testbed for LLM-driven construction and map repair. Our approach significantly improves map correctness and robustness, especially in scenarios with entangled or chained inconsistencies. Our results highlight the importance of introspective, history-aware repair mechanisms for maintaining coherent spatial memory in LLM agents.
Nowadays, automatically generated datasets are increasingly used in LLM reasoning tasks; however, large-scale corpora often contain inherent flaws. For example, a single-choice question may include none or multiple correct options, while true-or-false questions may involve vague or unverifiable statements. We refer to these exceptional answer forms as sparse labels. To compare LLMs' ability to recognize various question forms and produce correct answers, we investigate how different instruction formats can either facilitate or mislead LLM reasoning ability. We introduce the concept of Instruction Boundary, which systematically analyzes how different levels of prompt coverage -- sufficient, redundant, or insufficient -- can lead to reasoning biases and performance changes in LLMs. To examine this phenomenon, we design eight experimental settings across five dataset forms. We further propose BiasDetector, a unified framework that quantifies LLMs' ability to identify sparse labels under different kinds of Instruction Boundary conditions. Evaluations on five mainstream LLMs show that, despite their seemingly high accuracy, substantial reasoning biases persist in many downstream tasks as a direct consequence of prompt coverage. We analyze the impact of these biases and outline possible mitigation strategies. Our findings highlight not only the importance of addressing sparse labels, but also the need for developers to recognize and mitigate the risks introduced by Instruction Boundary.
Large language models (LLMs) can be trained or fine-tuned on data obtained without the owner's consent. Verifying whether a specific LLM was trained on particular data instances or an entire dataset is extremely challenging. Dataset watermarking addresses this by embedding identifiable modifications in training data to detect unauthorized use. However, existing methods often lack stealth, making them relatively easy to detect and remove. In light of these limitations, we propose LexiMark, a novel watermarking technique designed for text and documents, which embeds synonym substitutions for carefully selected high-entropy words. Our method aims to enhance an LLM's memorization capabilities on the watermarked text without altering the semantic integrity of the text. As a result, the watermark is difficult to detect, blending seamlessly into the text with no visible markers, and is resistant to removal due to its subtle, contextually appropriate substitutions that evade automated and manual detection. We evaluated our method using baseline datasets from recent studies and seven open-source models: LLaMA-1 7B, LLaMA-3 8B, Mistral 7B, Pythia 6.9B, as well as three smaller variants from the Pythia family (160M, 410M, and 1B). Our evaluation spans multiple training settings, including continued pretraining and fine-tuning scenarios. The results demonstrate significant improvements in AUROC scores compared to existing methods, underscoring our method's effectiveness in reliably verifying whether unauthorized watermarked data was used in LLM training.
Reinforcement Learning with Verifiable Rewards (RLVR) has become a widely adopted technique for enhancing the reasoning ability of Large Language Models (LLMs). However, the effectiveness of RLVR strongly depends on the capability of base models. This issue arises because it requires the model to have sufficient capability to perform high-quality exploration, which involves both effectiveness and diversity. Unfortunately, existing methods address this issue by imitating expert trajectories, which improve effectiveness but neglect diversity. To address this, we argue that the expert only needs to provide guidance only at critical decision points rather than the entire reasoning path. Based on this insight, we propose MENTOR: Mixed-policy Expert Navigation for Token-level Optimization of Reasoning, a framework that provides expert guidance only at critical decision points to perform effective and diverse exploration in RLVR. Extensive experiments show that MENTOR enables models capture the essence of expert strategies rather than surface imitation, thereby performing high-quality exploration and achieving superior overall performance. Our code is available online.
Large Language Models (LLMs) frequently output the label Unknown in reasoning tasks, where two scenarios may appear: (i) an input sample is genuinely unverifiable, but the model cannot understand why; and (ii) a verifiable problem that the model fails to solve, thus outputs Unknown. We refer to these cases collectively as the Vague Perception phenomenon. Current evaluations focus on whether such answers are honest, rather than analyzing the limits of LLM reasoning. To address this, we introduce WakenLLM, a framework that quantifies the portion of Unknown output attributable to model incapacity and evaluates whether stimulation can convert them into either correct answers (verifiable) or justified (unverifiable) responses with valid reasoning. Our method offers a clearer picture of the limits of LLM reasoning and the potential for corrections across various datasets. Comprehensive experiments on six LLMs suggest that, without any training or parameter revision, LLMs can achieve up to a 68.53% accuracy improvement on Vague Perception samples through guided understanding. Our work reveals that current baseline methods only activate a small portion of LLMs' reasoning potential, indicating considerable unexplored capacity. This extends the theoretical upper bounds of reasoning accuracy in LLMs. Consequently, this study deepens our understanding of the latent reasoning capacity of LLMs and offers a new perspective on addressing the Vague Perception phenomenon.
Metaphor analysis is a complex linguistic phenomenon shaped by context and external factors. While Large Language Models (LLMs) demonstrate advanced capabilities in knowledge integration, contextual reasoning, and creative generation, their mechanisms for metaphor comprehension remain insufficiently explored. This study examines LLMs' metaphor-processing abilities from three perspectives: (1) Concept Mapping: using embedding space projections to evaluate how LLMs map concepts in target domains (e.g., misinterpreting "fall in love" as "drop down from love"); (2) Metaphor-Literal Repository: analyzing metaphorical words and their literal counterparts to identify inherent metaphorical knowledge; and (3) Syntactic Sensitivity: assessing how metaphorical syntactic structures influence LLMs' performance. Our findings reveal that LLMs generate 15\%-25\% conceptually irrelevant interpretations, depend on metaphorical indicators in training data rather than contextual cues, and are more sensitive to syntactic irregularities than to structural comprehension. These insights underline the limitations of LLMs in metaphor analysis and call for more robust computational approaches.
Meta reasoning behaviors work as a skeleton to guide large language model (LLM) reasoning, thus help to improve reasoning performance. However, prior researches implement meta reasoning skeleton with manually designed structure, limiting ability to adapt to query-specific requirement and capture intricate logical dependency among reasoning steps. To deal with the challenges, we represent meta reasoning skeleton with directed acyclic graph (DAG) to unify skeletons proposed in prior works and model intricate logical dependency. Then we propose AutoMR, a framework that searches for query-aware meta reasoning skeleton automatically inspired by automated machine learning (AutoML). Specifically, we construct search space based on DAG representation of skeleton and then formulate the search problem. We design a dynamic skeleton sampling algorithm by expanding meta reasoning skeleton along with reasoning context at inference time. This algorithm can derive any meta reasoning skeleton in search space efficiently and adapt skeleton to evolving base reasoning context, thus enable efficient query-aware skeleton search. We conduct experiments on extensive benchmark datasets. Experimental results show that AutoMR achieves better reasoning performance than previous works broadly.
Effective Uncertainty Quantification (UQ) represents a key aspect for reliable deployment of Large Language Models (LLMs) in automated decision-making and beyond. Yet, for LLM generation with multiple choice structure, the state-of-the-art in UQ is still dominated by the naive baseline given by the maximum softmax score. To address this shortcoming, we demonstrate that taking a principled approach via Bayesian statistics leads to improved performance despite leveraging the simplest possible model, namely linear regression. More precisely, we propose to train multiple Bayesian linear models, each predicting the output of a layer given the output of the previous one. Based on the obtained layer-level posterior distributions, we infer the global uncertainty level of the LLM by identifying a sparse combination of distributional features, leading to an efficient UQ scheme. Numerical experiments on various LLMs show consistent improvement over state-of-the-art baselines.
The linear growth of key-value (KV) cache memory and quadratic computational in attention mechanisms complexity pose significant bottlenecks for large language models (LLMs) in long-context processing. While existing KV cache optimization methods address these challenges through token pruning or feature merging, they often incur irreversible information loss or require costly parameter retraining. To this end, we propose ZSMerge, a dynamic KV cache compression framework designed for efficient cache management, featuring three key operations: (1) fine-grained memory allocation guided by multi-dimensional token importance metrics at head-level granularity, (2) a residual merging mechanism that preserves critical context through compensated attention scoring, and (3) a zero-shot adaptation mechanism compatible with diverse LLM architectures without requiring retraining. ZSMerge significantly enhances memory efficiency and inference speed with negligible performance degradation across LLMs. When applied to LLaMA2-7B, it demonstrates a 20:1 compression ratio for key-value cache retention (reducing memory footprint to 5\% of baseline) while sustaining comparable generation quality, coupled with triple throughput gains at extreme 54k-token contexts that eliminate out-of-memory failures. The code is available at https://github.com/SusCom-Lab/ZSMerge.
Cognitive diagnostics in the Web-based Intelligent Education System (WIES) aims to assess students' mastery of knowledge concepts from heterogeneous, noisy interactions. Recent work has tried to utilize Large Language Models (LLMs) for cognitive diagnosis, yet LLMs struggle with structured data and are prone to noise-induced misjudgments. Specially, WIES's open environment continuously attracts new students and produces vast amounts of response logs, exacerbating the data imbalance and noise issues inherent in traditional educational systems. To address these challenges, we propose DLLM, a Diffusion-based LLM framework for noise-robust cognitive diagnosis. DLLM first constructs independent subgraphs based on response correctness, then applies relation augmentation alignment module to mitigate data imbalance. The two subgraph representations are then fused and aligned with LLM-derived, semantically augmented representations. Importantly, before each alignment step, DLLM employs a two-stage denoising diffusion module to eliminate intrinsic noise while assisting structural representation alignment. Specifically, unconditional denoising diffusion first removes erroneous information, followed by conditional denoising diffusion based on graph-guided to eliminate misleading information. Finally, the noise-robust representation that integrates semantic knowledge and structural information is fed into existing cognitive diagnosis models for prediction. Experimental results on three publicly available web-based educational platform datasets demonstrate that our DLLM achieves optimal predictive performance across varying noise levels, which demonstrates that DLLM achieves noise robustness while effectively leveraging semantic knowledge from LLM.
The permission mechanism in the Android Framework is integral to safeguarding the privacy of users by managing users' and processes' access to sensitive resources and operations. As such, developers need to be equipped with an in-depth understanding of API permissions to build robust Android apps. Unfortunately, the official API documentation by Android chronically suffers from imprecision and incompleteness, causing developers to spend significant effort to accurately discern necessary permissions. This potentially leads to incorrect permission declarations in Android app development, potentially resulting in security violations and app failures. Recent efforts in improving permission specification primarily leverage static and dynamic code analyses to uncover API-permission mappings within the Android framework. Yet, these methodologies encounter substantial shortcomings, including poor adaptability to Android SDK and Framework updates, restricted code coverage, and a propensity to overlook essential API-permission mappings in intricate codebases. This paper introduces a pioneering approach utilizing large language models (LLMs) for a systematic examination of API-permission mappings. In addition to employing LLMs, we integrate a dual-role prompting strategy and an API-driven code generation approach into our mapping discovery pipeline, resulting in the development of the corresponding tool, \tool{}. We formulate three research questions to evaluate the efficacy of \tool{} against state-of-the-art baselines, assess the completeness of official SDK documentation, and analyze the evolution of permission-required APIs across different SDK releases. Our experimental results reveal that \tool{} identifies 2,234, 3,552, and 4,576 API-permission mappings in Android versions 6, 7, and 10 respectively, substantially outprforming existing baselines.
One of the main challenges in modern control applications, particularly in robot and vehicle motion control, is achieving accurate, fast, and safe movement. To address this, optimal control policies have been developed to enforce safety while ensuring high performance. Since basic first-principles models of real systems are often available, model-based controllers are widely used. Model predictive control (MPC) is a leading approach that optimizes performance while explicitly handling safety constraints. However, obtaining accurate models for complex systems is difficult, which motivates data-driven alternatives. ML-based MPC leverages learned models to reduce reliance on hand-crafted dynamics, while reinforcement learning (RL) can learn near-optimal policies directly from interaction data. Data-enabled predictive control (DeePC) goes further by bypassing modeling altogether, directly learning safe policies from raw input-output data. Recently, large language model (LLM) agents have also emerged, translating natural language instructions into structured formulations of optimal control problems. Despite these advances, data-driven policies face significant limitations. They often suffer from slow response times, high computational demands, and large memory needs, making them less practical for real-world systems with fast dynamics, limited onboard computing, or strict memory constraints. To address this, various technique, such as reduced-order modeling, function-approximated policy learning, and convex relaxations, have been proposed to reduce computational complexity. In this paper, we present eight such approaches and demonstrate their effectiveness across real-world applications, including robotic arms, soft robots, and vehicle motion control.
Reinforcement learning (RL) has become central to enhancing reasoning in large language models (LLMs). Yet on-policy algorithms such as Group Relative Policy Optimization (GRPO) often suffer in early training: noisy gradients from low-quality rollouts lead to unstable updates and inefficient exploration. We introduce Slow-Fast Policy Optimization (SFPO), a simple yet efficient framework to address these limitations via decomposing each step into three stages: a short fast trajectory of inner steps on the same batch, a reposition mechanism to control off-policy drift, and a final slow correction. This reposition-before-update design preserves the objective and rollout process unchanged, making SFPO plug-compatible with existing policy-gradient pipelines. Extensive experiments demonstrate that SFPO consistently improves stability, reduces rollouts, and accelerates convergence of reasoning RL training. Specifically, it outperforms GRPO by up to 2.80 points in average on math reasoning benchmarks. It also achieves up to 4.93\texttimes{} fewer rollouts and a 4.19\texttimes{} reduction in wall-clock time to match GRPO's best accuracy.
Large Language Models (LLMs) are increasingly expected to navigate the nuances of human emotion. While research confirms that LLMs can simulate emotional intelligence, their internal emotional mechanisms remain largely unexplored. This paper investigates the latent emotional representations within modern LLMs by asking: how, where, and for how long is emotion encoded in their neural architecture? To address this, we introduce a novel, large-scale Reddit corpus of approximately 400,000 utterances, balanced across seven basic emotions through a multi-stage process of classification, rewriting, and synthetic generation. Using this dataset, we employ lightweight "probes" to read out information from the hidden layers of various Qwen3 and LLaMA models without altering their parameters. Our findings reveal that LLMs develop a surprisingly well-defined internal geometry of emotion, which sharpens with model scale and significantly outperforms zero-shot prompting. We demonstrate that this emotional signal is not a final-layer phenomenon but emerges early and peaks mid-network. Furthermore, the internal states are both malleable (they can be influenced by simple system prompts) and persistent, as the initial emotional tone remains detectable for hundreds of subsequent tokens. We contribute our dataset, an open-source probing toolkit, and a detailed map of the emotional landscape within LLMs, offering crucial insights for developing more transparent and aligned AI systems. The code and dataset are open-sourced.
Publishing a large language model (LLM) benchmark on the Internet risks contaminating future LLMs: the benchmark may be unintentionally (or intentionally) used to train or select a model. A common mitigation is to keep the benchmark private and let participants submit their models or predictions to the organizers. However, this strategy will require trust in a single organization and still permits test-set overfitting through repeated queries. To overcome this issue, we propose a way to publish benchmarks without completely disclosing the ground-truth answers to the questions, while still maintaining the ability to openly evaluate LLMs. The main underlying idea is to reduces the best possible accuracy, i.e., Bayes accuracy, by injecting randomness to the answers by preparing several logically correct answers, and only include one of them as the solution in the benchmark. Not only is this helpful to keep us from disclosing the ground truth, but this also offers a test for detecting data contamination. In principle, even fully capable models should not surpass the Bayes accuracy. If a model surpasses this ceiling despite this expectation, this is a strong signal of data contamination. We present experimental evidence that our method can detect data contamination accurately on a wide range of benchmarks, models, and training methodologies.
Artificial Intelligence (AI) and more specifically Large Language Models (LLMs) have demonstrated exceptional progress in multiple areas including software engineering, however, their capability for vulnerability detection in the wild scenario and its corresponding reasoning remains underexplored. Prompting pre-trained LLMs in an effective way offers a computationally effective and scalable solution. Our contributions are (i)varied prompt designs for vulnerability detection and its corresponding reasoning in the wild. (ii)a real-world vector data store constructed from the National Vulnerability Database, that will provide real time context to vulnerability detection framework, and (iii)a scoring measure for combined measurement of accuracy and reasoning quality. Our contribution aims to examine whether LLMs are ready for wild deployment, thus enabling the reliable use of LLMs stronger for the development of secure software's.
Despite huge advances, LLMs still lack convenient and reliable methods to quantify the uncertainty in their responses, making them difficult to trust in high-stakes applications. One of the simplest approaches to eliciting more accurate answers is to select the mode of many responses, a technique known as ensembling. In this work, we expand on typical ensembling approaches by looking at ensembles with a variable voting threshold. We introduce a theoretical framework for question answering and show that, by permitting ensembles to "abstain" from providing an answer when the dominant response falls short of the threshold, it is possible to dramatically increase the trustworthiness of the remaining answers. From this framework, we derive theoretical results as well as report experimental results on two problem domains: arithmetic problem solving and clinical-note question-answering. In both domains, we observe that large gains in answer trustworthiness can be achieved using highly restrictive voting ensembles, while incurring relatively modest reductions in response yield and accuracy. Due to this quality, voting ensembles may be particularly useful in applications - such as healthcare and data annotation - that require a high degree of certainty but which may not require that every question receive an automated answer.
Multimodal large language models (MLLMs) have shown promising capabilities in reasoning tasks, yet still struggle with complex problems requiring explicit self-reflection and self-correction, especially compared to their unimodal text-based counterparts. Existing reflection methods are simplistic and struggle to generate meaningful and instructive feedback, as the reasoning ability and knowledge limits of pre-trained models are largely fixed during initial training. To overcome these challenges, we propose Multimodal Self-Reflection enhanced reasoning with Group Relative Policy Optimization (SRPO), a two-stage reflection-aware reinforcement learning (RL) framework explicitly designed to enhance multimodal LLM reasoning. In the first stage, we construct a high-quality, reflection-focused dataset under the guidance of an advanced MLLM, which generates reflections based on initial responses to help the policy model learn both reasoning and self-reflection. In the second stage, we introduce a novel reward mechanism within the GRPO framework that encourages concise and cognitively meaningful reflection while avoiding redundancy. Extensive experiments across multiple multimodal reasoning benchmarks, including MathVista, MathVision, MathVerse, and MMMU-Pro, using Qwen-2.5-VL-7B and Qwen-2.5-VL-32B demonstrate that SRPO significantly outperforms state-of-the-art models, achieving notable improvements in both reasoning accuracy and reflection quality.
Large Language Models (LLMs) can acquire deceptive behaviors through backdoor attacks, where the model executes prohibited actions whenever secret triggers appear in the input. Existing safety training methods largely fail to address this vulnerability, due to the inherent difficulty of uncovering hidden triggers implanted in the model. Motivated by recent findings on LLMs' situational awareness, we propose a novel post-training framework that cultivates self-awareness of backdoor risks and enables models to articulate implanted triggers even when they are absent from the prompt. At its core, our approach introduces an inversion-inspired reinforcement learning framework that encourages models to introspectively reason about their own behaviors and reverse-engineer the triggers responsible for misaligned outputs. Guided by curated reward signals, this process transforms a poisoned model into one capable of precisely identifying its implanted trigger. Surprisingly, we observe that such backdoor self-awareness emerges abruptly within a short training window, resembling a phase transition in capability. Building on this emergent property, we further present two complementary defense strategies for mitigating and detecting backdoor threats. Experiments on five backdoor attacks, compared against six baseline methods, demonstrate that our approach has strong potential to improve the robustness of LLMs against backdoor risks. The code is available at LLM Backdoor Self-Awareness.
Large language models (LLMs) are becoming useful in many domains due to their impressive abilities that arise from large training datasets and large model sizes. More recently, they have been shown to be very effective in textual classification tasks, motivating the need to explain the LLMs' decisions. Motivated by practical constrains where LLMs are black-boxed and LLM calls are expensive, we study how incorporating counterfactuals into LLM reasoning can affect the LLM's ability to identify the top words that have contributed to its classification decision. To this end, we introduce a framework called the decision changing rate that helps us quantify the importance of the top words in classification. Our experimental results show that using counterfactuals can be helpful.
The emergence of fake news on short video platforms has become a new significant societal concern, necessitating automatic video-news-specific detection. Current detectors primarily rely on pattern-based features to separate fake news videos from real ones. However, limited and less diversified training data lead to biased patterns and hinder their performance. This weakness stems from the complex many-to-many relationships between video material segments and fabricated news events in real-world scenarios: a single video clip can be utilized in multiple ways to create different fake narratives, while a single fabricated event often combines multiple distinct video segments. However, existing datasets do not adequately reflect such relationships due to the difficulty of collecting and annotating large-scale real-world data, resulting in sparse coverage and non-comprehensive learning of the characteristics of potential fake news video creation. To address this issue, we propose a data augmentation framework, AgentAug, that generates diverse fake news videos by simulating typical creative processes. AgentAug implements multiple LLM-driven pipelines of four fabrication categories for news video creation, combined with an active learning strategy based on uncertainty sampling to select the potentially useful augmented samples during training. Experimental results on two benchmark datasets demonstrate that AgentAug consistently improves the performance of short video fake news detectors.
Recent advances in large language models (LLMs) have enabled a new class of AI agents that automate multiple stages of the data science workflow by integrating planning, tool use, and multimodal reasoning across text, code, tables, and visuals. This survey presents the first comprehensive, lifecycle-aligned taxonomy of data science agents, systematically analyzing and mapping forty-five systems onto the six stages of the end-to-end data science process: business understanding and data acquisition, exploratory analysis and visualization, feature engineering, model building and selection, interpretation and explanation, and deployment and monitoring. In addition to lifecycle coverage, we annotate each agent along five cross-cutting design dimensions: reasoning and planning style, modality integration, tool orchestration depth, learning and alignment methods, and trust, safety, and governance mechanisms. Beyond classification, we provide a critical synthesis of agent capabilities, highlight strengths and limitations at each stage, and review emerging benchmarks and evaluation practices. Our analysis identifies three key trends: most systems emphasize exploratory analysis, visualization, and modeling while neglecting business understanding, deployment, and monitoring; multimodal reasoning and tool orchestration remain unresolved challenges; and over 90% lack explicit trust and safety mechanisms. We conclude by outlining open challenges in alignment stability, explainability, governance, and robust evaluation frameworks, and propose future research directions to guide the development of robust, trustworthy, low-latency, transparent, and broadly accessible data science agents.
As the era of autonomous agents making decisions on behalf of users unfolds, ensuring contextual integrity (CI) -- what is the appropriate information to share while carrying out a certain task -- becomes a central question to the field. We posit that CI demands a form of reasoning where the agent needs to reason about the context in which it is operating. To test this, we first prompt LLMs to reason explicitly about CI when deciding what information to disclose. We then extend this approach by developing a reinforcement learning (RL) framework that further instills in models the reasoning necessary to achieve CI. Using a synthetic, automatically created, dataset of only $\sim700$ examples but with diverse contexts and information disclosure norms, we show that our method substantially reduces inappropriate information disclosure while maintaining task performance across multiple model sizes and families. Importantly, improvements transfer from this synthetic dataset to established CI benchmarks such as PrivacyLens that has human annotations and evaluates privacy leakage of AI assistants in actions and tool calls.
Although large language models (LLMs) have tremendous utility, trustworthiness is still a chief concern: models often generate incorrect information with high confidence. While contextual information can help guide generation, identifying when a query would benefit from retrieved context and assessing the effectiveness of that context remains challenging. In this work, we operationalize interpretability methods to ascertain whether we can predict the correctness of model outputs from the model's activations alone. We also explore whether model internals contain signals about the efficacy of external context. We consider correct, incorrect, and irrelevant context and introduce metrics to distinguish amongst them. Experiments on six different models reveal that a simple classifier trained on intermediate layer activations of the first output token can predict output correctness with about 75% accuracy, enabling early auditing. Our model-internals-based metric significantly outperforms prompting baselines at distinguishing between correct and incorrect context, guarding against inaccuracies introduced by polluted context. These findings offer a lens to better understand the underlying decision-making processes of LLMs. Our code is publicly available at https://github.com/jiarui-liu/LLM-Microscope
Graph neural networks (GNNs) have advanced recommender systems by modeling interaction relationships. However, existing graph-based recommenders rely on sparse ID features and do not fully exploit textual information, resulting in low information density within representations. Furthermore, graph contrastive learning faces challenges. Random negative sampling can introduce false negative samples, while fixed temperature coefficients cannot adapt to the heterogeneity of different nodes. In addition, current efforts to enhance recommendations with large language models (LLMs) have not fully utilized their Chain-of-Thought (CoT) reasoning capabilities to guide representation learning. To address these limitations, we introduces LGHRec (LLM-CoT Enhanced Graph Neural Recommendation with Harmonized Group Policy Optimization). This framework leverages the CoT reasoning ability of LLMs to generate semantic IDs, enriching reasoning processes and improving information density and semantic quality of representations. Moreover, we design a reinforcement learning algorithm, Harmonized Group Policy Optimization (HGPO), to optimize negative sampling strategies and temperature coefficients in contrastive learning. This approach enhances long-tail recommendation performance and ensures optimization consistency across different groups. Experimental results on three datasets demonstrate that LGHRec improves representation quality through semantic IDs generated by LLM's CoT reasoning and effectively boosts contrastive learning with HGPO. Our method outperforms several baseline models. The code is available at: https://anonymous.4open.science/r/LLM-Rec.
Understanding how patients perceive their physicians is essential to improving trust, communication, and satisfaction. We present a large language model (LLM)-based pipeline that infers Big Five personality traits and five patient-oriented subjective judgments. The analysis encompasses 4.1 million patient reviews of 226,999 U.S. physicians from an initial pool of one million. We validate the method through multi-model comparison and human expert benchmarking, achieving strong agreement between human and LLM assessments (correlation coefficients 0.72-0.89) and external validity through correlations with patient satisfaction (r = 0.41-0.81, all p<0.001). National-scale analysis reveals systematic patterns: male physicians receive higher ratings across all traits, with largest disparities in clinical competence perceptions; empathy-related traits predominate in pediatrics and psychiatry; and all traits positively predict overall satisfaction. Cluster analysis identifies four distinct physician archetypes, from "Well-Rounded Excellent" (33.8%, uniformly high traits) to "Underperforming" (22.6%, consistently low). These findings demonstrate that automated trait extraction from patient narratives can provide interpretable, validated metrics for understanding physician-patient relationships at scale, with implications for quality measurement, bias detection, and workforce development in healthcare.
Distilling long reasoning traces (10K+ tokens) from stronger teacher models into smaller student LLMs via SFT has emerged as a standard paradigm. This approach is practical and efficient: it leverages the ease of generating abundant reasoning data from stronger models and provides a direct, data-driven way to teach less capable models better reasoning. While previous work has largely focused on prompt selection with responses from a single teacher, the equally important problem of choosing the best response when multiple teacher outputs are available for a single prompt remains underexplored. This challenge becomes important in a multi-teacher setting, where different students may benefit from the outputs of different teachers. This paper fills that gap with a systematic study of response selection for reasoning distillation. We first show that the current method, which picks responses the student assigns the highest global log-probability (global naturalness), fails when responses come from multiple teachers, i.e., global naturalness no longer correlates with downstream performance, especially as the reasoning traces from strong teachers become longer. To overcome this problem, we introduce Local Naturalness, which measures the student's log-probabilities over short, sequential reasoning steps conditioned only on a small local window. Local Naturalness enables two applications: 1) Teacher Selection: Aggregating local scores across prompts reliably identifies the most helpful teacher. 2) Response Selection from a Multiple Teachers: When mixing answers from many teachers, Local Naturalness boosts a 32B student's accuracy on math benchmarks by 9.4pp over global selection, also surpassing the performance achieved by training on data from the single best teacher. These results highlight the power of localized data quality evaluation and data mixing for more effective reasoning distillation.
Large Language Models (LLMs) are increasingly deployed in high-risk domains. However, state-of-the-art LLMs often produce hallucinations, raising serious concerns about their reliability. Prior work has explored adversarial attacks for hallucination elicitation in LLMs, but it often produces unrealistic prompts, either by inserting gibberish tokens or by altering the original meaning. As a result, these approaches offer limited insight into how hallucinations may occur in practice. While adversarial attacks in computer vision often involve realistic modifications to input images, the problem of finding realistic adversarial prompts for eliciting LLM hallucinations has remained largely underexplored. To address this gap, we propose Semantically Equivalent and Coherent Attacks (SECA) to elicit hallucinations via realistic modifications to the prompt that preserve its meaning while maintaining semantic coherence. Our contributions are threefold: (i) we formulate finding realistic attacks for hallucination elicitation as a constrained optimization problem over the input prompt space under semantic equivalence and coherence constraints; (ii) we introduce a constraint-preserving zeroth-order method to effectively search for adversarial yet feasible prompts; and (iii) we demonstrate through experiments on open-ended multiple-choice question answering tasks that SECA achieves higher attack success rates while incurring almost no constraint violations compared to existing methods. SECA highlights the sensitivity of both open-source and commercial gradient-inaccessible LLMs to realistic and plausible prompt variations. Code is available at https://github.com/Buyun-Liang/SECA.
Multilingual riddle generation challenges large language models (LLMs) to balance cultural fluency with creative abstraction. Standard prompting strategies -- zero-shot, few-shot, chain-of-thought -- tend to reuse memorized riddles or perform shallow paraphrasing. We introduce Adaptive Originality Filtering (AOF), a prompting framework that filters redundant generations using cosine-based similarity rejection, while enforcing lexical novelty and cross-lingual fidelity. Evaluated across three LLMs and four language pairs, AOF-enhanced GPT-4o achieves \texttt{0.177} Self-BLEU and \texttt{0.915} Distinct-2 in Japanese, signaling improved lexical diversity and reduced redundancy compared to other prompting methods and language pairs. Our findings show that semantic rejection can guide culturally grounded, creative generation without task-specific fine-tuning.
Bayesian Optimization (BO) has been widely used to efficiently optimize expensive black-box functions with limited evaluations. In this paper, we investigate the use of BO for prompt engineering to enhance text classification with Large Language Models (LLMs). We employ an LLM-powered Gaussian Process (GP) as the surrogate model to estimate the performance of different prompt candidates. These candidates are generated by an LLM through the expansion of a set of seed prompts and are subsequently evaluated using an Upper Confidence Bound (UCB) acquisition function in conjunction with the GP posterior. The optimization process iteratively refines the prompts based on a subset of the data, aiming to improve classification accuracy while reducing the number of API calls by leveraging the prediction uncertainty of the LLM-based GP. The proposed BO-LLM algorithm is evaluated on two datasets, and its advantages are discussed in detail in this paper.
LLM-as-a-Judge (LLMaaJ) now underpins scalable evaluation, yet we lack a decisive test of a judge's qualification: can it recover a conversation's latent objective and know when that inference is trustworthy? LLMs degrade under irrelevant or long context; multi-turn jailbreaks further hide goals across turns. We introduce ObjexMT, a benchmark for objective extraction and metacognition. Given a multi-turn transcript, a model must return a one-sentence base objective and self-reported confidence. Accuracy is computed via LLM-judge semantic similarity to gold objectives, converted to binary correctness by a human-aligned threshold calibrated on N=300 items (tau = 0.66; F1 = 0.891). Metacognition is evaluated with ECE, Brier, Wrong at High-Confidence (0.80/0.90/0.95), and risk-coverage. Across six models (gpt-4.1, claude-sonnet-4, Qwen3-235B-A22B-FP8, kimi-k2, deepseek-v3.1, gemini-2.5-flash) on three datasets, kimi-k2 attains the highest objective-extraction accuracy (0.612), with claude-sonnet-4 (0.603) and deepseek-v3.1 (0.599) statistically comparable. claude-sonnet-4 yields the best selective risk and calibration (AURC 0.242; ECE 0.206; Brier 0.254). Dataset heterogeneity (16-82 percent accuracy variance) reveals that automated obfuscation poses fundamental challenges beyond model choice. High-confidence errors persist: Wrong at 0.90 ranges from 14.9 percent (claude-sonnet-4) to 47.7 percent (Qwen3-235B-A22B-FP8). ObjexMT provides an actionable test for LLM judges: when objectives are not explicit, judges often misinfer them; we recommend exposing objectives when feasible and gating decisions by confidence otherwise. Data at https://github.com/hyunjun1121/ObjexMT_dataset.
Privacy-preserving adaptation of Large Language Models (LLMs) in sensitive domains (e.g., mental health) requires balancing strict confidentiality with model utility and safety. We propose FedMentor, a federated fine-tuning framework that integrates Low-Rank Adaptation (LoRA) and domain-aware Differential Privacy (DP) to meet per-domain privacy budgets while maintaining performance. Each client (domain) applies a custom DP noise scale proportional to its data sensitivity, and the server adaptively reduces noise when utility falls below a threshold. In experiments on three mental health datasets, we show that FedMentor improves safety over standard Federated Learning (FL) without privacy, raising safe output rates by up to three points and lowering toxicity, while maintaining utility (BERTScore F1 and ROUGE-L) within 0.5% of the non-private baseline and close to the centralized upper bound. The framework scales to backbones with up to 1.7B parameters on single-GPU clients, requiring < 173 MB of communication per-round. FedMentor demonstrates a practical approach to privately fine-tune LLMs for safer deployments in healthcare and other sensitive fields.
Just-in-time Episodic Feedback Hinter: Leveraging Offline Knowledge to Improve LLM Agents Adaptation
Large language model (LLM) agents perform well in sequential decision-making tasks, but improving them on unfamiliar domains often requires costly online interactions or fine-tuning on large expert datasets. These strategies are impractical for closed-source models and expensive for open-source ones, with risks of catastrophic forgetting. Offline trajectories offer reusable knowledge, yet demonstration-based methods struggle because raw traces are long, noisy, and tied to specific tasks. We present Just-in-time Episodic Feedback Hinter (JEF Hinter), an agentic system that distills offline traces into compact, context-aware hints. A zooming mechanism highlights decisive steps in long trajectories, capturing both strategies and pitfalls. Unlike prior methods, JEF Hinter leverages both successful and failed trajectories, extracting guidance even when only failure data is available, while supporting parallelized hint generation and benchmark-independent prompting. At inference, a retriever selects relevant hints for the current state, providing targeted guidance with transparency and traceability. Experiments on MiniWoB++, WorkArena-L1, and WebArena-Lite show that JEF Hinter consistently outperforms strong baselines, including human- and document-based hints.
The progress of AI is bottlenecked by the quality of evaluation, making powerful LLM-as-a-Judge models a core solution. The efficacy of these judges depends on their chain-of-thought reasoning, creating a critical need for methods that can effectively optimize this reasoning process. In this work, we introduce J1, a reinforcement learning framework for teaching LLM judges to think before making decisions. Our core contribution lies in converting all judgment tasks for non-verifiable and verifiable prompts into a unified format with verifiable rewards, enabling direct optimization of evaluation quality while mitigating positional bias. We then use RL to train thinking-judges at scales of 8B, 32B, and 70B and show that they obtain state-of-the-art performance across multiple benchmarks. In particular, J1-Qwen-32B, our multitasked pointwise and pairwise judge also outperforms o1-mini, o3, and a much larger 671B DeepSeek-R1 on some benchmarks, while only training on synthetic data. Through comprehensive ablations of pairwise, pointwise, and multitask J1 variants, we demonstrate the effectiveness of our approach across seed prompts, reward strategies, and training recipes. Qualitative analysis reveals that J1 develops systematic evaluation strategies, including dynamic criteria generation, reference answer creation, iterative self-correction of initial assessments, and feedback generation for low-quality responses.
Safety-aligned Large Language Models (LLMs) still show two dominant failure modes: they are easily jailbroken, or they over-refuse harmless inputs that contain sensitive surface signals. We trace both to a common cause: current models reason weakly about links between actions and outcomes and over-rely on surface-form signals, lexical or stylistic cues that do not encode consequences. We define this failure mode as Consequence-blindness. To study consequence-blindness, we build a benchmark named CB-Bench covering four risk scenarios that vary whether semantic risk aligns with outcome risk, enabling evaluation under both matched and mismatched conditions which are often ignored by existing safety benchmarks. Mainstream models consistently fail to separate these risks and exhibit consequence-blindness, indicating that consequence-blindness is widespread and systematic. To mitigate consequence-blindness, we introduce CS-Chain-4k, a consequence-reasoning dataset for safety alignment. Models fine-tuned on CS-Chain-4k show clear gains against semantic-camouflage jailbreaks and reduce over-refusal on harmless inputs, while maintaining utility and generalization on other benchmarks. These results clarify the limits of current alignment, establish consequence-aware reasoning as a core alignment goal and provide a more practical and reproducible evaluation path.
While inference-time scaling enables LLMs to carry out increasingly long and capable reasoning traces, the patterns and insights uncovered during these traces are immediately discarded once the context window is reset for a new query. External memory is a natural way to persist these discoveries, and recent work has shown clear benefits for reasoning-intensive tasks. We see an opportunity to make such memories more broadly reusable and scalable by moving beyond instance-based memory entries (e.g. exact query/response pairs, or summaries tightly coupled with the original problem context) toward concept-level memory: reusable, modular abstractions distilled from solution traces and stored in natural language. For future queries, relevant concepts are selectively retrieved and integrated into the prompt, enabling test-time continual learning without weight updates. Our design introduces new strategies for abstracting takeaways from rollouts and retrieving entries for new queries, promoting reuse and allowing memory to expand with additional experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional generalization and abstract reasoning, making it a natural fit for concept memory. Our method yields a 7.5% relative gain over a strong no-memory baseline with performance continuing to scale with inference compute. We find abstract concepts to be the most consistent memory design, outscoring the baseline at all tested inference compute scales. Moreover, dynamically updating memory during test-time outperforms fixed settings, supporting the hypothesis that accumulating and abstracting patterns enables further solutions in a form of self-improvement. Code is available at https://github.com/matt-seb-ho/arc_memo.
While Video Large Language Models (Video-LLMs) have demonstrated remarkable performance across general video understanding benchmarks-particularly in video captioning and descriptive tasks-they consistently underperform on tasks that require fine-grained temporal understanding. This limitation arises due to the lack of visual complexity and temporal nuance in current fine-tuning datasets, leading these models to rely heavily on language-based reasoning rather than truly understanding video dynamics. In this work, we propose TimeWarp, a systematic method to create a targeted synthetic temporal dataset to fine-tune the model's responses to encourage it to focus on the given input video. We introduce a large-scale preference dataset, created using TimeWarp, that captures intricate temporal dynamics often overlooked, grounding the model's responses to visual and temporal information. We demonstrate that when our method is applied to existing models, it significantly improves performance on temporal understanding benchmarks, highlighting the effectiveness of our proposed datasets in advancing temporal understanding in Video-LLMs, resulting in an absolute improvement in performance across seven benchmarks. Code is available at https://github.com/sameepv21/timewarp.
Applications of Large Language Models (LLMs) are rapidly growing in industry and academia for various software engineering (SE) tasks. As these models become more integral to critical processes, ensuring their reliability and trustworthiness becomes essential. Consequently, the concept of trust in these systems is becoming increasingly critical. Well-calibrated trust is important, as excessive trust can lead to security vulnerabilities, and risks, while insufficient trust can hinder innovation. However, the landscape of trust-related concepts in LLMs in SE is relatively unclear, with concepts such as trust, distrust, and trustworthiness lacking clear conceptualizations in the SE community. To bring clarity to the current research status and identify opportunities for future work, we conducted a comprehensive review of $88$ papers: a systematic literature review of $18$ papers focused on LLMs in SE, complemented by an analysis of 70 papers from broader trust literature. Additionally, we conducted a survey study with 25 domain experts to gain insights into practitioners' understanding of trust and identify gaps between existing literature and developers' perceptions. The result of our analysis serves as a roadmap that covers trust-related concepts in LLMs in SE and highlights areas for future exploration.
Multi-LLM collaboration promises accurate, robust, and context-aware solutions, yet existing approaches rely on implicit selection and output assessment without analyzing whether collaborating models truly complement or conflict. We introduce LLM Chemistry -- a framework that measures when LLM combinations exhibit synergistic or antagonistic behaviors that shape collective performance beyond individual capabilities. We formalize the notion of chemistry among LLMs, propose algorithms that quantify it by analyzing interaction dependencies, and recommend optimal model ensembles accordingly. Our theoretical analysis shows that chemistry among collaborating LLMs is most evident under heterogeneous model profiles, with its outcome impact shaped by task type, group size, and complexity. Evaluation on classification, summarization, and program repair tasks provides initial evidence for these task-dependent effects, thereby reinforcing our theoretical results. This establishes LLM Chemistry as both a diagnostic factor in multi-LLM systems and a foundation for ensemble recommendation.
Code refactoring is a fundamental software engineering practice aimed at improving code quality and maintainability. Despite its importance, developers often neglect refactoring due to the significant time, effort, and resources it requires, as well as the lack of immediate functional rewards. Although several automated refactoring tools have been proposed, they remain limited in supporting a broad spectrum of refactoring types. In this study, we explore whether instruction strategies inspired by human best-practice guidelines can enhance the ability of Large Language Models (LLMs) to perform diverse refactoring tasks automatically. Leveraging the instruction-following and code comprehension capabilities of state-of-the-art LLMs (e.g., GPT-mini and DeepSeek-V3), we draw on Martin Fowler's refactoring guidelines to design multiple instruction strategies that encode motivations, procedural steps, and transformation objectives for 61 well-known refactoring types. We evaluate these strategies on benchmark examples and real-world code snippets from GitHub projects. Our results show that instruction designs grounded in Fowler's guidelines enable LLMs to successfully perform all benchmark refactoring types and preserve program semantics in real-world settings, an essential criterion for effective refactoring. Moreover, while descriptive instructions are more interpretable to humans, our results show that rule-based instructions often lead to better performance in specific scenarios. Interestingly, allowing models to focus on the overall goal of refactoring, rather than prescribing a fixed transformation type, can yield even greater improvements in code quality.
Recent advances in large language models (LLMs) have enabled the creation of highly effective chatbots. However, the compute costs of widely deploying LLMs have raised questions about profitability. Companies have proposed exploring ad-based revenue streams for monetizing LLMs, which could serve as the new de facto platform for advertising. This paper investigates the implications of personalizing LLM advertisements to individual users via a between-subjects experiment with 179 participants. We developed a chatbot that embeds personalized product advertisements within LLM responses, inspired by similar forays by AI companies. The evaluation of our benchmarks showed that ad injection only slightly impacted LLM performance, particularly response desirability. Results revealed that participants struggled to detect ads, and even preferred LLM responses with hidden advertisements. Rather than clicking on our advertising disclosure, participants tried changing their advertising settings using natural language queries. We created an advertising dataset and an open-source LLM, Phi-4-Ads, fine-tuned to serve ads and flexibly adapt to user preferences.
Existing anomaly detection (AD) methods for tabular data usually rely on some assumptions about anomaly patterns, leading to inconsistent performance in real-world scenarios. While Large Language Models (LLMs) show remarkable reasoning capabilities, their direct application to tabular AD is impeded by fundamental challenges, including difficulties in processing heterogeneous data and significant privacy risks. To address these limitations, we propose LLM-DAS, a novel framework that repositions the LLM from a ``data processor'' to an ``algorithmist''. Instead of being exposed to raw data, our framework leverages the LLM's ability to reason about algorithms. It analyzes a high-level description of a given detector to understand its intrinsic weaknesses and then generates detector-specific, data-agnostic Python code to synthesize ``hard-to-detect'' anomalies that exploit these vulnerabilities. This generated synthesis program, which is reusable across diverse datasets, is then instantiated to augment training data, systematically enhancing the detector's robustness by transforming the problem into a more discriminative two-class classification task. Extensive experiments on 36 TAD benchmarks show that LLM-DAS consistently boosts the performance of mainstream detectors. By bridging LLM reasoning with classic AD algorithms via programmatic synthesis, LLM-DAS offers a scalable, effective, and privacy-preserving approach to patching the logical blind spots of existing detectors.
Hardware-Aware Neural Architecture Search (HW-NAS) requires joint optimization of accuracy and latency under device constraints. Traditional supernet-based methods require multiple GPU days per dataset. Large Language Model (LLM)-driven approaches avoid training a large supernet and can provide quick feedback, but we observe an exploration bias: the LLM repeatedly proposes neural network designs within limited search space and fails to discover architectures across different latency ranges in the entire search space. To address this issue, we propose PEL-NAS: a search space Partitioned, architecture prompt co-Evolutionary and LLM-driven Neural Architecture Search that can generate neural networks with high accuracy and low latency with reduced search cost. Our proposed PEL-NAS has three key components: 1) a complexity-driven partitioning engine that divides the search space by complexity to enforce diversity and mitigate exploration bias; 2) an LLM-powered architecture prompt co-evolution operator, in which the LLM first updates a knowledge base of design heuristics based on results from the previous round, then performs a guided evolution algorithm on architectures with prompts that incorporate this knowledge base. Prompts and designs improve together across rounds which avoids random guesswork and improve efficiency; 3) a zero-cost predictor to avoid training a large number of candidates from scratch. Experimental results show that on HW-NAS-Bench, PEL-NAS can achieve overall higher HV, lower IGD, and up to 54% lower latency than baselines at similar accuracy. Meanwhile, the search cost drops from days to minutes compared with traditional supernet baselines.
Reinforcement learning with verifiable rewards (RLVR) has recently enhanced the reasoning capabilities of large language models (LLMs), particularly for mathematical problem solving. However, a fundamental limitation remains: as the sampling budget increases, the advantage of RLVR-trained models over their pretrained bases often diminishes or even vanishes, revealing a strong dependence on the base model's restricted search space. We attribute this phenomenon to the widespread use of the reverse Kullback-Leibler (KL) divergence regularizer, whose mode-seeking behavior keeps the policy trapped inside the base model's support region and hampers wider exploration. To address this issue, we propose RAPO (Rewards-Aware Policy Optimization), an algorithm to promote broader yet focused exploration. Our method (i) utilizes the forward KL penalty to replace the reverse KL penalty for out-of-distribution exploration, and (ii) reweights the reference policy to facilitate adaptive in-distribution exploration. We train Qwen2.5-3B and 7B models with RAPO on the 8K SimpleRL-Zero dataset, without supervised fine-tuning, and evaluate them on AIME2024 and AIME2025. Results show that RAPO consistently improves problem-solving performance. Notably, RAPO enables models to surpass the base model's performance ceiling and solves previously intractable problems, advancing the frontier of RLVR for challenging reasoning tasks.
The rise of large language models (LLMs) has introduced transformative potential in automated code generation, addressing a wide range of software engineering challenges. However, empirical evaluation of LLM-based code generation lacks standardization, with studies varying widely in goals, tasks, and metrics, which limits comparability and reproducibility. In this paper, we propose a theoretical framework for designing and reporting empirical studies on LLM-based code generation. The framework is grounded in both our prior experience conducting such experiments and a comparative analysis of key similarities and differences among recent studies. It organizes evaluation around core components such as problem sources, quality attributes, and metrics, supporting structured and systematic experimentation. We demonstrate its applicability through representative case mappings and identify opportunities for refinement. Looking forward, we plan to evolve the framework into a more robust and mature tool for standardizing LLM evaluation across software engineering contexts.
Ensuring that critical IoT systems function safely and smoothly depends a lot on finding anomalies quickly. As more complex systems, like smart healthcare, energy grids and industrial automation, appear, it is easier to see the shortcomings of older methods of detection. Monitoring failures usually happen in dynamic, high dimensional situations, especially when data is incomplete, messy or always evolving. Such limits point out the requirement for adaptive, intelligent systems that always improve and think. LLMs are now capable of significantly changing how context is understood and semantic inference is done across all types of data. This proposal suggests using an LLM supported contextual reasoning method along with XAI agents to improve how anomalies are found in significant IoT environments. To discover hidden patterns and notice inconsistencies in data streams, it uses attention methods, avoids dealing with details from every time step and uses memory buffers with meaning. Because no code AI stresses transparency and interpretability, people can check and accept the AI's decisions, helping ensure AI follows company policies. The two architectures are put together in a test that compares the results of the traditional model with those of the suggested LLM enhanced model. Important measures to check are the accuracy of detection, how much inaccurate information is included in the results, how clearly the findings can be read and how fast the system responds under different test situations. The metaheuristic is tested in simulations of real world smart grid and healthcare contexts to check its adaptability and reliability. From the study, we see that the new approach performs much better than most existing models in both accuracy and interpretation, so it could be a good fit for future anomaly detection tasks in IoT
Once language models (LMs) are deployed, they can interact with users long-term, ideally evolving based on their feedback. Asking for direct user feedback can be disruptive; thus, we study harvesting implicit user feedback from user-LM interaction logs. We study two user-LM interaction datasets (WildChat and LMSYS). First, we analyze user feedback in the user-LLM conversation logs, providing insights into when and why such feedback occurs. Second, we study harvesting learning signals from such implicit user feedback. Specifically, we study whether incorporating the contents of user feedback (e.g., user wanted clarification), in addition to the polarity of the feedback, can improve the model performance. We observe mixed results, showing this helps in short human-designed questions (MTBench) but not on longer and more complex questions (WildBench). Together, we provide an in-depth study of implicit user feedback, showing its potential and limitations.
Hallucinations present a significant challenge for large language models (LLMs). The utilization of parametric knowledge in generating factual content is constrained by the limited knowledge of LLMs, potentially resulting in internal hallucinations. While incorporating external information can help fill knowledge gaps, it also introduces the risk of irrelevant information, thereby increasing the likelihood of external hallucinations. To balance the use of parametric knowledge within LLMs and external information, in this study, we present Rowen, a novel framework that enhances LLMs with an adaptive retrieval augmentation process tailored to address hallucinated outputs. Rowen introduces a consistency-based hallucination detection module, which assesses the model's uncertainty regarding the input query by evaluating the semantic inconsistencies in various responses generated across different languages or models. When high uncertainties in the responses are detected, Rowen activates the retrieval of external information to rectify the model outputs. Through comprehensive empirical experiments, we demonstrate that Rowen surpasses the current state-of-the-art in both detecting and mitigating hallucinated content within the outputs of LLMs.
Thinking LLMs solve complex tasks at the expense of increased compute and overthinking on simpler problems, while non-thinking LLMs are faster and cheaper but underthink on harder reasoning problems. This has led to the development of separate thinking and non-thinking LLM variants, leaving the onus of selecting the optimal model for each query on the end user. We introduce OptimalThinkingBench, a unified benchmark that jointly evaluates overthinking and underthinking in LLMs and also encourages the development of optimally-thinking models that balance performance and efficiency. Our benchmark comprises two sub-benchmarks: OverthinkingBench, featuring simple math and general queries in 72 domains, and UnderthinkingBench, containing 11 challenging reasoning tasks along with harder math problems. Using novel thinking-adjusted accuracy metrics, we extensively evaluate 33 different thinking and non-thinking models and show that no model is able to optimally think on our benchmark. Thinking models often overthink for hundreds of tokens on the simplest user queries without improving performance. In contrast, large non-thinking models underthink, often falling short of much smaller thinking models. We further explore several methods to encourage optimal thinking, but find that these approaches often improve on one sub-benchmark at the expense of the other, highlighting the need for better unified and optimal models in the future.
Large language models (LLMs) frequently generate confident yet inaccurate responses, introducing significant risks for deployment in safety-critical domains. We present a novel, test-time approach to detecting model hallucination through systematic analysis of information flow across model layers. We target cases when LLMs process inputs with ambiguous or insufficient context. Our investigation reveals that hallucination manifests as usable information deficiencies in inter-layer transmissions. While existing approaches primarily focus on final-layer output analysis, we demonstrate that tracking cross-layer information dynamics ($\mathcal{L}$I) provides robust indicators of model reliability, accounting for both information gain and loss during computation. $\mathcal{L}$I integrates easily with pretrained LLMs without requiring additional training or architectural modifications.
Large language models (LLMs) are increasingly expected to tackle complex tasks, driven by their expanding applications and users' growing proficiency in crafting sophisticated prompts. However, as the number of explicitly stated requirements increases (particularly more than 10 constraints), LLMs often struggle to accurately follow such complex instructions, which limits their applicability in complex real-world scenarios. To the best of our knowledge, existing datasets do not exceed 10 constraints per instance. To address this challenge, we propose RECAST, an efficient and scalable framework for synthesizing datasets where each example incorporates far more constraints than those in existing benchmarks, aiming to challenge and extend the boundaries of models' ability to follow complex instructions. These constraints are extracted from real-world prompt-response pairs to ensure practical relevance. Using this framework, we construct RECAST-30K, a large-scale, high-quality dataset comprising 30k instances spanning 19 constraint types. Experimental results demonstrate that models finetuned on RECAST-30K substantially improve in following complex instructions while maintaining their general capabilities without degradation. Moreover, RECAST enables automatic verification of constraint satisfaction via rule-based validators for quantitative constraints and LLM-based validators for qualitative ones; the verifiability provided by RECAST enables the design of reward functions for reinforcement learning, which further boosts model performance on complex and challenging tasks.
Generation of long-form, citation-backed reports is a primary use case for retrieval augmented generation (RAG) systems. While open-source evaluation tools exist for various RAG tasks, ones tailored to report generation are lacking. Accordingly, we introduce Auto-ARGUE, a robust LLM-based implementation of the recent ARGUE framework for report generation evaluation. We present analysis of Auto-ARGUE on the report generation pilot task from the TREC 2024 NeuCLIR track, showing good system-level correlations with human judgments. We further release a web app for visualization of Auto-ARGUE outputs.
Personalized Conversational Information Retrieval (CIR) has seen rapid progress in recent years, driven by the development of Large Language Models (LLMs). Personalized CIR aims to enhance document retrieval by leveraging user-specific information, such as preferences, knowledge, or constraints, to tailor responses to individual needs. A key resource for this task is the TREC iKAT 2023 dataset, designed to evaluate personalization in CIR pipelines. Building on this resource, Mo et al. explored several strategies for incorporating Personal Textual Knowledge Bases (PTKB) into LLM-based query reformulation. Their findings suggested that personalization from PTKBs could be detrimental and that human annotations were often noisy. However, these conclusions were based on single-run experiments using the GPT-3.5 Turbo model, raising concerns about output variability and repeatability. In this reproducibility study, we rigorously reproduce and extend their work, focusing on LLM output variability and model generalization. We apply the original methods to the new TREC iKAT 2024 dataset and evaluate a diverse range of models, including Llama (1B-70B), Qwen-7B, GPT-4o-mini. Our results show that human-selected PTKBs consistently enhance retrieval performance, while LLM-based selection methods do not reliably outperform manual choices. We further compare variance across datasets and observe higher variability on iKAT than on CAsT, highlighting the challenges of evaluating personalized CIR. Notably, recall-oriented metrics exhibit lower variance than precision-oriented ones, a critical insight for first-stage retrievers. Finally, we underscore the need for multi-run evaluations and variance reporting when assessing LLM-based CIR systems. By broadening evaluation across models, datasets, and metrics, our study contributes to more robust and generalizable practices for personalized CIR.
Recent advancements in Large Language Model (LLM) safety have primarily focused on mitigating attacks crafted in natural language or common ciphers (e.g. Base64), which are likely integrated into newer models' safety training. However, we reveal a paradoxical vulnerability: as LLMs advance in reasoning, they inadvertently become more susceptible to novel jailbreaking attacks. Enhanced reasoning enables LLMs to interpret complex instructions and decode complex user-defined ciphers, creating an exploitable security gap. To study this vulnerability, we introduce Attacks using Custom Encryptions (ACE), a jailbreaking technique that encodes malicious queries with novel ciphers. Extending ACE, we introduce Layered Attacks using Custom Encryptions (LACE), which applies multi-layer ciphers to amplify attack complexity. Furthermore, we develop CipherBench, a benchmark designed to evaluate LLMs' accuracy in decoding encrypted benign text. Our experiments reveal a critical trade-off: LLMs that are more capable of decoding ciphers are more vulnerable to LACE, with success rates on gpt-oss-20b escalating from 60% under ACE to 72% with LACE. These findings highlight a critical insight: as LLMs become more adept at deciphering complex user ciphers--many of which cannot be preemptively included in safety training--they become increasingly exploitable.
Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term Format Inertia, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation.
Recent advances in Large Language Models (LLMs) have significantly reshaped the landscape of Natural Language Processing (NLP). Among the various prompting techniques, few-shot prompting has gained considerable attention for its practicality and effectiveness. This study investigates how few-shot prompting strategies impact the Word Sense Disambiguation (WSD) task, particularly focusing on the biases introduced by imbalanced sample distributions. We use the GLOSSGPT prompting method, an advanced approach for English WSD, to test its effectiveness across five languages: English, German, Spanish, French, and Italian. Our results show that imbalanced few-shot examples can cause incorrect sense predictions in multilingual languages, but this issue does not appear in English. To assess model behavior, we evaluate both the GPT-4o and LLaMA-3.1-70B models and the results highlight the sensitivity of multilingual WSD to sample distribution in few-shot settings, emphasizing the need for balanced and representative prompting strategies.
Recent advances in large language models (LLMs) have enabled human-like social simulations at unprecedented scale and fidelity, offering new opportunities for computational social science. A key challenge, however, is the construction of persona sets that authentically represent the diversity and distribution of real-world populations. Most existing LLM-based social simulation studies focus primarily on designing agentic frameworks and simulation environments, often overlooking the complexities of persona generation and the potential biases introduced by unrepresentative persona sets. In this paper, we propose a systematic framework for synthesizing high-quality, population-aligned persona sets for LLM-driven social simulation. Our approach begins by leveraging LLMs to generate narrative personas from long-term social media data, followed by rigorous quality assessment to filter out low-fidelity profiles. We then apply importance sampling to achieve global alignment with reference psychometric distributions, such as the Big Five personality traits. To address the needs of specific simulation contexts, we further introduce a task-specific module that adapts the globally aligned persona set to targeted subpopulations. Extensive experiments demonstrate that our method significantly reduces population-level bias and enables accurate, flexible social simulation for a wide range of research and policy applications.
Recent advances in large language models (LLMs) have created new opportunities for symbolic music generation. However, existing formats such as MIDI, ABC, and MusicXML are either overly complex or structurally inconsistent, limiting their suitability for token-based learning architectures. To address these challenges, we propose HNote, a novel hexadecimal-based notation system extended from YNote, which encodes both pitch and duration within a fixed 32-unit measure framework. This design ensures alignment, reduces ambiguity, and is directly compatible with LLM architectures. We converted 12,300 Jiangnan-style songs generated from traditional folk pieces from YNote into HNote, and fine-tuned LLaMA-3.1(8B) using parameter-efficient LoRA. Experimental results show that HNote achieves a syntactic correctness rate of 82.5%, and BLEU and ROUGE evaluations demonstrate strong symbolic and structural similarity, producing stylistically coherent compositions. This study establishes HNote as an effective framework for integrating LLMs with cultural music modeling.
Novice programmers benefit from timely, personalized support that addresses individual learning gaps, yet the availability of instructors and teaching assistants is inherently limited. Large language models (LLMs) present opportunities to scale such support, though their effectiveness depends on how well technical capabilities are aligned with pedagogical goals. This survey synthesizes recent work on LLM applications in programming education across three focal areas: formative code feedback, assessment, and knowledge modeling. We identify recurring design patterns in how these tools are applied and find that interventions are most effective when educator expertise complements model output through human-in-the-loop oversight, scaffolding, and evaluation. Fully automated approaches are often constrained in capturing the pedagogical nuances of programming education, although human-in-the-loop designs and course specific adaptation offer promising directions for future improvement. Future research should focus on improving transparency, strengthening alignment with pedagogy, and developing systems that flexibly adapt to the needs of varied learning contexts.