Skip to the content.

llm - 2026_01

Home / Papers / llm

Papers

📅 2026-01-28
Existing cultural commonsense benchmarks treat nations as monolithic, assuming uniform practices within national boundaries. But does cultural commonsense hold uniformly within a nation, or does it vary at the sub-national level? We introduce Indica, the first benchmark designed to test LLMs' ability to address this question, focusing on India - a nation of 28 states, 8 union territories, and 22 official languages. We collect human-annotated answers from five Indian regions (North, South, East, West, and Central) across 515 questions spanning 8 domains of everyday life, yielding 1,630 region-specific question-answer pairs. Strikingly, only 39.4% of questions elicit agreement across all five regions, demonstrating that cultural commonsense in India is predominantly regional, not national. We evaluate eight state-of-the-art LLMs and find two critical gaps: models achieve only 13.4%-20.9% accuracy on region-specific questions, and they exhibit geographic bias, over-selecting Central and North India as the "default" (selected 30-40% more often than expected) while under-representing East and West. Beyond India, our methodology provides a generalizable framework for evaluating cultural commonsense in any culturally heterogeneous nation, from question design grounded in anthropological taxonomy, to regional data collection, to bias measurement.
📅 2026-01-28
Assessing ways in which Language Models can reduce their hallucinations and improve the outputs' quality is crucial to ensure their large-scale use. However, methods such as fine-tuning on domain-specific data or the training of a separate \textit{ad hoc} verifier require demanding computational resources (not feasible for many user applications) and constrain the models to specific fields of knowledge. In this thesis, we propose a dialectic pipeline that preserves LLMs' generalization abilities while improving the quality of its answer via self-dialogue, enabling it to reflect upon and correct tentative wrong answers. We experimented with different pipeline settings, testing our proposed method on different datasets and on different families of models. All the pipeline stages are enriched with the relevant context (in an oracle-RAG setting) and a study on the impact of its summarization or its filtering is conducted. We find that our proposed dialectic pipeline is able to outperform by significative margins the standard model answers and that it consistently achieves higher performances than Chain-of-Thought only prompting.
📅 2026-01-28
To support long-term interaction in complex environments, LLM agents require memory systems that manage historical experiences. Existing approaches either retain full interaction histories via passive context extension, leading to substantial redundancy, or rely on iterative reasoning to filter noise, incurring high token costs. To address this challenge, we introduce SimpleMem, an efficient memory framework based on semantic lossless compression. We propose a three-stage pipeline designed to maximize information density and token utilization: (1) Semantic Structured Compression, which distills unstructured interactions into compact, multi-view indexed memory units; (2) Online Semantic Synthesis, an intra-session process that instantly integrates related context into unified abstract representations to eliminate redundancy; and (3) Intent-Aware Retrieval Planning, which infers search intent to dynamically determine retrieval scope and construct precise context efficiently. Experiments on benchmark datasets show that our method consistently outperforms baseline approaches in accuracy, retrieval efficiency, and inference cost, achieving an average F1 improvement of 26.4% while reducing inference-time token consumption by up to 30-fold, demonstrating a superior balance between performance and efficiency. Code is available at https://github.com/aiming-lab/SimpleMem.
📅 2026-01-28
Large language models (LLMs) are highly sensitive to prompts, but most automatic prompt optimization (APO) methods assume access to ground-truth references (e.g., labeled validation data) that are costly to obtain. We propose the Prompt Duel Optimizer (PDO), a sample-efficient framework for label-free prompt optimization based on pairwise preference feedback from an LLM judge. PDO casts prompt selection as a dueling-bandit problem and combines (i) Double Thompson Sampling to prioritize informative comparisons under a fixed judge budget, with (ii) top-performer guided mutation to expand the candidate pool while pruning weak prompts. Experiments on BIG-bench Hard (BBH) and MS MARCO show that PDO consistently identifies stronger prompts than label-free baselines, while offering favorable quality--cost trade-offs under constrained comparison budgets.
📅 2026-01-28
Multi-robot systems have been widely deployed in real-world applications, providing significant improvements in efficiency and reductions in labor costs. However, most existing multi-robot collaboration methods rely on extensive task-specific training, which limits their adaptability to new or diverse scenarios. Recent research leverages the language understanding and reasoning capabilities of large language models (LLMs) to enable more flexible collaboration without specialized training. Yet, current LLM-empowered approaches remain inefficient: when confronted with identical or similar tasks, they must replan from scratch because they omit task-level similarities. To address this limitation, we propose MeCo, a similarity-aware multi-robot collaboration framework that applies the principle of ``cache and reuse'' (a.k.a., memoization) to reduce redundant computation. Unlike simple task repetition, identifying and reusing solutions for similar but not identical tasks is far more challenging, particularly in multi-robot settings. To this end, MeCo introduces a new similarity testing method that retrieves previously solved tasks with high relevance, enabling effective plan reuse without re-invoking LLMs. Furthermore, we present MeCoBench, the first benchmark designed to evaluate performance on similar-task collaboration scenarios. Experimental results show that MeCo substantially reduces planning costs and improves success rates compared with state-of-the-art approaches.
📅 2026-01-28
Determining whether a program terminates is a central problem in computer science. Turing's foundational result established the Halting Problem as undecidable, showing that no algorithm can universally determine termination for all programs and inputs. Consequently, automatic verification tools approximate termination, sometimes failing to prove or disprove; these tools rely on problem-specific architectures and abstractions, and are usually tied to particular programming languages. Recent success and progress in large language models (LLMs) raises the following question: can LLMs reliably predict program termination? In this work, we evaluate LLMs on a diverse set of C programs from the Termination category of the International Competition on Software Verification (SV-Comp) 2025. Our results suggest that LLMs perform remarkably well at predicting program termination, where GPT-5 and Claude Sonnet-4.5 would rank just behind the top-ranked tool (using test-time-scaling), and Code World Model (CWM) would place just behind the second-ranked tool. While LLMs are effective at predicting program termination, they often fail to provide a valid witness as a proof. Moreover, LLMs performance drops as program length increases. We hope these insights motivate further research into program termination and the broader potential of LLMs for reasoning about undecidable problems.
📅 2026-01-28
Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.
📅 2026-01-28
Click-through rate (CTR) prediction is a fundamental task in modern recommender systems. In recent years, the integration of large language models (LLMs) has been shown to effectively enhance the performance of traditional CTR methods. However, existing LLM-enhanced methods often require extensive processing of detailed textual descriptions for large-scale instances or user/item entities, leading to substantial computational overhead. To address this challenge, this work introduces LLaCTR, a novel and lightweight LLM-enhanced CTR method that employs a field-level enhancement paradigm. Specifically, LLaCTR first utilizes LLMs to distill crucial and lightweight semantic knowledge from small-scale feature fields through self-supervised field-feature fine-tuning. Subsequently, it leverages this field-level semantic knowledge to enhance both feature representation and feature interactions. In our experiments, we integrate LLaCTR with six representative CTR models across four datasets, demonstrating its superior performance in terms of both effectiveness and efficiency compared to existing LLM-enhanced methods. Our code is available at https://github.com/istarryn/LLaCTR.
📅 2026-01-28
As large language models (LLMs) are increasingly applied to legal domain-specific tasks, evaluating their ability to perform legal work in real-world settings has become essential. However, existing legal benchmarks rely on simplified and highly standardized tasks, failing to capture the ambiguity, complexity, and reasoning demands of real legal practice. Moreover, prior evaluations often adopt coarse, single-dimensional metrics and do not explicitly assess fine-grained legal reasoning. To address these limitations, we introduce PLawBench, a Practical Law Benchmark designed to evaluate LLMs in realistic legal practice scenarios. Grounded in real-world legal workflows, PLawBench models the core processes of legal practitioners through three task categories: public legal consultation, practical case analysis, and legal document generation. These tasks assess a model's ability to identify legal issues and key facts, perform structured legal reasoning, and generate legally coherent documents. PLawBench comprises 850 questions across 13 practical legal scenarios, with each question accompanied by expert-designed evaluation rubrics, resulting in approximately 12,500 rubric items for fine-grained assessment. Using an LLM-based evaluator aligned with human expert judgments, we evaluate 10 state-of-the-art LLMs. Experimental results show that none achieves strong performance on PLawBench, revealing substantial limitations in the fine-grained legal reasoning capabilities of current LLMs and highlighting important directions for future evaluation and development of legal LLMs. Data is available at: https://github.com/skylenage/PLawbench.
📅 2026-01-28 | 💬 27 pages, 1 figure, 8 tables
Large language models (LLMs) are increasingly used to generate code, yet they continue to hallucinate, often inventing non-existent libraries. Such library hallucinations are not just benign errors: they can mislead developers, break builds, and expose systems to supply chain threats such as slopsquatting. Despite increasing awareness of these risks, little is known about how real-world prompt variations affect hallucination rates. Therefore, we present the first systematic study of how user-level prompt variations impact library hallucinations in LLM-generated code. We evaluate seven diverse LLMs across two hallucination types: library name hallucinations (invalid imports) and library member hallucinations (invalid calls from valid libraries). We investigate how realistic user language extracted from developer forums and how user errors of varying degrees (one- or multi-character misspellings and completely fake names/members) affect LLM hallucination rates. Our findings reveal systemic vulnerabilities: one-character misspellings in library names trigger hallucinations in up to 26% of tasks, fake library names are accepted in up to 99% of tasks, and time-related prompts lead to hallucinations in up to 84% of tasks. Prompt engineering shows promise for mitigating hallucinations, but remains inconsistent and LLM-dependent. Our results underscore the fragility of LLMs to natural prompt variation and highlight the urgent need for safeguards against library-related hallucinations and their potential exploitation.
📅 2026-01-28 | 💬 13 pages, 4 figures
Column matching is a central task in reconciling schemas for data integration. Column names and descriptions are valuable for this task. LLMs can leverage such natural-language schema metadata. However, in many datasets, correct matching requires additional evidence beyond the column itself. Because it is impractical to provide an LLM with the entire schema metadata needed to capture this evidence, the core challenge becomes to select and organize the most useful contextual information. We present ConStruM, a structure-guided framework for budgeted evidence packing in schema matching. ConStruM constructs a lightweight, reusable structure in which, at query time, it assembles a small context pack emphasizing the most discriminative evidence. ConStruM is designed as an add-on: given a shortlist of candidate targets produced by an upstream matcher, it augments the matcher's final LLM prompt with structured, query-specific evidence so that the final selection is better grounded. For this purpose, we develop a context tree for budgeted multi-level context retrieval and a global similarity hypergraph that surfaces groups of highly similar columns (on both the source and target sides), summarized via group-aware differentiation cues computed online or precomputed offline. Experiments on real datasets show that ConStruM improves matching by providing and organizing the right contextual evidence.
📅 2026-01-28
Developing human understandable interpretation of large language models (LLMs) becomes increasingly critical for their deployment in essential domains. Mechanistic interpretability seeks to mitigate the issues through extracts human-interpretable process and concepts from LLMs' activations. Sparse autoencoders (SAEs) have emerged as a popular approach for extracting interpretable and monosemantic concepts by decomposing the LLM internal representations into a dictionary. Despite their empirical progress, SAEs suffer from a fundamental theoretical ambiguity: the well-defined correspondence between LLM representations and human-interpretable concepts remains unclear. This lack of theoretical grounding gives rise to several methodological challenges, including difficulties in principled method design and evaluation criteria. In this work, we show that, under mild assumptions, LLM representations can be approximated as a {linear mixture} of the log-posteriors over concepts given the input context, through the lens of a latent variable model where concepts are treated as latent variables. This motivates a principled framework for concept extraction, namely Concept Component Analysis (ConCA), which aims to recover the log-posterior of each concept from LLM representations through a {unsupervised} linear unmixing process. We explore a specific variant, termed sparse ConCA, which leverages a sparsity prior to address the inherent ill-posedness of the unmixing problem. We implement 12 sparse ConCA variants and demonstrate their ability to extract meaningful concepts across multiple LLMs, offering theory-backed advantages over SAEs.
📅 2026-01-28 | 💬 Accepted to ICASSP 2026
Current speech LLMs bridge speech foundation models to LLMs using projection layers, training all of these components on speech instruction data. This strategy is computationally intensive and susceptible to task and prompt overfitting. We present SpeechMapper, a cost-efficient speech-to-LLM-embedding training approach that mitigates overfitting, enabling more robust and generalizable models. Our model is first pretrained without the LLM on inexpensive hardware, and then efficiently attached to the target LLM via a brief 1K-step instruction tuning (IT) stage. Through experiments on speech translation and spoken question answering, we demonstrate the versatility of SpeechMapper's pretrained block, presenting results for both task-agnostic IT, an ASR-based adaptation strategy that does not train in the target task, and task-specific IT. In task-agnostic settings, Speechmapper rivals the best instruction-following speech LLM from IWSLT25, despite never being trained on these tasks, while in task-specific settings, it outperforms this model across many datasets, despite requiring less data and compute. Overall, SpeechMapper offers a practical and scalable approach for efficient, generalizable speech-LLM integration without large-scale IT.
📅 2026-01-28 | 💬 Accepted in MLSys 2026
Enterprise LLM deployment faces a critical scalability challenge: organizations must optimize models systematically to scale AI initiatives within constrained compute budgets, yet the specialized expertise required for manual optimization remains a niche and scarce skillset. This challenge is particularly evident in managing GPU utilization across heterogeneous infrastructure while enabling teams with diverse workloads and limited LLM optimization experience to deploy models efficiently. We present OptiKIT, a distributed LLM optimization framework that democratizes model compression and tuning by automating complex optimization workflows for non-expert teams. OptiKIT provides dynamic resource allocation, staged pipeline execution with automatic cleanup, and seamless enterprise integration. In production, it delivers more than 2x GPU throughput improvement while empowering application teams to achieve consistent performance improvements without deep LLM optimization expertise. We share both the platform design and key engineering insights into resource allocation algorithms, pipeline orchestration, and integration patterns that enable large-scale, production-grade democratization of model optimization. Finally, we open-source the system to enable external contributions and broader reproducibility.
📅 2026-01-28 | 💬 19 pages, 5 figures
Large language models (LLMs) struggle with complex, long-horizon reasoning due to instability caused by their frozen policy assumption. Current test-time scaling methods treat execution feedback merely as an external signal for filtering or rewriting trajectories, without internalizing it to improve the underlying reasoning strategy. Inspired by Popper's epistemology of "conjectures and refutations," we argue that intelligence requires real-time evolution of the model's policy through learning from failed attempts. We introduce Policy of Thoughts (PoT), a framework that recasts reasoning as a within-instance online optimization process. PoT first generates diverse candidate solutions via an efficient exploration mechanism, then uses Group Relative Policy Optimization (GRPO) to update a transient LoRA adapter based on execution feedback. This closed-loop design enables dynamic, instance-specific refinement of the model's reasoning priors. Experiments show that PoT dramatically boosts performance: a 4B model achieves 49.71% accuracy on LiveCodeBench, outperforming GPT-4o and DeepSeek-V3 despite being over 50 smaller.
📅 2026-01-28 | 💬 Accepted to ACM Web Conference 2026 (WWW '26)
Detecting harmful memes is crucial for safeguarding the integrity and harmony of online environments, yet existing detection methods are often resource-intensive, inflexible, and lacking explainability, limiting their applicability in assisting real-world web content moderation. We propose U-CoT+, a resource-efficient framework that prioritizes accessibility, flexibility and transparency in harmful meme detection by fully harnessing the capabilities of lightweight unimodal large language models (LLMs). Instead of directly prompting or fine-tuning large multimodal models (LMMs) as black-box classifiers, we avoid immediate reasoning over complex visual inputs but decouple meme content recognition from meme harmfulness analysis through a high-fidelity meme-to-text pipeline, which collaborates lightweight LMMs and LLMs to convert multimodal memes into natural language descriptions that preserve critical visual information, thus enabling text-only LLMs to "see" memes by "reading". Grounded in textual inputs, we further guide unimodal LLMs' reasoning under zero-shot Chain-of-Thoughts (CoT) prompting with targeted, interpretable, context-aware, and easily obtained human-crafted guidelines, thus providing accountable step-by-step rationales, while enabling flexible and efficient adaptation to diverse sociocultural criteria of harmfulness. Extensive experiments on seven benchmark datasets show that U-CoT+ achieves performance comparable to resource-intensive baselines, highlighting its effectiveness and potential as a scalable, explainable, and low-resource solution to support harmful meme detection.
📅 2026-01-28 | 💬 Accepted by VLDB2026
Large Language Models (LLMs) can be fine-tuned on domain-specific data to enhance their performance in specialized fields. However, such data often contains numerous low-quality samples, necessitating effective data processing (DP). In practice, DP strategies are typically developed through iterative manual analysis and trial-and-error adjustment. These processes inevitably incur high labor costs and may lead to privacy issues in high-privacy domains like healthcare due to direct human access to sensitive data. Thus, achieving automated data processing without exposing the raw data has become a critical challenge. To address this challenge, we propose LLM-AutoDP, a novel framework that leverages LLMs as agents to automatically generate and optimize data processing strategies. Our method generates multiple candidate strategies and iteratively refines them using feedback signals and comparative evaluations. This iterative in-context learning mechanism enables the agent to converge toward high-quality processing pipelines without requiring direct human intervention or access to the underlying data. To further accelerate strategy search, we introduce three key techniques: Distribution Preserving Sampling, which reduces data volume while maintaining distributional integrity; Processing Target Selection, which uses a binary classifier to identify low-quality samples for focused processing; Cache-and-Reuse Mechanism}, which minimizes redundant computations by reusing prior processing results. Results show that models trained on data processed by our framework achieve over 80% win rates against models trained on unprocessed data. Compared to AutoML baselines based on LLM agents, LLM-AutoDP achieves approximately a 65% win rate. Moreover, our acceleration techniques reduce the total searching time by up to 10 times, demonstrating both effectiveness and efficiency.
📅 2026-01-28
Robotic manipulation has increasingly adopted vision-language-action (VLA) models, which achieve strong performance but typically require task-specific demonstrations and fine-tuning, and often generalize poorly under domain shift. We investigate whether general-purpose large language model (LLM) agent frameworks, originally developed for software engineering, can serve as an alternative control paradigm for embodied manipulation. We introduce FAEA (Frontier Agent as Embodied Agent), which applies an LLM agent framework directly to embodied manipulation without modification. Using the same iterative reasoning that enables software agents to debug code, FAEA enables embodied agents to reason through manipulation strategies. We evaluate an unmodified frontier agent, Claude Agent SDK, across the LIBERO, ManiSkill3, and MetaWorld benchmarks. With privileged environment state access, FAEA achieves success rates of 84.9%, 85.7%, and 96%, respectively. This level of task success approaches that of VLA models trained with less than 100 demonstrations per task, without requiring demonstrations or fine-tuning. With one round of human feedback as an optional optimization, performance increases to 88.2% on LIBERO. This demonstration-free capability has immediate practical value: FAEA can autonomously explore novel scenarios in simulation and generate successful trajectories for training data augmentation in embodied learning. Our results indicate that general-purpose agents are sufficient for a class of manipulation tasks dominated by deliberative, task-level planning. This opens a path for robotics systems to leverage actively maintained agent infrastructure and benefit directly from ongoing advances in frontier models. Code is available at https://github.com/robiemusketeer/faea-sim
📅 2026-01-28
While large language models show promise in mental healthcare, evaluating their therapeutic competence remains challenging due to the unstructured and longitudinal nature of counseling. We argue that current evaluation paradigms suffer from an unanchored defect, leading to two forms of instability: process drift, where unsteered client simulation wanders away from specific counseling goals, and standard drift, where static pointwise scoring lacks the stability for reliable judgment. To address this, we introduce Ps, a unified framework that calibrates the therapeutic competence of LLMs via trajectory-anchored tournaments. We first anchor the interaction trajectory in simulation, where clients precisely control the fluid consultation process to probe multifaceted capabilities. We then anchor the battle trajectory in judgments through an efficient Swiss-system tournament, utilizing dynamic pairwise battles to yield robust Elo ratings. Beyond ranking, we demonstrate that tournament trajectories can be transformed into credible reward signals, enabling on-policy reinforcement learning to enhance LLMs' performance. Extensive experiments validate the effectiveness of PsychePass and its strong consistency with human expert judgments.
📅 2026-01-28
Large Language Models (LLMs) are increasingly deployed for personalized product recommendations, with practitioners commonly assuming that longer user purchase histories lead to better predictions. We challenge this assumption through a systematic benchmark of four state of the art LLMs GPT-4o-mini, DeepSeek-V3, Qwen2.5-72B, and Gemini 2.5 Flash across context lengths ranging from 5 to 50 items using the REGEN dataset. Surprisingly, our experiments with 50 users in a within subject design reveal no significant quality improvement with increased context length. Quality scores remain flat across all conditions (0.17--0.23). Our findings have significant practical implications: practitioners can reduce inference costs by approximately 88\% by using context (5--10 items) instead of longer histories (50 items), without sacrificing recommendation quality. We also analyze latency patterns across providers and find model specific behaviors that inform deployment decisions. This work challenges the existing ``more context is better'' paradigm and provides actionable guidelines for cost effective LLM based recommendation systems.
📅 2026-01-28
The global shortage and uneven distribution of medical expertise continue to hinder equitable access to accurate diagnostic care. While existing intelligent diagnostic system have shown promise, most struggle with dual-user interaction, and dynamic knowledge integration -- limiting their real-world applicability. In this study, we present DiagLink, a dual-user diagnostic assistance system that synergizes large language models (LLMs), knowledge graphs (KGs), and medical experts to support both patients and physicians. DiagLink uses guided dialogues to elicit patient histories, leverages LLMs and KGs for collaborative reasoning, and incorporates physician oversight for continuous knowledge validation and evolution. The system provides a role-adaptive interface, dynamically visualized history, and unified multi-source evidence to improve both trust and usability. We evaluate DiagLink through user study, use cases and expert interviews, demonstrating its effectiveness in improving user satisfaction and diagnostic efficiency, while offering insights for the design of future AI-assisted diagnostic systems.
📅 2026-01-28 | 💬 Accepted by MLSys '26
Large Language Model (LLM) serving faces a fundamental tension between stringent latency Service Level Objectives (SLOs) and limited GPU memory capacity. When high request rates exhaust the KV cache budget, existing LLM inference systems often suffer severe head-of-line (HOL) blocking. While prior work explored PCIe-based offloading, these approaches cannot sustain responsiveness under high request rates, often failing to meet tight Time-To-First-Token (TTFT) and Time-Between-Tokens (TBT) SLOs. We present SuperInfer, a high-performance LLM inference system designed for emerging Superchips (e.g., NVIDIA GH200) with tightly coupled GPU-CPU architecture via NVLink-C2C. SuperInfer introduces RotaSched, the first proactive, SLO-aware rotary scheduler that rotates requests to maintain responsiveness on Superchips, and DuplexKV, an optimized rotation engine that enables full-duplex transfer over NVLink-C2C. Evaluations on GH200 using various models and datasets show that SuperInfer improves TTFT SLO attainment rates by up to 74.7% while maintaining comparable TBT and throughput compared to state-of-the-art systems, demonstrating that SLO-aware scheduling and memory co-design unlocks the full potential of Superchips for responsive LLM serving.
📅 2026-01-28 | 💬 Accepted at The Web Conference (WWW) 2026
Large Language Models (LLMs) have recently demonstrated remarkable reasoning abilities, yet hallucinate on knowledge-intensive tasks. Retrieval-augmented generation (RAG) mitigates this issue by grounding answers in external sources, e.g., knowledge graphs (KGs). However, existing KG-based RAG approaches rely on semantics-unaware path sampling and are weakly aligned with KG reasoning objectives, which limits further accuracy gains. They also feed retrieved paths directly into the reasoner without organizing them into answer-centered reasoning paths, hindering small LLMs' ability to leverage the retrieved knowledge. Furthermore, prior works predominantly rely on large LLMs (e.g., ChatGPT/GPT-4) or assume backbones above 7B parameters, leaving sub-7B models underexplored. We address this gap with RPO-RAG, the first KG-based RAG framework specifically designed for small LLMs, to the best of our knowledge. RPO-RAG introduces three key innovations: (1) a query-path semantic sampling strategy that provides informative supervisory signals; (2) a relation-aware preference optimization that aligns training with intermediate KG reasoning signals (e.g., relation); and (3) an answer-centered prompt design that organizes entities and reasoning paths in an interpretable format. Extensive experiments on two benchmark Knowledge Graph Question Answering (KGQA) datasets, WebQSP and CWQ, demonstrate that RPO-RAG effectively bridges the performance gap between small and large language models. On WebQSP, it improves F1 by up to 8.8%, reflecting enhanced answer precision, while on CWQ it achieves new state-of-the-art results among models under 8B parameters in both Hit and F1. Overall, RPO-RAG substantially improves the reasoning capability of small LLMs, even under 3B parameters-highlighting their potential for resource-efficient and practical on-device KGQA applications.
📅 2026-01-28 | 💬 ICLR 2026
The evaluation and post-training of large language models (LLMs) rely on supervision, but strong supervision for difficult tasks is often unavailable, especially when evaluating frontier models. In such cases, models are demonstrated to exploit evaluations built on such imperfect supervision, leading to deceptive results. However, underutilized in LLM research, a wealth of mechanism design research focuses on game-theoretic incentive compatibility, i.e., eliciting honest and informative answers with weak supervision. Drawing from this literature, we introduce the peer prediction method for model evaluation and post-training. It rewards honest and informative answers over deceptive and uninformative ones, using a metric based on mutual predictability and without requiring ground truth labels. We demonstrate the method's effectiveness and resistance to deception, with both theoretical guarantees and empirical validation on models with up to 405B parameters. We show that training an 8B model with peer prediction-based reward recovers most of the drop in truthfulness due to prior malicious finetuning, even when the reward is produced by a 0.135B language model with no finetuning. On the evaluation front, in contrast to LLM-as-a-Judge which requires strong and trusted judges, we discover an inverse scaling property in peer prediction, where, surprisingly, resistance to deception is strengthened as the capability gap between the experts and participants widens, enabling reliable evaluation of strong models with weak supervision. In particular, LLM-as-a-Judge become worse than random guess when facing deceptive models 5-20x the judge's size, while peer prediction thrives when such gaps are large, including in cases with over 100x size difference.
📅 2026-01-28 | 💬 35 pages, 23 figures
Large Language Models (LLMs) have demonstrated impressive performance in executing complex reasoning tasks. Chain-of-thought effectively enhances reasoning capabilities by unlocking the potential of large models, while multi-agent systems provide more comprehensive solutions by integrating the collective intelligence of multiple agents. However, both approaches face significant limitations. Single-agent with chain-of-thought, due to the inherent complexity of designing cross-domain prompts, faces collaboration challenges. Meanwhile, multi-agent systems consume substantial tokens and inevitably dilute the primary problem, which is particularly problematic in business workflow tasks. To address these challenges, we propose Cochain, a collaboration prompting framework that effectively solves the business workflow collaboration problem by combining knowledge and prompts at a reduced cost. Specifically, we construct an integrated knowledge graph that incorporates knowledge from multiple stages. Furthermore, by maintaining and retrieving a prompts tree, we can obtain prompt information relevant to other stages of the business workflow. We perform extensive evaluations of Cochain across multiple datasets, demonstrating that Cochain outperforms all baselines in both prompt engineering and multi-agent LLMs. Additionally, expert evaluation results indicate that the use of a small model in combination with Cochain outperforms GPT-4.
📅 2026-01-28 | 💬 24 pages, 10 figures
Exhaustively evaluating many large language models (LLMs) on a large suite of benchmarks is expensive. We cast benchmarking as finite-population inference and, under a fixed query budget, seek tight confidence intervals (CIs) for model accuracy with valid frequentist coverage. We propose Factorized Active Querying (FAQ), which (a) leverages historical information through a Bayesian factor model; (b) adaptively selects questions using a hybrid variance-reduction/active-learning sampling policy; and (c) maintains validity through Proactive Active Inference -- a finite-population extension of active inference (Zrnic & Candes, 2024) that enables direct question selection while preserving coverage. With negligible overhead cost, FAQ delivers up to $5\times$ effective sample size gains over strong baselines on two benchmark suites, across varying historical-data missingness levels: this means that it matches the CI width of uniform sampling while using up to $5\times$ fewer queries. We release our source code and our curated datasets to support reproducible evaluation and future research.
📅 2026-01-28 | 💬 21 pages in total, including 9 pages of main text, with 4 figures and 3 tables. This manuscript is submitted to arXiv
Zeroth-Order (ZO) optimization has emerged as a promising solution for fine-tuning LLMs under strict memory constraints, as it avoids the prohibitive memory cost of storing activations for backpropagation. However, existing ZO methods typically employ isotropic perturbations, neglecting the rich structural information available during the forward pass. In this paper, we identify a crucial link between gradient formation and activation structure: the gradient of a linear layer is confined to the subspace spanned by its input activations. Leveraging this insight, we propose Activation-Guided Zeroth-Order optimization (AGZO). Unlike prior methods, AGZO extracts a compact, activation-informed subspace on the fly during the forward pass and restricts perturbations to this low-rank subspace. We provide a theoretical framework showing that AGZO optimizes a subspace-smoothed objective and provably yields update directions with higher cosine similarity to the true gradient than isotropic baselines. Empirically, we evaluate AGZO on Qwen3 and Pangu models across various benchmarks. AGZO consistently outperforms state-of-the-art ZO baselines and significantly narrows the performance gap with first-order fine-tuning, while maintaining almost the same peak memory footprint as other ZO methods.
📅 2026-01-28
Large Language Models (LLMs) have achieved remarkable strides in multilingual translation but are hindered by a systemic cross-lingual verbosity bias, rendering them unsuitable for strict time-constrained tasks like subtitling and dubbing. Current prompt-engineering approaches struggle to resolve this conflict between semantic fidelity and rigid temporal feasibility. To bridge this gap, we first introduce Sand-Glass, a benchmark specifically designed to evaluate translation under syllable-level duration constraints. Furthermore, we propose HOMURA, a reinforcement learning framework that explicitly optimizes the trade-off between semantic preservation and temporal compliance. By employing a KL-regularized objective with a novel dynamic syllable-ratio reward, HOMURA effectively "tames" the output length. Experimental results demonstrate that our method significantly outperforms strong LLM baselines, achieving precise length control that respects linguistic density hierarchies without compromising semantic adequacy.
📅 2026-01-28
Large language models (LLMs) are often used in environments where facts evolve, yet factual knowledge updates via fine-tuning on unstructured text often suffers from 1) reliance on compute-heavy paraphrase augmentation and 2) the reversal curse. Recent studies show diffusion large language models (dLLMs) require fewer training samples to achieve lower loss in pre-training and are more resistant to the reversal curse, suggesting dLLMs may learn new knowledge more easily than autoregressive LLMs (arLLMs). We test this hypothesis in controlled knowledge fine-tuning experiments and find that while arLLMs rely on paraphrase augmentation to generalize knowledge text into question-answering (QA) capability, dLLMs do not require paraphrases to achieve high QA accuracy. To further investigate whether the demasking objective alone can induce such a knowledge injection advantage in dLLMs regardless of their diffusion denoising paradigm, we propose masked fine-tuning for arLLMs, which prompts an arLLM to reconstruct the original text given a masked version in context. The masked fine-tuning for arLLMs substantially improves the efficacy of knowledge injection, i.e. no paraphrase needed and resistant to the reversal curse, closing the gap between arLLMs and dLLMs. We also demonstrate that the same demasking objective improves supervised fine-tuning (SFT) on math tasks over standard SFT, suggesting broader applicability of the demasking objective.
📅 2026-01-28
Humans constantly generate a diverse range of tasks guided by internal motivations. While generative agents powered by large language models (LLMs) aim to simulate this complex behavior, it remains uncertain whether they operate on similar cognitive principles. To address this, we conducted a task-generation experiment comparing human responses with those of an LLM agent (GPT-4o). We find that human task generation is consistently influenced by psychological drivers, including personal values (e.g., Openness to Change) and cognitive style. Even when these psychological drivers are explicitly provided to the LLM, it fails to reflect the corresponding behavioral patterns. They produce tasks that are markedly less social, less physical, and thematically biased toward abstraction. Interestingly, while the LLM's tasks were perceived as more fun and novel, this highlights a disconnect between its linguistic proficiency and its capacity to generate human-like, embodied goals. We conclude that there is a core gap between the value-driven, embodied nature of human cognition and the statistical patterns of LLMs, highlighting the necessity of incorporating intrinsic motivation and physical grounding into the design of more human-aligned agents.
📅 2026-01-28
As an important part of urbanization, the development monitoring of newly constructed parks is of great significance for evaluating the effect of urban planning and optimizing resource allocation. However, traditional change detection methods based on remote sensing imagery have obvious limitations in high-level and intelligent analysis, and thus are difficult to meet the requirements of current urban planning and management. In face of the growing demand for complex multi-modal data analysis in urban park development monitoring, these methods often fail to provide flexible analysis capabilities for diverse application scenarios. This study proposes a multi-modal LLM agent framework, which aims to make full use of the semantic understanding and reasoning capabilities of LLM to meet the challenges in urban park development monitoring. In this framework, a general horizontal and vertical data alignment mechanism is designed to ensure the consistency and effective tracking of multi-modal data. At the same time, a specific toolkit is constructed to alleviate the hallucination issues of LLM due to the lack of domain-specific knowledge. Compared to vanilla GPT-4o and other agents, our approach enables robust multi-modal information fusion and analysis, offering reliable and scalable solutions tailored to the diverse and evolving demands of urban park development monitoring.
📅 2026-01-28 | 💬 Australasian Conference on Robotics and Automation, ACRA2025 13 Pages, 8 Figures
Marine biofouling on vessel hulls poses major ecological, economic, and biosecurity risks. Traditional survey methods rely on diver inspections, which are hazardous and limited in scalability. This work investigates automated classification of biofouling severity on the Level of Fouling (LoF) scale using both custom computer vision models and large multimodal language models (LLMs). Convolutional neural networks, transformer-based segmentation, and zero-shot LLMs were evaluated on an expert-labelled dataset from the New Zealand Ministry for Primary Industries. Computer vision models showed high accuracy at extreme LoF categories but struggled with intermediate levels due to dataset imbalance and image framing. LLMs, guided by structured prompts and retrieval, achieved competitive performance without training and provided interpretable outputs. The results demonstrate complementary strengths across approaches and suggest that hybrid methods integrating segmentation coverage with LLM reasoning offer a promising pathway toward scalable and interpretable biofouling assessment.
📅 2026-01-28
LLM deployment in critical domains is currently impeded by persistent hallucinations--generating plausible but factually incorrect assertions. While scaling laws drove significant improvements in general capabilities, theoretical frameworks suggest hallucination is not merely stochastic error but a predictable statistical consequence of training objectives prioritizing mimicking data distribution over epistemic honesty. Standard RLVR paradigms, utilizing binary reward signals, inadvertently incentivize models as good test-takers rather than honest communicators, encouraging guessing whenever correctness probability exceeds zero. This paper presents an exhaustive investigation into behavioral calibration, which incentivizes models to stochastically admit uncertainty by abstaining when not confident, aligning model behavior with accuracy. Synthesizing recent advances, we propose and evaluate training interventions optimizing strictly proper scoring rules for models to output a calibrated probability of correctness. Our methods enable models to either abstain from producing a complete response or flag individual claims where uncertainty remains. Utilizing Qwen3-4B-Instruct, empirical analysis reveals behavior-calibrated reinforcement learning allows smaller models to surpass frontier models in uncertainty quantification--a transferable meta-skill decouplable from raw predictive accuracy. Trained on math reasoning tasks, our model's log-scale Accuracy-to-Hallucination Ratio gain (0.806) exceeds GPT-5's (0.207) in a challenging in-domain evaluation (BeyondAIME). Moreover, in cross-domain factual QA (SimpleQA), our 4B LLM achieves zero-shot calibration error on par with frontier models including Grok-4 and Gemini-2.5-Pro, even though its factual accuracy is much lower.
📅 2026-01-28
Large language models (LLMs) have shown promise as parametric knowledge bases, but often underperform on question answering (QA) tasks due to hallucinations and uncertainty. While prior work attributes these failures to knowledge gaps in the model's parameters, we uncover a complementary phenomenon: LLMs frequently retain correct knowledge even when generating incorrect or "unsure" answers. By analyzing the token-level output distributions, we find that correct answers often appear among high-probability candidates, despite not being selected. Motivated by this, we propose Hits@k, a novel metric to evaluate latent knowledge retention independent of answer surface form. Our experiments reveal that LLMs possess significantly more factual knowledge than is reflected by standard QA accuracy. Building on these insights, we further examine the prevailing few-shot QA paradigm. We find that prompting strategies which allow "unsure" outputs can inadvertently suppress correct answers by discouraging low-confidence generation. We design a set of quantitative experiments to measure this suppression effect, offering practical guidance for future prompt and decoding design in knowledge-intensive tasks.
📅 2026-01-28 | 💬 41 pages, 34 figures, Accepted at ICLR 2026, Code available at https://github.com/Jim-Maar/implicit-planning-in-llms
Prior work suggests that language models, while trained on next token prediction, show implicit planning behavior: they may select the next token in preparation to a predicted future token, such as a likely rhyming word, as supported by a prior qualitative study of Claude 3.5 Haiku using a cross-layer transcoder. We propose much simpler techniques for assessing implicit planning in language models. With case studies on rhyme poetry generation and question answering, we demonstrate that our methodology easily scales to many models. Across models, we find that the generated rhyme (e.g. "-ight") or answer to a question ("whale") can be manipulated by steering at the end of the preceding line with a vector, affecting the generation of intermediate tokens leading up to the rhyme or answer word. We show that implicit planning is a universal mechanism, present in smaller models than previously thought, starting from 1B parameters. Our methodology offers a widely applicable direct way to study implicit planning abilities of LLMs. More broadly, understanding planning abilities of language models can inform decisions in AI safety and control.
📅 2026-01-28 | 💬 Preprint. Accepted for presentation at Mining Software Repositories (MSR'26), co-located ICSE 2026. The final version will appear in the ACM Digital Library as part of the MSR'26 conference proceedings
Logs are essential for understanding Continuous Integration (CI) behavior, particularly for diagnosing build failures and performance regressions. Yet their growing volume and verbosity make both manual inspection and automated analysis increasingly costly, time-consuming, and environmentally costly. While prior work has explored log compression, anomaly detection, and LLM-based log analysis, most efforts target structured system logs rather than the unstructured, noisy, and verbose logs typical of CI workflows. We present LogSieve, a lightweight, RCA-aware and semantics-preserving log reduction technique that filters low-information lines while retaining content relevant to downstream reasoning. Evaluated on CI logs from 20 open-source Android projects using GitHub Actions, LogSieve achieves an average 42% reduction in lines and 40% reduction in tokens with minimal semantic loss. This pre-inference reduction lowers computational cost and can proportionally reduce energy use (and associated emissions) by decreasing the volume of data processed during LLM inference. Compared with structure-first baselines (LogZip and random-line removal), LogSieve preserves much higher semantic and categorical fidelity (Cosine = 0.93, GPTScore = 0.93, 80% exact-match accuracy). Embedding-based classifiers automate relevance detection with near-human accuracy (97%), enabling scalable and sustainable integration of semantics-aware filtering into CI workflows. LogSieve thus bridges log management and LLM reasoning, offering a practical path toward greener and more interpretable CI automation.
📅 2026-01-28
Agentic benchmarks increasingly rely on LLM-simulated users to scalably evaluate agent performance, yet the robustness, validity, and fairness of this approach remain unexamined. Through a user study with participants across the United States, India, Kenya, and Nigeria, we investigate whether LLM-simulated users serve as reliable proxies for real human users in evaluating agents on τ-Bench retail tasks. We find that user simulation lacks robustness, with agent success rates varying up to 9 percentage points across different user LLMs. Furthermore, evaluations using simulated users exhibit systematic miscalibration, underestimating agent performance on challenging tasks and overestimating it on moderately difficult ones. African American Vernacular English (AAVE) speakers experience consistently worse success rates and calibration errors than Standard American English (SAE) speakers, with disparities compounding significantly with age. We also find simulated users to be a differentially effective proxy for different populations, performing worst for AAVE and Indian English speakers. Additionally, simulated users introduce conversational artifacts and surface different failure patterns than human users. These findings demonstrate that current evaluation practices risk misrepresenting agent capabilities across diverse user populations and may obscure real-world deployment challenges.
📅 2026-01-28
Current multimodal LLMs process audio as a mono stream, ignoring the rich spatial information essential for embodied AI. Existing spatial audio models, conversely, are constrained to fixed microphone geometries, preventing deployment across diverse devices. We present PhaseCoder, a transformer-only spatial audio encoder that is agnostic to microphone geometry. PhaseCoder takes raw multichannel audio and microphone coordinates as inputs to perform localization and produces robust spatial embeddings. We demonstrate that Gemma 3n LLM can be fine-tuned to reason over "Spatial Audio Tokens" produced by PhaseCoder. We show our encoder achieves state-of-the-art results on microphone-invariant localization benchmarks and, for the first time, enables an LLM to perform complex spatial reasoning and targeted transcription tasks from an arbitrary microphone array.
📅 2026-01-28
Recent research advocates deploying smaller, specialized code LLMs in agentic frameworks alongside frontier models, sparking interest in efficient strategies for multi-task learning that balance performance, constraints, and costs. We compare two approaches for creating small, multi-task code LLMs: data mixing versus model merging. We conduct extensive experiments across two model families (Qwen Coder and DeepSeek Coder) at two scales (2B and 7B parameters), fine-tuning them for code generation and code summarization tasks. Our evaluation on HumanEval, MBPP, and CodeXGlue benchmarks reveals that model merging achieves the best overall performance at larger scale across model families, retaining 96% of specialized model performance on code generation tasks while maintaining summarization capabilities. Notably, merged models can even surpass individually fine-tuned models, with our best configuration of Qwen Coder 2.5 7B model achieving 92.7% Pass@1 on HumanEval compared to 90.9% for its task-specific fine-tuned equivalent. At a smaller scale we find instead data mixing to be a preferred strategy. We further introduce a weight analysis technique to understand how different tasks affect model parameters and their implications for merging strategies. The results suggest that careful merging and mixing strategies can effectively combine task-specific capabilities without significant performance degradation, making them ideal for resource-constrained deployment scenarios.
📅 2026-01-28
Objective: Large language models (LLMs) show promise for clinical discharge planning, but their use is constrained by hallucination, omissions, and miscalibrated confidence. We introduce a self-improving, cache-optional Planner-Auditor framework that improves safety and reliability by decoupling generation from deterministic validation and targeted replay. Materials and Methods: We implemented an agentic, retrospective, FHIR-native evaluation pipeline using MIMIC-IV-on-FHIR. For each patient, the Planner (LLM) generates a structured discharge action plan with an explicit confidence estimate. The Auditor is a deterministic module that evaluates multi-task coverage, tracks calibration (Brier score, ECE proxies), and monitors action-distribution drift. The framework supports two-tier self-improvement: (i) within-episode regeneration when enabled, and (ii) cross-episode discrepancy buffering with replay for high-confidence, low-coverage cases. Results: While context caching improved performance over baseline, the self-improvement loop was the primary driver of gains, increasing task coverage from 32% to 86%. Calibration improved substantially, with reduced Brier/ECE and fewer high-confidence misses. Discrepancy buffering further corrected persistent high-confidence omissions during replay. Discussion: Feedback-driven regeneration and targeted replay act as effective control mechanisms to reduce omissions and improve confidence reliability in structured clinical planning. Separating an LLM Planner from a rule-based, observational Auditor enables systematic reliability measurement and safer iteration without model retraining. Conclusion: The Planner-Auditor framework offers a practical pathway toward safer automated discharge planning using interoperable FHIR data access and deterministic auditing, supported by reproducible ablations and reliability-focused evaluation.
📅 2026-01-28 | 💬 62 pages, 34 figures, 7 tables
Frontier language model agents can exhibit misaligned behaviors, including deception, exploiting reward hacks, and pursuing hidden objectives. To control potentially misaligned agents, we can use LLMs themselves to monitor for misbehavior. In this paper, we study how information access affects LLM monitor performance. While one might expect that monitors perform better when they have access to more of the monitored agents' reasoning and actions, we find that contemporary systems often perform better with less information, a phenomenon we call the less-is-more effect for automated oversight. We demonstrate this phenomenon, and analyze the conditions under which it occurs, in three evaluation environments where agents must conduct sabotage while evading monitors. Motivated by the less-is-more effect, we introduce extract-and-evaluate (EaE) monitoring--a new hierarchical approach where one monitor isolates relevant excerpts from the monitored agent's trajectory and a separate monitor scores them. In BigCodeBench-Sabotage with GPT-4.1-mini as the monitor model, EaE improves sabotage detection rates by 16.8 percentage points over the next-best monitor without increasing the false positive rate. In other settings, EaE either outperforms or is competitive with baselines. In addition, we find that agents unaware of being monitored can be caught much more easily and that monitors scoring longer reasoning traces gain more from information filtering. Lastly, we conduct a cost-performance analysis and find that Gemini and Claude models with monitoring techniques that involve information filtering occupy much of the Pareto frontier.
📅 2026-01-28 | 💬 Presented at 13th IEEE International Conference on Intelligent Systems and Embedded Design
Recent advances in low-rank adaptation (LoRA) have enabled efficient fine-tuning of large language models (LLMs) with minimal additional parameters. However, existing LoRA methods apply static rank configurations uniformly across all input tokens, ignoring variation in token complexity and computational requirements. In this work, we propose ChunkWise LoRA, a dynamic and adaptive approach that partitions sequences into variable-length chunks based on token complexity and assigns each chunk a tailored low-rank configuration. Our system introduces a runtime scheduler that estimates token difficulty, performs adaptive chunking, and selects per-chunk LoRA rank and scaling using a rank-ladder mechanism. To preserve output consistency, we further introduce a boundary-safe composition module and integrate policy-driven KV-cache strategies. Experiments on benchmark datasets such as Wikitext-103 and SQuAD demonstrate that ChunkWise LoRA achieves up to 34\% lower latency and 38% memory reduction compared to baseline LoRA, while maintaining or improving task performance metrics like BLEU, EM, and perplexity. The proposed framework remains fully compatible with existing transformer architectures and inference frameworks, providing a practical solution for real-world deployment of parameter-efficient LLMs.
📅 2026-01-28
Field experiments (A/B tests) are often the most credible benchmark for methods (algorithms) in societal systems, but their cost and latency bottleneck rapid methodological progress. LLM-based persona simulation offers a cheap synthetic alternative, yet it is unclear whether replacing humans with personas preserves the benchmark interface that adaptive methods optimize against. We prove an if-and-only-if characterization: when (i) methods observe only the aggregate outcome (aggregate-only observation) and (ii) evaluation depends only on the submitted artifact and not on the method's identity or provenance (method-blind evaluation), swapping humans for personas is just panel change from the method's point of view, indistinguishable from changing the evaluation population (e.g., New York to Jakarta). Furthermore, we move from validity to usefulness: we define an information-theoretic discriminability of the induced aggregate channel and show that making persona benchmarking as decision-relevant as a field experiment is fundamentally a sample-size question, yielding explicit bounds on the number of independent persona evaluations required to reliably distinguish meaningfully different methods at a chosen resolution.
📅 2026-01-28 | 💬 Short paper from bechmarking for software engineering workshop FSE2025
Large language models for code are advancing fast, yet our ability to evaluate them lags behind. Current benchmarks focus on narrow tasks and single metrics, which hide critical gaps in robustness, interpretability, fairness, efficiency, and real-world usability. They also suffer from inconsistent data engineering practices, limited software engineering context, and widespread contamination issues. To understand these problems and chart a path forward, we combined an in-depth survey of existing benchmarks with insights gathered from a dedicated community workshop. We identified three core barriers to reliable evaluation: the absence of software-engineering-rich datasets, overreliance on ML-centric metrics, and the lack of standardized, reproducible data pipelines. Building on these findings, we introduce BEHELM, a holistic benchmarking infrastructure that unifies software-scenario specification with multi-metric evaluation. BEHELM provides a structured way to assess models across tasks, languages, input and output granularities, and key quality dimensions. Our goal is to reduce the overhead currently required to construct benchmarks while enabling a fair, realistic, and future-proof assessment of LLMs in software engineering.
📅 2026-01-28 | 💬 ICLR 2026
Large language models (LLMs) are increasingly used to automate feature engineering in tabular learning. Given task-specific information, LLMs can propose diverse feature transformation operations to enhance downstream model performance. However, current approaches typically assign the LLM as a black-box optimizer, responsible for both proposing and selecting operations based solely on its internal heuristics, which often lack calibrated estimations of operation utility and consequently lead to repeated exploration of low-yield operations without a principled strategy for prioritizing promising directions. In this paper, we propose a human-LLM collaborative feature engineering framework for tabular learning. We begin by decoupling the transformation operation proposal and selection processes, where LLMs are used solely to generate operation candidates, while the selection is guided by explicitly modeling the utility and uncertainty of each proposed operation. Since accurate utility estimation can be difficult especially in the early rounds of feature engineering, we design a mechanism within the framework that selectively elicits and incorporates human expert preference feedback, comparing which operations are more promising, into the selection process to help identify more effective operations. Our evaluations on both the synthetic study and the real user study demonstrate that the proposed framework improves feature engineering performance across a variety of tabular datasets and reduces users' cognitive load during the feature engineering process.
📅 2026-01-28 | 💬 Added a 2nd expert's local-scenario annotations (Table 1 updated with inter-expert consensus); strengthened motivation & domain-expert engagement; expanded related work; replaced ROUGE-L with Sentence-BERT semantic similarity for justification analysis; clarified evaluation non-circularity (Sec. 4.1); deepened results analysis (local context responsiveness/bias); refined limitations & future work
Large language models (LLMs) are increasingly being adopted in high-stakes domains. Their potential to encode evolving social contexts and to generate plausible scenarios position them as promising tools in social policymaking. This article evaluates whether LLMs are aligned with domain experts (and among themselves) on policy recommendations to alleviate homelessness - a challenge affecting over 150 million people worldwide. We develop a novel benchmark comprised of decision scenarios across four cities, with policy choices that are grounded in the conceptual framework of the Capability Approach for human development. We also present an automated pipeline that connects the policies to an agent-based model in one location, and compare the social impact of the policies recommended by LLMs to those recommended by experts. Our exploratory analysis reveals variation across LLMs in their policy recommendations compared to local experts, yet suggests potential benefits of the use of LLMs to provide insights for policymaking, if paired with responsible guardrails, contextual calibrations, and local domain expertise. Our work operationalizes the Capability Approach in a computational framework and provides new insights on homelessness alleviation policymaking with a focus on human dignity.
📅 2026-01-28 | 💬 Accepted by ICLR 2026
Supervised Fine-Tuning (SFT) on domain-specific datasets is a common approach to adapt Large Language Models (LLMs) to specialized tasks but is often believed to degrade their general capabilities. In this work, we revisit this trade-off and present both empirical and theoretical insights. First, we show that SFT does not always hurt: using a smaller learning rate can substantially mitigate general performance degradation while preserving comparable target-domain performance. We then provide a theoretical analysis that explains these phenomena and further motivates a new method, Token-Adaptive Loss Reweighting (TALR). Building on this, and recognizing that smaller learning rates alone do not fully eliminate general-performance degradation in all cases, we evaluate a range of strategies for reducing general capability loss, including L2 regularization, LoRA, model averaging, FLOW, and our proposed TALR. Experimental results demonstrate that while no method completely eliminates the trade-off, TALR consistently outperforms these baselines in balancing domain-specific gains and general capabilities. Finally, we distill our findings into practical guidelines for adapting LLMs to new domains: (i) using a small learning rate to achieve a favorable trade-off, and (ii) when a stronger balance is further desired, adopt TALR as an effective strategy.
📅 2026-01-28 | 💬 Accepted by EMNLP2025 System Demonstration
We introduce LLM x MapReduce-V3, a hierarchically modular agent system designed for long-form survey generation. Building on the prior work, LLM x MapReduce-V2, this version incorporates a multi-agent architecture where individual functional components, such as skeleton initialization, digest construction, and skeleton refinement, are implemented as independent model-context-protocol (MCP) servers. These atomic servers can be aggregated into higher-level servers, creating a hierarchically structured system. A high-level planner agent dynamically orchestrates the workflow by selecting appropriate modules based on their MCP tool descriptions and the execution history. This modular decomposition facilitates human-in-the-loop intervention, affording users greater control and customization over the research process. Through a multi-turn interaction, the system precisely captures the intended research perspectives to generate a comprehensive skeleton, which is then developed into an in-depth survey. Human evaluations demonstrate that our system surpasses representative baselines in both content depth and length, highlighting the strength of MCP-based modular planning.
📅 2026-01-28 | 💬 28 pages
There are increasing indications that LLMs are not only used for producing scientific papers, but also as part of the peer review process. In this work, we provide the first comprehensive analysis of LLM use across the peer review pipeline, with particular attention to interaction effects: not just whether LLM-assisted papers or LLM-assisted reviews are different in isolation, but whether LLM-assisted reviews evaluate LLM-assisted papers differently. In particular, we analyze over 125,000 paper-review pairs from ICLR, NeurIPS, and ICML. We initially observe what appears to be a systematic interaction effect: LLM-assisted reviews seem especially kind to LLM-assisted papers compared to papers with minimal LLM use. However, controlling for paper quality reveals a different story: LLM-assisted reviews are simply more lenient toward lower quality papers in general, and the over-representation of LLM-assisted papers among weaker submissions creates a spurious interaction effect rather than genuine preferential treatment of LLM-generated content. By augmenting our observational findings with reviews that are fully LLM-generated, we find that fully LLM-generated reviews exhibit severe rating compression that fails to discriminate paper quality, while human reviewers using LLMs substantially reduce this leniency. Finally, examining metareviews, we find that LLM-assisted metareviews are more likely to render accept decisions than human metareviews given equivalent reviewer scores, though fully LLM-generated metareviews tend to be harsher. This suggests that meta-reviewers do not merely outsource the decision-making to the LLM. These findings provide important input for developing policies that govern the use of LLMs during peer review, and they more generally indicate how LLMs interact with existing decision-making processes.
📅 2026-01-28 | 💬 Accepted to ICLR2026
Reliable certification of Large Language Models (LLMs)-verifying that failure rates are below a safety threshold-is critical yet challenging. While "LLM-as-a-Judge" offers scalability, judge imperfections, noise, and bias can invalidate statistical guarantees. We introduce a "Noisy but Valid" hypothesis testing framework to address this. By leveraging a small human-labelled calibration set to estimate the judge's True Positive and False Positive Rates (TPR/FPR), we derive a variance-corrected critical threshold applied to a large judge-labelled dataset. Crucially, our framework theoretically guarantees finite-sample Type-I error control (validity) despite calibration uncertainty. This distinguishes our work from Prediction-Powered Inference (PPI), positioning our method as a diagnostic tool that explicitly models judge behavior rather than a black-box estimator. Our contributions include: (1) Theoretical Guarantees: We derive the exact conditions under which noisy testing yields higher statistical power than direct evaluation; (2) Empirical Validation: Experiments on Jigsaw Comment, Hate Speech and SafeRLHF confirm our theory; (3) The Oracle Gap: We reveal a significant performance gap between practical methods and the theoretical "Oracle" (perfectly known judge parameters), quantifying the cost of estimation. Specifically, we provide the first systematic treatment of the imperfect-judge setting, yielding interpretable diagnostics of judge reliability and clarifying how evaluation power depends on judge quality, dataset size, and certification levels. Together, these results sharpen understanding of statistical evaluation with LLM judges, and highlight trade-offs among competing inferential tools.
📅 2026-01-28 | 💬 Paper accepted at ICASSP 2026
Adapting automatic speech recognition (ASR) systems based on large language models (LLMs) to new domains using text-only data is a significant yet underexplored challenge. Standard fine-tuning of the LLM on target-domain text often disrupts the critical alignment between speech and text modalities learned by the projector, degrading performance. We introduce a novel text-only adaptation method that emulates the audio projection task by treating it as a text denoising task. Our approach thus trains the LLM to recover clean transcripts from noisy inputs. This process effectively adapts the model to a target domain while preserving cross-modal alignment. Our solution is lightweight, requiring no architectural changes or additional parameters. Extensive evaluation on two datasets demonstrates up to 22.1% relative improvement, outperforming recent state-of-the-art text-only adaptation methods.
📅 2026-01-28 | 💬 Paper accepted at ICASSP 2026
LLM-based automatic speech recognition (ASR), a well-established approach, connects speech foundation models to large language models (LLMs) through a speech-to-LLM projector, yielding promising results. A common design choice in these architectures is the use of a fixed, manually defined prompt during both training and inference. This setup not only enables applicability across a range of practical scenarios, but also helps maximize model performance. However, the impact of prompt design remains underexplored. This paper presents a comprehensive analysis of commonly used prompts across diverse datasets, showing that prompt choice significantly affects ASR performance and introduces instability, with no single prompt performing best across all cases. Inspired by the speech-to-LLM projector, we propose a prompt projector module, a simple, model-agnostic extension that learns to project prompt embeddings to more effective regions of the LLM input space, without modifying the underlying LLM-based ASR model. Experiments on four datasets show that the addition of a prompt projector consistently improves performance, reduces variability, and outperforms the best manually selected prompts.
📅 2026-01-28
One of the biggest missing capabilities in current AI systems is the ability to learn continuously after deployment. Implementing such continually learning systems have several challenges, one of which is the large memory requirement of gradient-based algorithms that are used to train state-of-the-art LLMs. Evolutionary Strategies (ES) have recently re-emerged as a gradient-free alternative to traditional learning algorithms and have shown encouraging performance on specific tasks in LLMs. In this paper, we perform a comprehensive analysis of ES and specifically evaluate its forgetting curves when training for an increasing number of update steps. We first find that ES is able to reach performance numbers close to GRPO for math and reasoning tasks with a comparable compute budget. However, and most importantly for continual learning, the performance gains in ES is accompanied by significant forgetting of prior abilities, limiting its applicability for training models online. We also explore the reason behind this behavior and show that the updates made using ES are much less sparse and have orders of magnitude larger $\ell_2$ norm compared to corresponding GRPO updates, explaining the contrasting forgetting curves between the two algorithms. With this study, we aim to highlight the issue of forgetting in gradient-free algorithms like ES and hope to inspire future work to mitigate these issues.
📅 2026-01-27
Time series anomaly detection is critical for supply chain management to take proactive operations, but faces challenges: classical unsupervised anomaly detection based on exploiting data patterns often yields results misaligned with business requirements and domain knowledge, while manual expert analysis cannot scale to millions of products in the supply chain. We propose a framework that leverages large language models (LLMs) to systematically encode human expertise into interpretable, logic-based rules for detecting anomaly patterns in supply chain time series data. Our approach operates in three stages: 1) LLM-based labeling of training data instructed by domain knowledge, 2) automated generation and iterative improvements of symbolic rules through LLM-driven optimization, and 3) rule augmentation with business-relevant anomaly categories supported by LLMs to enhance interpretability. The experiment results showcase that our approach outperforms the unsupervised learning methods in both detection accuracy and interpretability. Furthermore, compared to direct LLM deployment for time series anomaly detection, our approach provides consistent, deterministic results with low computational latency and cost, making it ideal for production deployment. The proposed framework thus demonstrates how LLMs can bridge the gap between scalable automation and expert-driven decision-making in operational settings.
📅 2026-01-27
Most existing memory-enhanced Large Language Model (LLM) approaches implicitly assume that memory validity can be established either through external evaluators that provide task-specific success signals or through internal model cognition, such as reflection, for editing memory entries. However, these assumptions often break down in practical environments with dynamic drifts. We propose the Global Verifier (GLOVE), a framework that introduces a new design dimension for LLM memory systems by establishing a relative notion of truth. Through active probing to detect inconsistencies between retrieved memories and fresh observations, GLOVE enables memory-environment realignment by verifying and updating memory without access to ground-truth supervision or strong reliance on model introspection. We evaluate GLOVE on diverse benchmarks spanning web navigation, planning, and control, augmented with controlled environmental drifts that introduce non-stationarity beyond the original benchmark settings. Our results show that GLOVE substantially improves agent success rates, suggesting a robust pathway to cognitive agents capable of self-evolving.
📅 2026-01-27 | 💬 19 pages, 13 figures, 11 tables
In this paper, we present the first comprehensive empirical study of specialized LLM-based detectors and compare them with traditional static analyzers at the project scale. Specifically, our study evaluates five latest and representative LLM-based methods and two traditional tools using: 1) an in-house benchmark of 222 known real-world vulnerabilities (C/C++ and Java) to assess detection capability, and 2) 24 active open-source projects, where we manually inspected 385 warnings to assess their practical usability and underlying root causes of failures. Our evaluation yields three key findings: First, while LLM-based detectors exhibit low recall on the in-house benchmark, they still uncover more unique vulnerabilities than traditional tools. Second, in open-source projects, both LLM-based and traditional tools generate substantial warnings but suffer from very high false discovery rates, hindering practical use. Our manual analysis further reveals shallow interprocedural reasoning and misidentified source/sink pairs as primary failure causes, with LLM-based tools exhibiting additional unique failures. Finally, LLM-based methods incurs substantial computational costs-hundreds of thousands to hundreds of millions of tokens and multi-hour to multi-day runtimes. Overall, our findings underscore critical limitations in the robustness, reliability, and scalability of current LLM-based detectors. We ultimately summarize a set of implications for future research toward more effective and practical project-scale vulnerability detection.
📅 2026-01-27
This study reveals a previously unexplored vulnerability in the safety alignment of Large Language Models (LLMs). Existing aligned LLMs predominantly respond to unsafe queries with refusals, which often begin with a fixed set of prefixes (I'm sorry). We demonstrate that this rigid refusal pattern is a vulnerability and introduce a novel \textbf{refusal unlearning} technique that exploits it. Specifically, we fine-tune LLMs using merely 1,000 benign samples, where each response is prepended with a refusal prefix. The underlying intuition is to disrupt the refusal completion pathway, thereby driving the model to forget how to refuse while following harmful instructions. This intuition is further supported by theoretical proofs. We apply this approach to a total of 16 LLMs, including various open-source models from Llama, Qwen, and Gemma families, as well as closed-source models such as Gemini and GPT. Experimental results show that the safety scores of previously aligned LLMs degrade both consistently and substantially. Importantly, we verify that the observed gain cannot be attributed to plain fine-tuning or random prefix effects. Our findings suggest that current safety alignment may rely heavily on token sequence memorization rather than reasoning, motivating future work beyond simple refusal mechanisms. Code has been released: https://github.com/guoyang9/refusal-unlearning.
📅 2026-01-27 | 💬 Accepted at The Web Conference (WWW) 2026
Large Language Models (LLMs) have recently demonstrated remarkable reasoning abilities, yet hallucinate on knowledge-intensive tasks. Retrieval-augmented generation (RAG) mitigates this issue by grounding answers in external sources, e.g., knowledge graphs (KGs). However, existing KG-based RAG approaches rely on semantics-unaware path sampling and are weakly aligned with KG reasoning objectives, which limits further accuracy gains. They also feed retrieved paths directly into the reasoner without organizing them into answer-centered reasoning paths, hindering small LLMs' ability to leverage the retrieved knowledge. Furthermore, prior works predominantly rely on large LLMs (e.g., ChatGPT/GPT-4) or assume backbones above 7B parameters, leaving sub-7B models underexplored. We address this gap with RPO-RAG, the first KG-based RAG framework specifically designed for small LLMs, to the best of our knowledge. RPO-RAG introduces three key innovations: (1) a query-path semantic sampling strategy that provides informative supervisory signals; (2) a relation-aware preference optimization that aligns training with intermediate KG reasoning signals (e.g., relation); and (3) an answer-centered prompt design that organizes entities and reasoning paths in an interpretable format. Extensive experiments on two benchmark Knowledge Graph Question Answering (KGQA) datasets, WebQSP and CWQ, demonstrate that RPO-RAG effectively bridges the performance gap between small and large language models. On WebQSP, it improves F1 by up to 8.8%, reflecting enhanced answer precision, while on CWQ it achieves new state-of-the-art results among models under 8B parameters in both Hit and F1. Overall, RPO-RAG substantially improves the reasoning capability of small LLMs, even under 3B parameters-highlighting their potential for resource-efficient and practical on-device KGQA applications.
📅 2026-01-27 | 💬 Accepted to EACL 2026 Industry Track (to appear)
Extracting actionable suggestions from customer reviews is essential for operational decision-making, yet these directives are often embedded within mixed-intent, unstructured text. Existing approaches either classify suggestion-bearing sentences or generate high-level summaries, but rarely isolate the precise improvement instructions businesses need. We evaluate a hybrid pipeline combining a high-recall RoBERTa classifier trained with a precision-recall surrogate to reduce unrecoverable false negatives with a controlled, instruction-tuned LLM for suggestion extraction, categorization, clustering, and summarization. Across real-world hospitality and food datasets, the hybrid system outperforms prompt-only, rule-based, and classifier-only baselines in extraction accuracy and cluster coherence. Human evaluations further confirm that the resulting suggestions and summaries are clear, faithful, and interpretable. Overall, our results show that hybrid reasoning architectures achieve meaningful improvements fine-grained actionable suggestion mining while highlighting challenges in domain adaptation and efficient local deployment.
📅 2026-01-27
The integration of Large Language Models (LLMs) into recommendation systems has introduced unprecedented capabilities for natural language understanding, explanation generation, and conversational interactions. However, existing evaluation methodologies focus predominantly on traditional accuracy metrics, failing to capture the multifaceted human-centered qualities that determine the real-world user experience. We introduce \framework{} (\textbf{H}uman-centered \textbf{E}valuation for \textbf{L}LM-powered reco\textbf{M}menders), a comprehensive evaluation framework that systematically assesses LLM-powered recommender systems across five human-centered dimensions: \textit{Intent Alignment}, \textit{Explanation Quality}, \textit{Interaction Naturalness}, \textit{Trust \& Transparency}, and \textit{Fairness \& Diversity}. Through extensive experiments involving three state-of-the-art LLM-based recommenders (GPT-4, LLaMA-3.1, and P5) across three domains (movies, books, and restaurants), and rigorous evaluation by 12 domain experts using 847 recommendation scenarios, we demonstrate that \framework{} reveals critical quality dimensions invisible to traditional metrics. Our results show that while GPT-4 achieves superior explanation quality (4.21/5.0) and interaction naturalness (4.35/5.0), it exhibits a significant popularity bias (Gini coefficient 0.73) compared to traditional collaborative filtering (0.58). We release \framework{} as an open-source toolkit to advance human-centered evaluation practices in the recommender systems community.
📅 2026-01-27 | 💬 An error in figure 1
Large Language Models (LLMs) are increasingly being used to provide support and advice in personal domains such as romantic relationships, yet little is known about user perceptions of this type of advice. This study investigated how people evaluate advice on LLM-generated romantic relationships. Participants rated advice satisfaction, model reliability, and helpfulness, and completed pre- and post-measures of their general attitudes toward LLMs. Overall, the results showed participants' high satisfaction with LLM-generated advice. Greater satisfaction was, in turn, strongly and positively associated with their perceptions of the models' reliability and helpfulness. Importantly, participants' attitudes toward LLMs improved significantly after exposure to the advice, suggesting that supportive and contextually relevant advice can enhance users' trust and openness toward these AI systems.
📅 2026-01-27
Sponge attacks increasingly threaten LLM systems by inducing excessive computation and DoS. Existing defenses either rely on statistical filters that fail on semantically meaningful attacks or use static LLM-based detectors that struggle to adapt as attack strategies evolve. We introduce SHIELD, a multi-agent, auto-healing defense framework centered on a three-stage Defense Agent that integrates semantic similarity retrieval, pattern matching, and LLM-based reasoning. Two auxiliary agents, a Knowledge Updating Agent and a Prompt Optimization Agent, form a closed self-healing loop, when an attack bypasses detection, the system updates an evolving knowledgebase, and refines defense instructions. Extensive experiments show that SHIELD consistently outperforms perplexity-based and standalone LLM defenses, achieving high F1 scores across both non-semantic and semantic sponge attacks, demonstrating the effectiveness of agentic self-healing against evolving resource-exhaustion threats.
📅 2026-01-27 | 💬 Accepted by EACL Findings 2026
Large Language Models (LLMs) excel at many reasoning tasks but struggle with knowledge-intensive queries due to their inability to dynamically access up-to-date or domain-specific information. Retrieval-Augmented Generation (RAG) has emerged as a promising solution, enabling LLMs to ground their responses in external sources. However, existing RAG methods lack fine-grained control over both the query and source sides, often resulting in noisy retrieval and shallow reasoning. In this work, we introduce DeepSieve, an agentic RAG framework that incorporates information sieving via LLM-as-a-knowledge-router. DeepSieve decomposes complex queries into structured sub-questions and recursively routes each to the most suitable knowledge source, filtering irrelevant information through a multi-stage distillation process. Our design emphasizes modularity, transparency, and adaptability, leveraging recent advances in agentic system design. Experiments on multi-hop QA tasks across heterogeneous sources demonstrate improved reasoning depth, retrieval precision, and interpretability over conventional RAG approaches. Our codes are available at https://github.com/MinghoKwok/DeepSieve.
📅 2026-01-27
Large language models (LLMs) acquire extensive prior knowledge through large-scale pretraining and can be further enhanced via supervised fine-tuning (SFT) or reinforcement learning (RL)-based post-training. A growing body of evidence has shown that RL fine-tuning improves the capability of LLMs beyond what SFT alone achieves. However, the underlying mechanisms why RL fine-tuning is able to enhance the capability of various LLMs with distinct intrinsic characteristics remain underexplored. In this study, we draw inspiration from prior work on edge attribution patching (EAP) to investigate the internal differences of LLMs before and after RL fine-tuning. Our analysis across multiple model families and mathematical datasets shows two robust effects of online RL post-training: (i) an overall increase in average activation intensity, indicating that more internal pathways are engaged and their signals become stronger, and (ii) greater diversity in activation patterns, reflected by higher entropy and less concentrated edge distributions. These changes suggest that RL reshapes information flow to be both more redundant and more flexible, which may explain its advantage in mathematical generalization. Notably, models fine-tuned with Direct Preference Optimization (DPO) deviate from these trends, exhibiting substantially weaker or inconsistent internal changes compared to PPO- and GRPO-based training. Together, our findings provide a unified view of how RL fine-tuning systematically alters the internal circuitry of LLMs and highlight the methodological distinctions between online RL and preference-based approaches. Our code is open source at https://github.com/tsinghua-fib-lab/llm_rl_probing_analysis.
📅 2026-01-27
Despite rapid advancements in large language models (LLMs), the token-level autoregressive nature constrains their complex reasoning capabilities. To enhance LLM reasoning, inference-time techniques, including Chain/Tree/Graph-of-Thought(s), successfully improve the performance, as they are fairly cost-effective by guiding reasoning through sophisticated logical structures without modifying LLMs' parameters. However, these manually predefined, task-agnostic frameworks are applied uniformly across diverse tasks, lacking adaptability. To improve this, we propose RL-of-Thoughts (RLoT), where we train a lightweight navigator model with reinforcement learning (RL) to adaptively enhance LLM reasoning at inference time. Specifically, we design five basic logic blocks from the perspective of human cognition. During the reasoning process, the trained RL navigator dynamically selects the suitable logic blocks and combines them into task-specific logical structures according to problem characteristics. Experiments across multiple reasoning benchmarks (AIME, MATH, GPQA, etc.) with multiple LLMs (GPT, Llama, Qwen, and DeepSeek) illustrate that RLoT outperforms established inference-time techniques by up to 13.4%. Remarkably, with less than 3K parameters, our RL navigator is able to make sub-10B LLMs comparable to 100B-scale counterparts. Moreover, the RL navigator demonstrates strong transferability: a model trained on one specific LLM-task pair can effectively generalize to unseen LLMs and tasks. Our code is open-source at https://github.com/tsinghua-fib-lab/RL-LLM-Reasoning for reproducibility.
📅 2026-01-27
In recent years, large language models (LLMs) have emerged as promising candidates for graph tasks. Many studies leverage natural language to describe graphs and apply LLMs for reasoning, yet most focus narrowly on performance benchmarks without fully comparing LLMs to graph learning models or exploring their broader potential. In this work, we present a comprehensive study of LLMs on graph learning tasks, evaluating both off-the-shelf and instruction-tuned models across a variety of scenarios. Beyond accuracy, we discuss data leakage concerns and computational overhead, and assess their performance under few-shot/zero-shot settings, domain transfer, structural understanding, and robustness. Our findings show that LLMs, particularly those with instruction tuning, greatly outperform traditional graph learning models in few-shot settings, exhibit strong domain transferability, and demonstrate excellent generalization and robustness. Our study highlights the broader capabilities of LLMs in graph learning and provides a foundation for future research.
📅 2026-01-27
The growing adoption of Apple Silicon for machine learning development has created demand for efficient inference solutions that leverage its unique unified memory architecture. However, existing tools either lack native optimization (PyTorch MPS) or focus solely on text models (llama.cpp), leaving multimodal workloads underserved. We present vllm-mlx, a framework for efficient LLM and MLLM inference on Apple Silicon built natively on MLX. For text models, we achieve 21% to 87% higher throughput than llama.cpp across models ranging from Qwen3-0.6B to Nemotron-30B, while providing continuous batching that scales to 4.3x aggregate throughput at 16 concurrent requests. For multimodal models, we introduce content-based prefix caching that eliminates redundant vision encoding by identifying identical images through content hashing, regardless of input format. Our evaluation on Apple M4 Max demonstrates throughput of up to 525 tokens per second on text models and 28x speedup on repeated image queries, reducing multimodal latency from 21.7 seconds to under 1 second. Video analysis with up to 64 frames achieves 24.7x cache speedup. We release our implementation as open source to support efficient inference on consumer Apple hardware.
📅 2026-01-27 | 💬 8 pages, 5 figures
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
📅 2026-01-27 | 💬 8 pages, 4 figures
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
📅 2026-01-27 | 💬 Accepted to FORGE 2026
Large Language Models (LLMs) for code generation boost productivity but frequently introduce Knowledge Conflicting Hallucinations (KCHs), subtle, semantic errors, such as non-existent API parameters, that evade linters and cause runtime failures. Existing mitigations like constrained decoding or non-deterministic LLM-in-the-loop repair are often unreliable for these errors. This paper investigates whether a deterministic, static-analysis framework can reliably detect \textit{and} auto-correct KCHs. We propose a post-processing framework that parses generated code into an Abstract Syntax Tree (AST) and validates it against a dynamically-generated Knowledge Base (KB) built via library introspection. This non-executing approach uses deterministic rules to find and fix both API and identifier-level conflicts. On a manually-curated dataset of 200 Python snippets, our framework detected KCHs with 100\% precision and 87.6\% recall (0.934 F1-score), and successfully auto-corrected 77.0\% of all identified hallucinations. Our findings demonstrate that this deterministic post-processing approach is a viable and reliable alternative to probabilistic repair, offering a clear path toward trustworthy code generation.
📅 2026-01-27 | 💬 18 pages, 14 figures
Large Language Models (LLMs) have become a cornerstone of modern AI, driving breakthroughs in natural language processing and expanding into multimodal jobs involving images, audio, and video. As with most computational software, it is important to distinguish between ordinary runtime performance and startup overhead. Prior research has focused on runtime performance: improving training efficiency and stability. This work focuses instead on the increasingly critical issue of startup overhead in training: the delay before training jobs begin execution. Startup overhead is particularly important in large, industrial-scale LLMs, where failures occur more frequently and multiple teams operate in iterative update-debug cycles. In one of our training clusters, more than 3.5% of GPU time is wasted due to startup overhead alone. In this work, we present the first in-depth characterization of LLM training startup overhead based on real production data. We analyze the components of startup cost, quantify its direct impact, and examine how it scales with job size. These insights motivate the design of Bootseer, a system-level optimization framework that addresses three primary startup bottlenecks: (a) container image loading, (b) runtime dependency installation, and (c) model checkpoint resumption. To mitigate these bottlenecks, Bootseer introduces three techniques: (a) hot block record-and-prefetch, (b) dependency snapshotting, and (c) striped HDFS-FUSE. Bootseer has been deployed in a production environment and evaluated on real LLM training workloads, demonstrating a 50% reduction in startup overhead.
📅 2026-01-27 | 💬 14 pages, 10 figures, 4 tables
As LLMs increasingly act as autonomous agents in interactive and multi-agent settings, understanding their strategic behavior is critical for safety, coordination, and AI-driven social and economic systems. We investigate how payoff magnitude and linguistic context shape LLM strategies in repeated social dilemmas, using a payoff-scaled Prisoner's Dilemma to isolate sensitivity to incentive strength. Across models and languages, we observe consistent behavioral patterns, including incentive-sensitive conditional strategies and cross-linguistic divergence. To interpret these dynamics, we train supervised classifiers on canonical repeated-game strategies and apply them to LLM decisions, revealing systematic, model- and language-dependent behavioral intentions, with linguistic framing sometimes matching or exceeding architectural effects. Our results provide a unified framework for auditing LLMs as strategic agents and highlight cooperation biases with direct implications for AI governance and multi-agent system design.
📅 2026-01-27
The rapid adoption of LLMs has increased the need for reliable AI text detection, yet existing detectors often fail outside controlled benchmarks. We systematically evaluate 2 dominant paradigms (training-free and supervised) and show that both are brittle under distribution shift, unseen generators, and simple stylistic perturbations. To address these limitations, we propose a supervised contrastive learning (SCL) framework that learns discriminative style embeddings. Experiments show that while supervised detectors excel in-domain, they degrade sharply out-of-domain, and training-free methods remain highly sensitive to proxy choice. Overall, our results expose fundamental challenges in building domain-agnostic detectors. Our code is available at: https://github.com/HARSHITJAIS14/DetectAI
📅 2026-01-27 | 💬 Accepted at the International Association for AI Safety and Ethics AI (IASEAI) 2026
Addressing contextual privacy concerns remains challenging in interactive settings where large language models (LLMs) process information from multiple sources (e.g., summarizing meetings with private and public information). We introduce a multi-agent framework that decomposes privacy reasoning into specialized subtasks (extraction, classification), reducing the information load on any single agent while enabling iterative validation and more reliable adherence to contextual privacy norms. To understand how privacy errors emerge and propagate, we conduct a systematic ablation over information-flow topologies, revealing when and why upstream detection mistakes cascade into downstream leakage. Experiments on the ConfAIde and PrivacyLens benchmark with several open-source and closed-sourced LLMs demonstrate that our best multi-agent configuration substantially reduces private information leakage (\textbf{18\%} on ConfAIde and \textbf{19\%} on PrivacyLens with GPT-4o) while preserving the fidelity of public content, outperforming single-agent baselines. These results highlight the promise of principled information-flow design in multi-agent systems for contextual privacy with LLMs.
📅 2026-01-27 | 💬 Accepted at NeurIPS 2025
We study how to fine-tune LLMs using user-edit deployment data consisting of a set of context, an agent's response, and user edits. This deployment data is naturally generated by users in applications such as LLMs-based writing assistants and coding agents. The _natural_ origin of user edits makes it a desired source for adapting and personalizing LLMs. In this setup, there emerges a unification of various feedback types namely preferences, supervised labels, and cost that are typically studied separately in the literature. In this paper, we initiate the theoretical investigation of learning from user edits. We first derive bounds for learning algorithms that learn from each of these feedback types. We prove that these algorithms have different trade-offs depending upon the user, data distribution, and model class. We then propose a simple ensembling procedure to jointly learn from these feedback types. On two domains adapted from Gao et al. 2024, we show our ensembling procedure outperforms these methods that learn from individual feedback. Further, we show that our proposed procedure can robustly adapt to different user-edit distributions at test time.
📅 2026-01-27
Design feedback helps practitioners improve their artifacts while also fostering reflection and design reasoning. Large Language Models (LLMs) such as ChatGPT can support design work, but often provide generic, one-off suggestions that limit reflective engagement. We investigate how to guide LLMs to act as design mentors by applying the Cognitive Apprenticeship Model, which emphasizes demonstrating reasoning through six methods: modeling, coaching, scaffolding, articulation, reflection, and exploration. We operationalize these instructional methods through structured prompting and evaluate them in a within-subjects study with data visualization practitioners. Participants interacted with both a baseline LLM and an instructional LLM designed with cognitive apprenticeship prompts. Surveys, interviews, and conversational log analyses compared experiences across conditions. Our findings show that cognitively informed prompts elicit deeper design reasoning and more reflective feedback exchanges, though the baseline is sometimes preferred depending on task types or experience levels. We distill design considerations for AI-assisted feedback systems that foster reflective practice.
📅 2026-01-27 | 💬 Accepted at peer review NDSS 2026, Last-X workshop. Camera ready copy forthcoming
Prompt-based attack techniques are one of the primary challenges in securely deploying and protecting LLM-based AI systems. LLM inputs are an unbounded, unstructured space. Consequently, effectively defending against these attacks requires proactive hardening strategies capable of continuously generating adaptive attack vectors to optimize LLM defense at runtime. We present HASTE (Hard-negative Attack Sample Training Engine): a systematic framework that iteratively engineers highly evasive prompts, within a modular optimization process, to continuously enhance detection efficacy for prompt-based attack techniques. The framework is agnostic to synthetic data generation methods, and can be generalized to evaluate prompt-injection detection efficacy, with and without fuzzing, for any hard-negative or hard-positive iteration strategy. Experimental evaluation of HASTE shows that hard negative mining successfully evades baseline detectors, reducing malicious prompt detection for baseline detectors by approximately 64%. However, when integrated with detection model re-training, it optimizes the efficacy of prompt detection models with significantly fewer iteration loops compared to relative baseline strategies. The HASTE framework supports both proactive and reactive hardening of LLM defenses and guardrails. Proactively, developers can leverage HASTE to dynamically stress-test prompt injection detection systems; efficiently identifying weaknesses and strengthening defensive posture. Reactively, HASTE can mimic newly observed attack types and rapidly bridge detection coverage by teaching HASTE-optimized detection models to identify them.
📅 2026-01-27
Engineering sustainable and equitable healthcare requires medical language models that do not change clinically correct diagnoses when presented with non-decisive cultural information. We introduce a counterfactual benchmark that expands 150 MedQA test items into 1650 variants by inserting culture-related (i) identifier tokens, (ii) contextual cues, or (iii) their combination for three groups (Indigenous Canadian, Middle-Eastern Muslim, Southeast Asian), plus a length-matched neutral control, where a clinician verified that the gold answer remains invariant in all variants. We evaluate GPT-5.2, Llama-3.1-8B, DeepSeek-R1, and MedGemma (4B/27B) under option-only and brief-explanation prompting. Across models, cultural cues significantly affect accuracy (Cochran's Q, $p<10^-14$), with the largest degradation when identifier and context co-occur (up to 3-7 percentage points under option-only prompting), while neutral edits produce smaller, non-systematic changes. A human-validated rubric ($Îș=0.76$) applied via an LLM-as-judge shows that more than half of culturally grounded explanations end in an incorrect answer, linking culture-referential reasoning to diagnostic failure. We release prompts and augmentations to support evaluation and mitigation of culturally induced diagnostic errors.
📅 2026-01-27
Large language model (LLM)-powered agents can translate high-level user intents into plans and actions in an environment. Yet after observing an outcome, users may wonder: What if I had phrased my intent differently? We introduce a framework that enables such counterfactual reasoning in agentic LLM-driven control scenarios, while providing formal reliability guarantees. Our approach models the closed-loop interaction between a user, an LLM-based agent, and an environment as a structural causal model (SCM), and leverages test-time scaling to generate multiple candidate counterfactual outcomes via probabilistic abduction. Through an offline calibration phase, the proposed conformal counterfactual generation (CCG) yields sets of counterfactual outcomes that are guaranteed to contain the true counterfactual outcome with high probability. We showcase the performance of CCG on a wireless network control use case, demonstrating significant advantages compared to naive re-execution baselines.
📅 2026-01-27
Despite the syntactic fluency of Large Language Models (LLMs), ensuring their logical correctness in high-stakes domains remains a fundamental challenge. We present a neurosymbolic framework that combines LLMs with SMT solvers to produce verification-guided answers through iterative refinement. Our approach decomposes LLM outputs into atomic claims, autoformalizes them into first-order logic, and verifies their logical consistency using automated theorem proving. We introduce three key innovations: (1) multi-model consensus via formal semantic equivalence checking to ensure logic-level alignment between candidates, eliminating the syntactic bias of surface-form metrics, (2) semantic routing that directs different claim types to appropriate verification strategies: symbolic solvers for logical claims and LLM ensembles for commonsense reasoning, and (3) precise logical error localization via Minimal Correction Subsets (MCS), which pinpoint the exact subset of claims to revise, transforming binary failure signals into actionable feedback. Our framework classifies claims by their logical status and aggregates multiple verification signals into a unified score with variance-based penalty. The system iteratively refines answers using structured feedback until acceptance criteria are met or convergence is achieved. This hybrid approach delivers formal guarantees where possible and consensus verification elsewhere, advancing trustworthy AI. With the GPT-OSS-120B model, VERGE demonstrates an average performance uplift of 18.7% at convergence across a set of reasoning benchmarks compared to single-pass approaches.
📅 2026-01-27 | 💬 Accepted to SIGIR 2025. DOI: 10.1145/3726302.3731959
Today, E-commerce sellers face several key challenges, including difficulties in discovering and effectively utilizing available programs and tools, and struggling to understand and utilize rich data from various tools. We therefore aim to develop Insight Agents (IA), a conversational multi-agent Data Insight system, to provide E-commerce sellers with personalized data and business insights through automated information retrieval. Our hypothesis is that IA will serve as a force multiplier for sellers, thereby driving incremental seller adoption by reducing the effort required and increase speed at which sellers make good business decisions. In this paper, we introduce this novel LLM-backed end-to-end agentic system built on a plan-and-execute paradigm and designed for comprehensive coverage, high accuracy, and low latency. It features a hierarchical multi-agent structure, consisting of manager agent and two worker agents: data presentation and insight generation, for efficient information retrieval and problem-solving. We design a simple yet effective ML solution for manager agent that combines Out-of-Domain (OOD) detection using a lightweight encoder-decoder model and agent routing through a BERT-based classifier, optimizing both accuracy and latency. Within the two worker agents, a strategic planning is designed for API-based data model that breaks down queries into granular components to generate more accurate responses, and domain knowledge is dynamically injected to to enhance the insight generator. IA has been launched for Amazon sellers in US, which has achieved high accuracy of 90% based on human evaluation, with latency of P90 below 15s.
📅 2026-01-27 | 💬 Accepted by ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
📅 2026-01-27
We introduce SimBench, a benchmark designed to evaluate the proficiency of simulator-oriented LLMs (S-LLMs) in generating digital twins (DTs) that can be used in simulators for virtual testing. Given a collection of S-LLMs, this benchmark ranks them according to their ability to produce high-quality DTs. We demonstrate this by comparing over 33 open- and closed-source S-LLMs. Using multi-turn interactions, SimBench employs an LLM-as-a-judge (J-LLM) that leverages both predefined rules and human-in-the-loop guidance to assign scores for the DTs generated by the S-LLM, thus providing a consistent and expert-inspired evaluation protocol. The J-LLM is specific to a simulator, and herein the proposed benchmarking approach is demonstrated in conjunction with the open-sourceChrono multi-physics simulator. Chrono provided the backdrop used to assess an S-LLM in relation to the latter's ability to create digital twins for multibody dynamics, finite element analysis, vehicle dynamics, robotic dynamics, and sensor simulations. The proposed benchmarking principle is broadly applicable and enables the assessment of an S-LLM's ability to generate digital twins for other simulation packages, e.g., ANSYS, ABAQUS, OpenFOAM, StarCCM+, IsaacSim, and pyBullet.
📅 2026-01-27
Large language models (LLMs) exhibit strong generative capabilities but remain vulnerable to confabulations, fluent yet unreliable outputs that vary arbitrarily even under identical prompts. Leveraging a quantum tensor network based pipeline, we propose a quantum physics inspired uncertainty quantification framework that accounts for aleatoric uncertainty in token sequence probability for semantic equivalence based clustering of LLM generations. This offers a principled and interpretable scheme for hallucination detection. We further introduce an entropy maximization strategy that prioritizes high certainty, semantically coherent outputs and highlights entropy regions where LLM decisions are likely to be unreliable, offering practical guidelines for when human oversight is warranted. We evaluate the robustness of our scheme under different generation lengths and quantization levels, dimensions overlooked in prior studies, demonstrating that our approach remains reliable even in resource constrained deployments. A total of 116 experiments on TriviaQA, NQ, SVAMP, and SQuAD across multiple architectures including Mistral-7B, Mistral-7B-instruct, Falcon-rw-1b, LLaMA-3.2-1b, LLaMA-2-13b-chat, LLaMA-2-7b-chat, LLaMA-2-13b, and LLaMA-2-7b show consistent improvements in AUROC and AURAC over state of the art baselines.
📅 2026-01-27 | 💬 34 pages, 6 figures. Under review at Information Sciences
The rapid progress of large language models has enabled the generation of text that closely resembles human writing, creating challenges for authenticity verification in education, publishing, and digital security. Detecting AI-generated text has therefore become a crucial technical and ethical issue. This paper presents a comprehensive study of AI-generated text detection based on large-scale corpora and novel training strategies. We introduce a 1-billion-token corpus of human-authored texts spanning multiple genres and a 1.9-billion-token corpus of AI-generated texts produced by prompting a variety of LLMs across diverse domains. Using these resources, we develop and evaluate numerous detection models and propose two novel training paradigms: Per LLM and Per LLM family fine-tuning. Across a 100-million-token benchmark covering 21 large language models, our best fine-tuned detector achieves up to $99.6\%$ token-level accuracy, substantially outperforming existing open-source baselines.
📅 2026-01-27 | 💬 12 pages
LAPS identifies and disaggregates requests with different prompt lengths in LLM serving to reduce TTFT latency. While recent systems have decoupled the prefill and decode stages to improve throughput, they still rely on unified scheduling policies that fail to adapt to heterogeneous workload characteristics. We observe that prompt-length variations lead to distinct performance bottlenecks, motivating an adaptive scheduling strategy. LAPS disaggregates multi-turn long-prefill requests from short-prefill ones and introduces a length-aware smart batching mechanism for short-prefill workloads. It adopts a dual-queue design that supports temporal disaggregation on a single prefill instance or spatial disaggregation across multiple instances. For short-prefill batches, a batch waiting window and CUDA Graph-based clustering mitigate interference from heterogeneous computation, reducing batching delay and lowering average latency. In real multi-turn workloads, LAPS reduces prefill latency by over 30\% compared to vanilla SGLang under prefill-decode disaggregation, and further decreases SLO violations by 28\% in multi-instance deployments with vanilla data-parallel configuration. Compared to the SGLang router with load balancing, it further lowers SLO violations by 12\% in multi-GPU settings. Under high concurrency and mixed-request scenarios, LAPS improves request throughput by 35\% serving Qwen2.5-32B model for prefill instance, demonstrating its effectiveness in optimizing heterogeneous LLM serving workloads.
📅 2026-01-27
As large language models (LLMs) move from research prototypes to enterprise systems, their security vulnerabilities pose serious risks to data privacy and system integrity. This study benchmarks various Llama model variants against the OWASP Top 10 for LLM Applications framework, evaluating threat detection accuracy, response safety, and computational overhead. Using the FABRIC testbed with NVIDIA A30 GPUs, we tested five standard Llama models and five Llama Guard variants on 100 adversarial prompts covering ten vulnerability categories. Our results reveal significant differences in security performance: the compact Llama-Guard-3-1B model achieved the highest detection rate of 76% with minimal latency (0.165s per test), whereas base models such as Llama-3.1-8B failed to detect threats (0% accuracy) despite longer inference times (0.754s). We observe an inverse relationship between model size and security effectiveness, suggesting that smaller, specialized models often outperform larger general-purpose ones in security tasks. Additionally, we provide an open-source benchmark dataset including adversarial prompts, threat labels, and attack metadata to support reproducible research in AI security, [1].
📅 2026-01-27 | 💬 9 pages, 2 figures
Multidisciplinary tumour boards (MDTBs) play a central role in oncology decision-making but require manual processes and structuring large volumes of heterogeneous clinical information, resulting in a substantial documentation burden. In this work, we present ONCOTIMIA, a modular and secure clinical tool designed to integrate generative artificial intelligence (GenAI) into oncology workflows and evaluate its application to the automatic completion of lung cancer tumour board forms using large language models (LLMs). The system combines a multi-layer data lake, hybrid relational and vector storage, retrieval-augmented generation (RAG) and a rule-driven adaptive form model to transform unstructured clinical documentation into structured and standardised tumour board records. We assess the performance of six LLMs deployed through AWS Bedrock on ten lung cancer cases, measuring both completion form accuracy and end-to-end latency. The results demonstrate high performance across models, with the best performing configuration achieving an 80% of correct field completion and clinically acceptable response time for most LLMs. Larger and more recent models exhibit best accuracies without incurring prohibitive latency. These findings provide empirical evidence that LLM- assisted autocompletion form is technically feasible and operationally viable in multidisciplinary lung cancer workflows and support its potential to significantly reduce documentation burden while preserving data quality.
📅 2026-01-27
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
📅 2026-01-27 | 💬 Accepted by ICASSP 2026
Recent studies suggest that the deeper layers of Large Language Models (LLMs) contribute little to representation learning and can often be removed without significant performance loss. However, such claims are typically drawn from narrow evaluations and may overlook important aspects of model behavior. In this work, we present a systematic study of depth utilization across diverse dimensions, including evaluation protocols, task categories, and model architectures. Our analysis confirms that very deep layers are generally less effective than earlier ones, but their contributions vary substantially with the evaluation setting. Under likelihood-based metrics without generation, pruning most layers preserves performance, with only the initial few being critical. By contrast, generation-based evaluation uncovers indispensable roles for middle and deeper layers in enabling reasoning and maintaining long-range coherence. We further find that knowledge and retrieval are concentrated in shallow components, whereas reasoning accuracy relies heavily on deeper layers -- yet can be reshaped through distillation. These results highlight that depth usage in LLMs is highly heterogeneous and context-dependent, underscoring the need for task-, metric-, and model-aware perspectives in both interpreting and compressing large models.
📅 2026-01-27
Video Temporal Grounding (VTG), which aims to localize video clips corresponding to natural language queries, is a fundamental yet challenging task in video understanding. Existing Transformer-based methods often suffer from redundant attention and suboptimal multi-modal alignment. To address these limitations, we propose MLVTG, a novel framework that integrates two key modules: MambaAligner and LLMRefiner. MambaAligner uses stacked Vision Mamba blocks as a backbone instead of Transformers to model temporal dependencies and extract robust video representations for multi-modal alignment. LLMRefiner leverages the specific frozen layer of a pre-trained Large Language Model (LLM) to implicitly transfer semantic priors, enhancing multi-modal alignment without fine-tuning. This dual alignment strategy, temporal modeling via structured state-space dynamics and semantic purification via textual priors, enables more precise localization. Extensive experiments on QVHighlights, Charades-STA, and TVSum demonstrate that MLVTG achieves state-of-the-art performance and significantly outperforms existing baselines.
📅 2026-01-27
Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its efficiency-accuracy trade-offs remain unclear due to the lack of comprehensive evaluation. We address this gap with the largest-scale empirical analysis to date of training-free sparse attention, evaluating six methods across multiple model families and sizes, sequences up to 128K tokens, and sparsity levels up to 0.95 (i.e., $1/20$ attention budget) on nine diverse tasks. We first organise the rapidly evolving landscape of sparse attention methods into a taxonomy along four design axes. Our analysis then yields actionable insights: 1) sparse attention is effective -- larger sparse models outperform smaller dense ones at equivalent cost, improving the Pareto frontier; 2) due to computational constraints, token-to-page importance estimation is unfeasible during prefilling, where the choice of an alternative solution (global-to-token or block-to-block) depends on the task, but is possible during decoding, enabling better generalisation and tolerance to higher sparsity; 3) longer sequences tolerate higher sparsity, suggesting that fixed-budget methods in production are suboptimal. Together, these findings provide practical guidance for deploying sparse attention and methodological recommendations for future evaluations. Our code is available at https://github.com/PiotrNawrot/sparse-frontier.
📅 2026-01-27
Despite the strong reasoning capabilities of recent large language models (LLMs), achieving reliable performance on challenging tasks often requires post-training or computationally expensive sampling strategies, limiting their practical efficiency. In this work, we first show that a small subset of neurons in LLMs exhibits strong predictive correlations with reasoning correctness. Based on this observation, we propose AdaRAS (Adaptive Reasoning Activation Steering), a lightweight test-time framework that improves reasoning reliability by selectively intervening on neuron activations. AdaRAS identifies Reasoning-Critical Neurons (RCNs) via a polarity-aware mean-difference criterion and adaptively steers their activations during inference, enhancing incorrect reasoning traces while avoiding degradation on already-correct cases. Experiments on 10 mathematics and coding benchmarks demonstrate consistent improvements, including over 13% gains on AIME-24 and AIME-25. Moreover, AdaRAS exhibits strong transferability across datasets and scalability to stronger models, outperforming post-training methods without additional training or sampling cost.
📅 2026-01-27
Existing human-robot interaction systems often lack mechanisms for sustained personalization and dynamic adaptation in multi-user environments, limiting their effectiveness in real-world deployments. We present HARMONI, a multimodal personalization framework that leverages large language models to enable socially assistive robots to manage long-term multi-user interactions. The framework integrates four key modules: (i) a perception module that identifies active speakers and extracts multimodal input; (ii) a world modeling module that maintains representations of the environment and short-term conversational context; (iii) a user modeling module that updates long-term speaker-specific profiles; and (iv) a generation module that produces contextually grounded and ethically informed responses. Through extensive evaluation and ablation studies on four datasets, as well as a real-world scenario-driven user-study in a nursing home environment, we demonstrate that HARMONI supports robust speaker identification, online memory updating, and ethically aligned personalization, outperforming baseline LLM-driven approaches in user modeling accuracy, personalization quality, and user satisfaction.
📅 2026-01-27
Ultra Strong Machine Learning (USML) refers to symbolic learning systems that not only improve their own performance but can also teach their acquired knowledge to quantifiably improve human performance. We introduce LENS (Logic Programming Explanation via Neural Summarisation), a neuro-symbolic framework that combines symbolic program synthesis with large language models (LLMs). This framework automatically generates natural language explanations of learned logic programs, replacing hand-crafted templates used in prior USML work. Using LLMs-as-judges evaluation and expert validation, we show that LENS produces higher-quality explanations than both direct LLM prompting and hand-crafted templates. We then examine whether LENS explanations suffice for achieving USML in a human trial teaching active learning strategies across three related domains. Our exploratory analysis suggests that concise, expert-written explanations may benefit learners with higher initial performance, while LLM-generated explanations provide no advantage over human self learning despite being rated as higher quality. This case study reveals that achieving USML requires methods grounded in human learning, where current LLM-generated explanations do not capture human cognitive constraints and LLMs-as-judges evaluations do not reflect what effectively supports human learning.
📅 2026-01-27
Sycophancy (overly agreeable or flattering behavior) poses a fundamental challenge for human-AI collaboration, particularly in high-stakes decision-making domains such as health, law, and education. A central difficulty in studying sycophancy in large language models (LLMs) is disentangling sycophantic belief shifts from rational changes in behavior driven by new evidence or user-provided information. Existing approaches either measure descriptive behavior changes or apply normative evaluations that rely on objective ground truth, limiting their applicability to subjective or uncertain tasks. We introduce a Bayesian probabilistic framework, grounded in behavioral economics and rational decision theory, that explicitly separates sycophancy from rational belief updating. Within this framework, we achieve three objectives: (i) a descriptive metric that measures sycophancy while controlling for rational responses to evidence; (ii) a normative metric that quantifies how sycophancy leads models astray from Bayesian-consistent belief updating; and (iii) the ability to apply both metrics in settings without ground-truth labels. Applying our framework across multiple LLMs and three uncertainty-driven tasks, we find robust evidence of sycophantic belief shifts and show that their impact on rationality depends on whether models systematically over- or under-update their beliefs. Finally, we demonstrate that a post-hoc calibration method and two fine-tuning strategies (SFT and DPO) substantially reduce Bayesian inconsistency, with particularly strong improvements under explicit sycophancy prompting.
📅 2026-01-27 | 💬 IEEE ICASSP 2026. The code is available at https://github.com/umbertocappellazzo/Llama-AVSR
Large language models (LLMs) have recently advanced auditory speech recognition (ASR), visual speech recognition (VSR), and audio-visual speech recognition (AVSR). However, understanding of their internal dynamics under fine-tuning remains limited. In natural language processing, recent work has revealed attention sinks, tokens that attract disproportionately high attention, and associated massive activations in which some features of sink tokens exhibit huge activation in LLMs. In this work, we are the first to study these phenomena in multimodal speech recognition. Through a detailed analysis of audio-visual LLMs, we identify attention sinks and massive activations not only at the BOS token but also at intermediate low-semantic tokens across ASR, VSR, and AVSR. We show that massive activations originate in the MLP layers and correspond to fixed feature indices across all sink tokens. We further show that intermediate sink tokens exhibit high cosine similarity to the BOS token, thereby amplifying attention and activation. Building on these insights, we introduce a simple decorrelation loss that reduces cosine similarity between BOS and other tokens, effectively mitigating intermediate sinks and massive activations. Furthermore, our method improves word error rate (WER) under high audio-visual feature downsampling while remaining stable at lower downsampling rates.
📅 2026-01-27
In this paper, we introduce S-MedQA, an English medical question-answering (QA) dataset designed for benchmarking large language models (LLMs) in fine-grained clinical specialties. S-MedQA consists of over 24k examples, covering 15 medical specialties, with QA pairs that can have multiple specialty annotations, such as when a question is cross-disciplinary. The dataset is constructed using both machine and expert verification to maximize data availability and reliability. We use S-MedQA to investigate the role of clinical specialties in the knowledge-intensive scenario of medical QA. Our results show that training on data from a clinical specialty does not necessarily lead to the best performance on that specialty. Additionally, regardless of the specialty the LLM was fine-tuned on, token probabilities of clinically relevant terms consistently increase across all specialties. Based on these findings, we hypothesize that improvement gains, at least in our settings, are derived primarily from domain shifting (e.g., general to medical) rather than from injecting specialty-specific knowledge. This suggests a need to rethink the role of fine-tuning data in the medical domain. To encourage further advancements in the clinical NLP field, we release S-MedQA along with all the code required to reproduce our experiments for the research community.
📅 2026-01-27
Generative AI plays an increasing role during software engineering activities to make them, e.g., more efficient or provide better quality. However, it is often unclear how much benefit LLMs really provide. We concentrate on software architects and investigated how an LLM-supported evaluation of architecture documents can support software architects to improve such artefacts. In the context of a research project where a digital marketplace is developed and digital solutions should be analyzed, we used different LLMs to analyze the quality of architecture documents and compared the results with evaluations from software architects. We found out that the quality of the artifact has a strong influence on the quality of the LLM, i.e., the better the quality of the architecture document was, the more consistent were the LLM-based evaluation and the human expert evaluation. While using LLMs in this architecture task is promising, our results showed inconsistencies that need further analyses before generalizing them.
📅 2026-01-27 | 💬 20 pages, 7 figures, 2 tables
User authentication and fraud detection face growing challenges as digital systems expand and adversaries adopt increasingly sophisticated tactics. Traditional knowledge-based authentication remains rigid, requiring exact word-for-word string matches that fail to accommodate natural human memory and linguistic variation. Meanwhile, fraud-detection pipelines struggle to keep pace with rapidly evolving scam behaviors, leading to high false-positive rates and frequent retraining cycles required. This work introduces two complementary LLM-enabled solutions, namely, an LLM-assisted authentication mechanism that evaluates semantic correctness rather than exact wording, supported by document segmentation and a hybrid scoring method combining LLM judgement with cosine-similarity metrics and a RAG-based fraud-detection pipeline that grounds LLM reasoning in curated evidence to reduce hallucinations and adapt to emerging scam patterns without model retraining. Experiments show that the authentication system accepts 99.5% of legitimate non-exact answers while maintaining a 0,1% false-acceptance rate, and that the RAG-enhanced fraud detection reduces false positives from 17.2% to 35%. Together, these findings demonstrate that LLMs can significantly improve both usability and robustness in security workflows, offering a more adaptive , explainable, and human-aligned approach to authentication and fraud detection.