Skip to the content.

llm - 2026_01

Home / Papers / llm

Papers

📅 2026-01-21
Optimization plays a vital role in scientific research and practical applications. However, formulating a concrete optimization problem described in natural language into a mathematical form and selecting a suitable solver to solve the problem requires substantial domain expertise. We introduce OptimAI, a framework for solving Optimization problems described in natural language by leveraging LLM-powered AI agents, and achieve superior performance over current state-of-the-art methods. Our framework is built upon the following key roles: (1) a formulator that translates natural language problem descriptions into precise mathematical formulations; (2) a planner that constructs a high-level solution strategy prior to execution; and (3) a coder and a code critic capable of interacting with the environment and reflecting on outcomes to refine future actions. Ablation studies confirm that all roles are essential; removing the planner or code critic results in $5.8\times$ and $3.1\times$ drops in productivity, respectively. Furthermore, we introduce UCB-based debug scheduling to dynamically switch between alternative plans, yielding an additional $3.3\times$ productivity gain. Our design emphasizes multi-agent collaboration, and our experiments confirm that combining diverse models leads to performance gains. Our approach attains 88.1% accuracy on the NLP4LP dataset and 82.3% on the Optibench dataset, reducing error rates by 58% and 52%, respectively, over prior best results.
📅 2026-01-21
With the spread of generative AI in recent years, attacks known as Whaling have become a serious threat. Whaling is a form of social engineering that targets important high-authority individuals within organizations and uses sophisticated fraudulent emails. In the context of Japanese universities, faculty members frequently hold positions that combine research leadership with authority within institutional workflows. This structural characteristic leads to the wide public disclosure of high-value information such as publications, grants, and detailed researcher profiles. Such extensive information exposure enables the construction of highly precise target profiles using generative AI. This raises concerns that Whaling attacks based on high-precision profiling by generative AI will become prevalent. In this study, we propose a Whaling countermeasure framework for university faculty members that constructs personalized defense profiles and uses large language model (LLM)-based agents. We design agents that (i) build vulnerability profiles for each target from publicly available information on faculty members, (ii) identify potential risk scenarios relevant to Whaling defense based on those profiles, (iii) construct defense profiles corresponding to the vulnerabilities and anticipated risks, and (iv) analyze Whaling emails using the defense profiles. Furthermore, we conduct a preliminary risk-assessment experiment. The results indicate that the proposed method can produce judgments accompanied by explanations of response policies that are consistent with the work context of faculty members who are Whaling targets. The findings also highlight practical challenges and considerations for future operational deployment and systematic evaluation.
📅 2026-01-21
Large Language Models (LLMs) achieve competitive performance across diverse natural language processing (NLP) tasks, yet pretraining is computationally demanding, making optimizer efficiency an important practical consideration. Muon accelerates LLM pretraining via orthogonal momentum updates that serve as a matrix analogue of the element-wise sign operator. Motivated by the recent perspective that Adam is a variance-adaptive sign update algorithm, we propose two variants of Muon, Muon-NSR and Muon-VS, which apply variance-adaptive normalization to momentum before orthogonalization. Muon-NSR applies noise-to-signal ratio (NSR) modulation, while Muon-VS performs variance-based scaling without introducing additional hyperparameters. Experiments on GPT-2 and LLaMA pretraining demonstrate that our proposed methods accelerate convergence and consistently achieve lower validation loss than both competitive, well-tuned AdamW and Muon baselines. For example, on the LLaMA-1.2B model, Muon-NSR and Muon-VS reduce the iterations required to reach the target validation loss by $1.36\times$ relative to the well-tuned Muon following the recent benchmark.
📅 2026-01-21
Cloud environments face frequent DDoS threats due to centralized resources and broad attack surfaces. Modern cloud-native DDoS attacks further evolve rapidly and often blend multi-vector strategies, creating an operational dilemma: defenders need wire-speed monitoring while also requiring explainable, auditable attribution for response. Existing rule-based and supervised-learning approaches typically output black-box scores or labels, provide limited evidence chains, and generalize poorly to unseen attack variants; meanwhile, high-quality labeled data is often difficult to obtain in cloud settings. We present Holmes (DDoS Detective), an LLM-based DDoS detection agent that reframes the model as a virtual SRE investigator rather than an end-to-end classifier. Holmes couples a funnel-like hierarchical workflow (counters/sFlow for continuous sensing and triage; PCAP evidence collection triggered only on anomaly windows) with an Evidence Pack abstraction that converts binary packets into compact, reproducible, high-signal structured evidence. On top of this evidence interface, Holmes enforces a structure-first investigation protocol and strict JSON/quotation constraints to produce machine-consumable reports with auditable evidence anchors. We evaluate Holmes on CICDDoS2019 reflection/amplification attacks and script-triggered flooding scenarios. Results show that Holmes produces attribution decisions grounded in salient evidence anchors across diverse attack families, and when errors occur, its audit logs make the failure source easy to localize, demonstrating the practicality of an LLM agent for cost-controlled and traceable DDoS investigation in cloud operations.
📅 2026-01-21
A large number of heuristics have been proposed to optimize the reinforcement fine-tuning of LLMs. However, inconsistent claims are made from time to time, making this area elusive. Reflecting on this situation, two fundamental questions still lack a clear understanding: 1) what is the role of each optimizing choice? 2) which ones are the bottlenecks? This paper aims to shed light on them, and it faces the challenge of several entangled confounding factors in the fine-tuning process. To tackle this challenge, we propose a bottom-up experiment pipeline. The bottom layer is composed of a minimalist configuration: one training data, one rollout per round and the reward directly serve as the learning signal without advantage function design. This minimalist configuration connects to multi-armed bandit learning with extremely large discrete action space, which offers theories to corroborate the experiment findings. The up procedure of the experiment pipeline expanding the minimalist configuration layer by layer, examining the role of each design choice. Experimental results on three LLMs and two reasoning datasets not only reveal new understanding of the design choice but also yield essential insights to shape the area.
📅 2026-01-21
Large language models (LLMs) have recently been applied to binary decompilation, yet they still treat code as plain text and ignore the graphs that govern program control flow. This limitation often yields syntactically fragile and logically inconsistent output, especially for optimized binaries. This paper presents \textsc{HELIOS}, a framework that reframes LLM-based decompilation as a structured reasoning task. \textsc{HELIOS} summarizes a binary's control flow and function calls into a hierarchical text representation that spells out basic blocks, their successors, and high-level patterns such as loops and conditionals. This representation is supplied to a general-purpose LLM, along with raw decompiler output, optionally combined with a compiler-in-the-loop that returns error messages when the generated code fails to build. On HumanEval-Decompile for \texttt{x86\_64}, \textsc{HELIOS} raises average object file compilability from 45.0\% to 85.2\% for Gemini~2.0 and from 71.4\% to 89.6\% for GPT-4.1~Mini. With compiler feedback, compilability exceeds 94\% and functional correctness improves by up to 5.6 percentage points over text-only prompting. Across six architectures drawn from x86, ARM, and MIPS, \textsc{HELIOS} reduces the spread in functional correctness while keeping syntactic correctness consistently high, all without fine-tuning. These properties make \textsc{HELIOS} a practical building block for reverse engineering workflows in security settings where analysts need recompilable, semantically faithful code across diverse hardware targets.
📅 2026-01-21
Large Language Models (LLMs) have increasingly enhanced or replaced traditional Non-Player Characters (NPCs) in video games. However, these LLM-based NPCs inherit underlying social biases (e.g., race or class), posing fairness risks during in-game interactions. To address the limited exploration of this issue, we introduce FairGamer, the first benchmark to evaluate social biases across three interaction patterns: transaction, cooperation, and competition. FairGamer assesses four bias types, including class, race, age, and nationality, across 12 distinct evaluation tasks using a novel metric, FairMCV. Our evaluation of seven frontier LLMs reveals that: (1) models exhibit biased decision-making, with Grok-4-Fast demonstrating the highest bias (average FairMCV = 76.9%); and (2) larger LLMs display more severe social biases, suggesting that increased model capacity inadvertently amplifies these biases. We release FairGamer at https://github.com/Anonymous999-xxx/FairGamer to facilitate future research on NPC fairness.
📅 2026-01-21
Counterfactual explanations (CFEs) provide human-centric interpretability by identifying the minimal, actionable changes required to alter a machine learning model's prediction. Therefore, CFs can be used as (i) interventions for abnormality prevention and (ii) augmented data for training robust models. We conduct a comprehensive evaluation of CF generation using large language models (LLMs), including GPT-4 (zero-shot and few-shot) and two open-source models-BioMistral-7B and LLaMA-3.1-8B, in both pretrained and fine-tuned configurations. Using the multimodal AI-READI clinical dataset, we assess CFs across three dimensions: intervention quality, feature diversity, and augmentation effectiveness. Fine-tuned LLMs, particularly LLaMA-3.1-8B, produce CFs with high plausibility (up to 99%), strong validity (up to 0.99), and realistic, behaviorally modifiable feature adjustments. When used for data augmentation under controlled label-scarcity settings, LLM-generated CFs substantially restore classifier performance, yielding an average 20% F1 recovery across three scarcity scenarios. Compared with optimization-based baselines such as DiCE, CFNOW, and NICE, LLMs offer a flexible, model-agnostic approach that generates more clinically actionable and semantically coherent counterfactuals. Overall, this work demonstrates the promise of LLM-driven counterfactuals for both interpretable intervention design and data-efficient model training in sensor-based digital health. Impact: SenseCF fine-tunes an LLM to generate valid, representative counterfactual explanations and supplement minority class in an imbalanced dataset for improving model training and boosting model robustness and predictive performance
📅 2026-01-21 | 💬 ACM IUI 2026
Supply chains (SCs), complex networks spanning from raw material acquisition to product delivery, with enterprises as interconnected nodes, play a pivotal role in organizational success. However, optimizing SCs remains challenging, particularly in partner selection, a key bottleneck shaped by competitive and cooperative dynamics. This challenge constitutes a multi-objective dynamic game requiring a synergistic integration of Multi-Criteria Decision-Making and Game Theory. Traditional approaches, grounded in mathematical simplifications and managerial heuristics, fail to capture real-world intricacies and risk introducing subjective biases. Multi-agent simulation offers promise, but prior research has largely relied on fixed, uniform agent logic, limiting practical applicability. Recent advances in LLMs create opportunities to represent complex SC requirements and hybrid game logic. However, challenges persist in modeling dynamic SC relationships, ensuring interpretability, and balancing agent autonomy with expert control. We present SCSimulator, a visual analytics framework that integrates LLM-driven MAS with human-in-the-loop collaboration for SC partner selection. It simulates SC evolution via adaptive network structures and enterprise behaviors, which are visualized via interpretable interfaces. By combining CoT reasoning with XAI techniques, it generates multi-faceted, transparent explanations of decision trade-offs. Users can iteratively adjust simulation settings to explore outcomes aligned with their expectations and strategic priorities. Developed through iterative co-design with SC experts and industry managers, SCSimulator serves as a proof-of-concept, offering methodological contributions and practical insights for future research on SC decision-making and interactive AI-driven analytics. Usage scenarios and a user study demonstrate the system's effectiveness and usability.
📅 2026-01-21
Large language models (LLMs) are increasingly deployed as intelligent tutoring systems, yet research on optimizing LLMs specifically for educational contexts remains limited. Recent works have proposed reinforcement learning approaches for training LLM tutors, but these methods focus solely on optimizing visible responses while neglecting the model's internal thinking process. We introduce PedagogicalRL-Thinking, a framework that extends pedagogical alignment to reasoning LLMs in education through two novel approaches: (1) Pedagogical Reasoning Prompting, which guides internal reasoning using domain-specific educational theory rather than generic instructions; and (2) Thinking Reward, which explicitly evaluates and reinforces the pedagogical quality of the model's reasoning traces. Our experiments reveal that domain-specific, theory-grounded prompting outperforms generic prompting, and that Thinking Reward is most effective when combined with pedagogical prompting. Furthermore, models trained only on mathematics tutoring dialogues show improved performance on educational benchmarks not seen during training, while preserving the base model's factual knowledge. Our quantitative and qualitative analyses reveal that pedagogical thinking reward produces systematic reasoning trace changes, with increased pedagogical reasoning and more structured instructional decision-making in the tutor's thinking process.
📅 2026-01-21
While Large Language Models (LLMs) excel at generalized reasoning, standard retrieval-augmented approaches fail to address the disconnected nature of long-term agentic memory. To bridge this gap, we introduce Synapse (Synergistic Associative Processing Semantic Encoding), a unified memory architecture that transcends static vector similarity. Drawing from cognitive science, Synapse models memory as a dynamic graph where relevance emerges from spreading activation rather than pre-computed links. By integrating lateral inhibition and temporal decay, the system dynamically highlights relevant sub-graphs while filtering interference. We implement a Triple Hybrid Retrieval strategy that fuses geometric embeddings with activation-based graph traversal. Comprehensive evaluations on the LoCoMo benchmark show that Synapse significantly outperforms state-of-the-art methods in complex temporal and multi-hop reasoning tasks, offering a robust solution to the "Contextual Tunneling" problem. Our code and data will be made publicly available upon acceptance.
📅 2026-01-21 | 💬 9 pages
We investigate whether large language models can discover and analyze U.S. tax-minimization strategies. This real-world domain challenges even seasoned human experts, and progress can reduce tax revenue lost from well-advised, wealthy taxpayers. We evaluate the most advanced LLMs on their ability to (1) interpret and verify tax strategies, (2) fill in gaps in partially specified strategies, and (3) generate complete, end-to-end strategies from scratch. This domain should be of particular interest to the LLM reasoning community: unlike synthetic challenge problems or scientific reasoning tasks, U.S. tax law involves navigating hundreds of thousands of pages of statutes, case law, and administrative guidance, all updated regularly. Notably, LLM-based reasoning identified an entirely novel tax strategy, highlighting these models' potential to revolutionize tax agencies' fight against tax abuse.
📅 2026-01-21 | 💬 Accepted by AISC 2026
Large Language Model (LLM)-based question-answering systems offer significant potential for automating customer support and internal knowledge access in small businesses, yet their practical deployment remains challenging due to infrastructure costs, engineering complexity, and security risks, particularly in retrieval-augmented generation (RAG)-based settings. This paper presents an industry case study of an open-source, multi-tenant platform that enables small businesses to deploy customised LLM-based support chatbots via a no-code workflow. The platform is built on distributed, lightweight k3s clusters spanning heterogeneous, low-cost machines and interconnected through an encrypted overlay network, enabling cost-efficient resource pooling while enforcing container-based isolation and per-tenant data access controls. In addition, the platform integrates practical, platform-level defences against prompt injection attacks in RAG-based chatbots, translating insights from recent prompt injection research into deployable security mechanisms without requiring model retraining or enterprise-scale infrastructure. We evaluate the proposed platform through a real-world e-commerce deployment, demonstrating that secure and efficient LLM-based chatbot services can be achieved under realistic cost, operational, and security constraints faced by small businesses.
📅 2026-01-21
Accurate prediction of traffic crash severity is critical for improving emergency response and public safety planning. Although recent large language models (LLMs) exhibit strong reasoning capabilities, their single-agent architectures often struggle with heterogeneous, domain-specific crash data and tend to generate biased or unstable predictions. To address these limitations, this paper proposes TransportAgents, a hybrid multi-agent framework that integrates category-specific LLM reasoning with a multilayer perceptron (MLP) integration module. Each specialized agent focuses on a particular subset of traffic information, such as demographics, environmental context, or incident details, to produce intermediate severity assessments that are subsequently fused into a unified prediction. Extensive experiments on two complementary U.S. datasets, the Consumer Product Safety Risk Management System (CPSRMS) and the National Electronic Injury Surveillance System (NEISS), demonstrate that TransportAgents consistently outperforms both traditional machine learning and advanced LLM-based baselines. Across three representative backbones, including closed-source models such as GPT-3.5 and GPT-4o, as well as open-source models such as LLaMA-3.3, the framework exhibits strong robustness, scalability, and cross-dataset generalizability. A supplementary distributional analysis further shows that TransportAgents produces more balanced and well-calibrated severity predictions than standard single-agent LLM approaches, highlighting its interpretability and reliability for safety-critical decision support applications.
📅 2026-01-21 | 💬 Accepted to EACL 2026 (Main)
A common solution for mitigating outdated or incorrect information in Large Language Models (LLMs) is to provide updated facts in-context or through knowledge editing. However, these methods introduce knowledge conflicts when the knowledge update fails to overwrite the model's parametric knowledge, which propagate to faulty reasoning. Current benchmarks for this problem, however, largely focus only on single knowledge updates and fact recall without evaluating how these updates affect downstream reasoning. In this work, we introduce TRACK (Testing Reasoning Amid Conflicting Knowledge), a new benchmark for studying how LLMs propagate new knowledge through multi-step reasoning when it conflicts with the model's initial parametric knowledge. Spanning three reasoning-intensive scenarios (WIKI, CODE, and MATH), TRACK introduces multiple, realistic conflicts to mirror real-world complexity. Our results on TRACK reveal that providing updated facts to models for reasoning can worsen performance compared to providing no updated facts to a model, and that this performance degradation exacerbates as more updated facts are provided. We show this failure stems from both inability to faithfully integrate updated facts, but also flawed reasoning even when knowledge is integrated. TRACK provides a rigorous new benchmark to measure and guide future progress on propagating conflicting knowledge in multi-step reasoning.
📅 2026-01-21
Standard autoregressive decoding in large language models (LLMs) is inherently short-sighted, often failing to find globally optimal reasoning paths due to its token-by-token generation process. While inference-time strategies like foresight sampling attempt to mitigate this by simulating future steps, they typically rely on ad-hoc heuristics for valuing paths and pruning the search space. This paper introduces Martingale Foresight Sampling (MFS), a principled framework that reformulates LLM decoding as a problem of identifying an optimal stochastic process. By modeling the quality of a reasoning path as a stochastic process, we leverage Martingale theory to design a theoretically-grounded algorithm. Our approach replaces heuristic mechanisms with principles from probability theory: step valuation is derived from the Doob Decomposition Theorem to measure a path's predictable advantage, path selection uses Optional Stopping Theory for principled pruning of suboptimal candidates, and an adaptive stopping rule based on the Martingale Convergence Theorem terminates exploration once a path's quality has provably converged. Experiments on six reasoning benchmarks demonstrate that MFS surpasses state-of-the-art methods in accuracy while significantly improving computational efficiency. Code will be released at https://github.com/miraclehetech/EACL2026-Martingale-Foresight-Sampling.
📅 2026-01-21
The safe deployment of large language models (LLMs) in high-stakes fields like biomedicine, requires them to be able to reason about cause and effect. We investigate this ability by testing 13 open-source LLMs on a fundamental task: pairwise causal discovery (PCD) from text. Our benchmark, using 12 diverse datasets, evaluates two core skills: 1) \textbf{Causal Detection} (identifying if a text contains a causal link) and 2) \textbf{Causal Extraction} (pulling out the exact cause and effect phrases). We tested various prompting methods, from simple instructions (zero-shot) to more complex strategies like Chain-of-Thought (CoT) and Few-shot In-Context Learning (FICL). The results show major deficiencies in current models. The best model for detection, DeepSeek-R1-Distill-Llama-70B, only achieved a mean score of 49.57\% ($C_{detect}$), while the best for extraction, Qwen2.5-Coder-32B-Instruct, reached just 47.12\% ($C_{extract}$). Models performed best on simple, explicit, single-sentence relations. However, performance plummeted for more difficult (and realistic) cases, such as implicit relationships, links spanning multiple sentences, and texts containing multiple causal pairs. We provide a unified evaluation framework, built on a dataset validated with high inter-annotator agreement ($Îș\ge 0.758$), and make all our data, code, and prompts publicly available to spur further research. \href{https://github.com/sydneyanuyah/CausalDiscovery}{Code available here: https://github.com/sydneyanuyah/CausalDiscovery}
📅 2026-01-21 | 💬 This submission is a new version of arXiv:2509.05882v1. with a substantially revised experimental pipeline and new metrics. In particular, collaborator agents are now instantiated independently via separate API calls, rather than generated autoregressively by a single agent. All experimental results are new. Accepted as an extended abstract at AAMAS 2026
As Large Language Models (LLMs) get integrated into diverse workflows, they are increasingly being regarded as "collaborators" with humans, and required to work in coordination with other AI systems. If such AI collaborators are to reliably coordinate their actions and behaviors with humans or other AIs, their properties and behaviors over multi-turn interactions must be known and predictable. This paper examines how different alignment methods affect LLM agents' effectiveness as partners in multi-turn, multi-party collaborations. We study this question through the lens of intervention agents that insert themselves into group dialogues not to provide answers, but to encourage the collaborative group to slow down and reflect upon their reasoning for deliberative decision-making. Common alignment techniques are typically developed under simplified single-user settings and assume the optimality of the underlying token MDP. Using the theoretical lens of the modified-action MDP, we show how they do not account for the dynamics of long-horizon multi-party interactions. We present a novel roleplay simulation methodology, where we align LLMs according to different methods and then deploy them in collaborative task dialogues to quantify how interventions affect the trajectory of group collaboration, belief alignment, and coordination. Our results show that an intervention agent that is robust to action modification significantly outperforms common alignment baselines in supporting correct task outcomes.
📅 2026-01-21
This paper examines how to make large language models reliable for high-stakes legal work by reducing hallucinations. It distinguishes three AI paradigms: (1) standalone generative models ("creative oracle"), (2) basic retrieval-augmented systems ("expert archivist"), and (3) an advanced, end-to-end optimized RAG system ("rigorous archivist"). The authors introduce two reliability metrics -False Citation Rate (FCR) and Fabricated Fact Rate (FFR)- and evaluate 2,700 judicial-style answers from 12 LLMs across 75 legal tasks using expert, double-blind review. Results show that standalone models are unsuitable for professional use (FCR above 30%), while basic RAG greatly reduces errors but still leaves notable misgrounding. Advanced RAG, using techniques such as embedding fine-tuning, re-ranking, and self-correction, reduces fabrication to negligible levels (below 0.2%). The study concludes that trustworthy legal AI requires rigor-focused, retrieval-based architectures emphasizing verification and traceability, and provides an evaluation framework applicable to other high-risk domains.
📅 2026-01-21
The next-token prediction (NTP) objective has been foundational in the development of modern large language models (LLMs), driving advances in fluency and generalization. However, NTP operates at the \textit{token} level, treating deviations from a single reference continuation as errors even when alternative continuations are equally plausible or semantically equivalent (e.g., ``mom'' vs. ``mother''). As a result, token-level loss can penalize valid abstractions, paraphrases, or conceptually correct reasoning paths, biasing models toward surface form rather than underlying meaning. This mismatch between the training signal and semantic correctness motivates learning objectives that operate over higher-level representations. We propose a shift from token-level to concept-level prediction, where concepts group multiple surface forms of the same idea (e.g., ``mom,'' ``mommy,'' ``mother'' $\rightarrow$ \textit{MOTHER}). We introduce various methods for integrating conceptual supervision into LLM training and show that concept-aware models achieve lower perplexity, improved robustness under domain shift, and stronger performance than NTP-based models on diverse NLP benchmarks. This suggests \textit{concept-level supervision} as an improved training signal that better aligns LLMs with human semantic abstractions.
📅 2026-01-21
Large Language Models (LLMs) generate fluent answers but can struggle with trustworthy, domain-specific reasoning. We evaluate whether domain knowledge graphs (KGs) improve Retrieval-Augmented Generation (RAG) for healthcare by constructing three PubMed-derived graphs: $\mathbb{G}_1$ (T2DM), $\mathbb{G}_2$ (Alzheimer's disease), and $\mathbb{G}_3$ (AD+T2DM). We design two probes: Probe 1 targets merged AD T2DM knowledge, while Probe 2 targets the intersection of $\mathbb{G}_1$ and $\mathbb{G}_2$. Seven instruction-tuned LLMs are tested across retrieval sources {No-RAG, $\mathbb{G}_1$, $\mathbb{G}_2$, $\mathbb{G}_1$ + $\mathbb{G}_2$, $\mathbb{G}_3$, $\mathbb{G}_1$+$\mathbb{G}_2$ + $\mathbb{G}_3$} and three decoding temperatures. Results show that scope alignment between probe and KG is decisive: precise, scope-matched retrieval (notably $\mathbb{G}_2$) yields the most consistent gains, whereas indiscriminate graph unions often introduce distractors that reduce accuracy. Larger models frequently match or exceed KG-RAG with a No-RAG baseline on Probe 1, indicating strong parametric priors, whereas smaller/mid-sized models benefit more from well-scoped retrieval. Temperature plays a secondary role; higher values rarely help. We conclude that precision-first, scope-matched KG-RAG is preferable to breadth-first unions, and we outline practical guidelines for graph selection, model sizing, and retrieval/reranking. Code and Data available here - https://github.com/sydneyanuyah/RAGComparison
📅 2026-01-21
The rapid emergence of new entities -- driven by cultural shifts, evolving trends, and personalized user data -- poses a significant challenge for existing Speech Large Language Models (Speech LLMs). While these models excel at general conversational tasks, their static training knowledge limits their ability to recognize domain-specific terms such as contact names, playlists, or technical jargon. Existing solutions primarily rely on prompting, which suffers from poor scalability: as the entity list grows, prompting encounters context window limitations, increased inference latency, and the "lost-in-the-middle" phenomenon. An alternative approach, Generative Error Correction (GEC), attempts to rewrite transcripts via post-processing but frequently suffers from "over-correction", introducing hallucinations of entities that were never spoken. In this work, we introduce LOGIC (Logit-Space Integration for Contextual Biasing), an efficient and robust framework that operates directly in the decoding layer. Unlike prompting, LOGIC decouples context injection from input processing, ensuring constant-time complexity relative to prompt length. Extensive experiments using the Phi-4-MM model across 11 multilingual locales demonstrate that LOGIC achieves an average 9% relative reduction in Entity WER with a negligible 0.30% increase in False Alarm Rate.
📅 2026-01-21 | 💬 8 pages, 9 figures
Natural-language-to-visualization (NL2VIS) systems based on large language models (LLMs) have substantially improved the accessibility of data visualization. However, their further adoption is hindered by two coupled challenges: (i) the absence of standardized evaluation metrics makes it difficult to assess progress in the field and compare different approaches; and (ii) natural language descriptions are inherently underspecified, so multiple visualizations may be valid for the same query. To address these issues, we introduce VegaChat, a framework for generating, validating, and assessing declarative visualizations from natural language. We propose two complementary metrics: Spec Score, a deterministic metric that measures specification-level similarity without invoking an LLM, and Vision Score, a library-agnostic, image-based metric that leverages a multimodal LLM to assess chart similarity and prompt compliance. We evaluate VegaChat on the NLV Corpus and on the annotated subset of ChartLLM. VegaChat achieves near-zero rates of invalid or empty visualizations, while Spec Score and Vision Score exhibit strong correlation with human judgments (Pearson 0.65 and 0.71, respectively), indicating that the proposed metrics support consistent, cross-library comparison. The code and evaluation artifacts are available at https://zenodo.org/records/17062309.
📅 2026-01-21 | 💬 Accepted and Waiting to be published ICAI'25: 27th International Conference on Artificial Intelligence https://american-cse.org/csce2025/conferences-ICAI
Loop vulnerabilities are one major risky construct in software development. They can easily lead to infinite loops or executions, exhaust resources, or introduce logical errors that degrade performance and compromise security. The problem are often undetected by traditional static analyzers because such tools rely on syntactic patterns, which makes them struggle to detect semantic flaws. Consequently, Large Language Models (LLMs) offer new potential for vulnerability detection because of their ability to understand code contextually. Moreover, local LLMs unlike commercial ones like ChatGPT or Gemini addresses issues such as privacy, latency, and dependency concerns by facilitating efficient offline analysis. Consequently, this study proposes a prompt-based framework that utilize local LLMs for the detection of loop vulnerabilities within Python 3.7+ code. The framework targets three categories of loop-related issues, such as control and logic errors, security risks inside loops, and resource management inefficiencies. A generalized and structured prompt-based framework was designed and tested with two locally deployed LLMs (LLaMA 3.2; 3B and Phi 3.5; 4B) by guiding their behavior via iterative prompting. The designed prompt-based framework included key safeguarding features such as language-specific awareness, code-aware grounding, version sensitivity, and hallucination prevention. The LLM results were validated against a manually established baseline truth, and the results indicate that Phi outperforms LLaMA in precision, recall, and F1-score. The findings emphasize the importance of designing effective prompts for local LLMs to perform secure and accurate code vulnerability analysis.
📅 2026-01-21
Repeated exposure to violence and abusive content in music and song content can influence listeners' emotions and behaviours, potentially normalising aggression or reinforcing harmful stereotypes. In this study, we explore the use of generative artificial intelligence (GenAI) and Large Language Models (LLMs) to automatically transform abusive words (vocal delivery) and lyrical content in popular music. Rather than simply muting or replacing a single word, our approach transforms the tone, intensity, and sentiment, thus not altering just the lyrics, but how it is expressed. We present a comparative analysis of four selected English songs and their transformed counterparts, evaluating changes through both acoustic and sentiment-based lenses. Our findings indicate that Gen-AI significantly reduces vocal aggressiveness, with acoustic analysis showing improvements in Harmonic to Noise Ratio, Cepstral Peak Prominence, and Shimmer. Sentiment analysis reduced aggression by 63.3-85.6\% across artists, with major improvements in chorus sections (up to 88.6\% reduction). The transformed versions maintained musical coherence while mitigating harmful content, offering a promising alternative to traditional content moderation that avoids triggering the "forbidden fruit" effect, where the censored content becomes more appealing simply because it is restricted. This approach demonstrates the potential for GenAI to create safer listening experiences while preserving artistic expression.
📅 2026-01-21 | 💬 6 pages with 2 figures, This paper was accepted and presented at the 7th Computing, Communications and IoT Applications Conference (ComComAp 2025), held in Madrid, Spain, during 14th to 17th December 2025
The rapid growth of Internet of Things (IoT) devices has increased the scale and diversity of cyberattacks, exposing limitations in traditional intrusion detection systems. Classical machine learning (ML) models such as Random Forest and Support Vector Machine perform well on known attacks but require retraining to detect unseen or zero-day threats. This study investigates lightweight decoder-only Large Language Models (LLMs) for IoT attack detection by integrating structured-to-text conversion, Quantized Low-Rank Adaptation (QLoRA) fine-tuning, and Retrieval-Augmented Generation (RAG). Network traffic features are transformed into compact natural-language prompts, enabling efficient adaptation under constrained hardware. Experiments on the CICIoT2023 dataset show that a QLoRA-tuned LLaMA-1B model achieves an F1-score of 0.7124, comparable to the Random Forest (RF) baseline (0.7159) for known attacks. With RAG, the system attains 42.63% accuracy on unseen attack types without additional training, demonstrating practical zero-shot capability. These results highlight the potential of retrieval-enhanced lightweight LLMs as adaptable and resource-efficient solutions for next-generation IoT intrusion detection.
📅 2026-01-21 | 💬 Project codebase: https://github.com/junzeye/validate-medcalc-labels
We examine the reliability of a widely used clinical AI benchmark whose reference labels were partially generated by LLMs, and find that a substantial fraction are clinically misaligned. We introduce a phased stewardship procedure to amplify the positive impact of physician experts' feedback and then demonstrate, via a controlled RL experiment, how uncaught label bias can materially affect downstream LLM evaluation and alignment. Our results demonstrate that partially LLM-generated labels can embed systemic errors that distort not only evaluation but also downstream model alignment. By adopting a hybrid oversight system, we can prioritize scarce expert feedback to maintain benchmarks as living, clinically-grounded documents. Ensuring this alignment is a prerequisite for the safe deployment of LLMs in high-stakes medical decision support.
📅 2026-01-21
Large language models (LLMs) have achieved impressive proficiency in basic arithmetic, rivaling human-level performance on standard numerical tasks. However, little attention has been given to how these models perform when numerical expressions deviate from the prevailing conventions present in their training corpora. In this work, we investigate numerical reasoning across a wide range of numeral scripts and formats. We show that LLM accuracy drops substantially when numerical inputs are rendered in underrepresented scripts or formats, despite the underlying mathematical reasoning being identical. We further demonstrate that targeted prompting strategies, such as few-shot prompting and explicit numeral mapping, can greatly narrow this gap. Our findings highlight an overlooked challenge in multilingual numerical reasoning and provide actionable insights for working with LLMs to reliably interpret, manipulate, and generate numbers across diverse numeral scripts and formatting styles.
📅 2026-01-21 | 💬 4 figures, 9 pages
We present a methodology for extracting structured risk factors from corporate 10-K filings while maintaining adherence to a predefined hierarchical taxonomy. Our three-stage pipeline combines LLM extraction with supporting quotes, embedding-based semantic mapping to taxonomy categories, and LLM-as-a-judge validation that filters spurious assignments. To evaluate our approach, we extract 10,688 risk factors from S&P 500 companies and examine risk profile similarity across industry clusters. Beyond extraction, we introduce autonomous taxonomy maintenance where an AI agent analyzes evaluation feedback to identify problematic categories, diagnose failure patterns, and propose refinements, achieving 104.7% improvement in embedding separation in a case study. External validation confirms the taxonomy captures economically meaningful structure: same-industry companies exhibit 63% higher risk profile similarity than cross-industry pairs (Cohen's d=1.06, AUC 0.82, p<0.001). The methodology generalizes to any domain requiring taxonomy-aligned extraction from unstructured text, with autonomous improvement enabling continuous quality maintenance and enhancement as systems process more documents.
📅 2026-01-21
Large Language Models (LLMs), despite their remarkable capabilities across NLP tasks, struggle with phonologically-grounded phenomena like rhyme detection and generation. This is even more evident in lower-resource languages such as Modern Greek. In this paper, we present a hybrid system that combines LLMs with deterministic phonological algorithms to achieve accurate rhyme identification/analysis and generation. Our approach implements a comprehensive taxonomy of Greek rhyme types, including Pure, Rich, Imperfect, Mosaic, and Identical Pre-rhyme Vowel (IDV) patterns, and employs an agentic generation pipeline with phonological verification. We evaluate multiple prompting strategies (zero-shot, few-shot, Chain-of-Thought, and RAG-augmented) across several LLMs including Claude 3.7 and 4.5, GPT-4o, Gemini 2.0 and open-weight models like Llama 3.1 8B and 70B and Mistral Large. Results reveal a significant "Reasoning Gap": while native-like models (Claude 3.7) perform intuitively (40\% accuracy in identification), reasoning-heavy models (Claude 4.5) achieve state-of-the-art performance (54\%) only when prompted with Chain-of-Thought. Most critically, pure LLM generation fails catastrophically (under 4\% valid poems), while our hybrid verification loop restores performance to 73.1\%. We release our system and a crucial, rigorously cleaned corpus of 40,000+ rhymes, derived from the Anemoskala and Interwar Poetry corpora, to support future research.
📅 2026-01-21 | 💬 A version of this paper has been submitted to ACM Transactions on Software Engineering and Methodology
Large Language Models (LLMs) have revolutionized intelligent application development. While standalone LLMs cannot perform any actions, LLM agents address the limitation by integrating tools. However, debugging LLM agents is difficult and costly as the field is still in it's early stage and the community is underdeveloped. To understand the bugs encountered during agent development, we present the first comprehensive study of bug types, root causes, and effects in LLM agent-based software. We collected and analyzed 1,187 bug-related posts and code snippets from Stack Overflow, GitHub, and Hugging Face forums, focused on LLM agents built with seven widely used LLM frameworks as well as custom implementations. For a deeper analysis, we have also studied the component where the bug occurred, along with the programming language and framework. This study also investigates the feasibility of automating bug identification. For that, we have built a ReAct agent named BugReAct, equipped with adequate external tools to determine whether it can detect and annotate the bugs in our dataset. According to our study, we found that BugReAct equipped with Gemini 2.5 Flash achieved a remarkable performance in annotating bug characteristics with an average cost of 0.01 USD per post/code snippet.
📅 2026-01-21
Current sentence embedding evaluations typically rely on static test beds like the Massive Text Embedding Benchmark (MTEB). While invaluable, repeated tuning on a fixed suite can inflate reported scores and obscure real-world robustness. We introduce the Paraphrasing Text Embedding Benchmark (PTEB), a dynamic protocol that stochastically generates meaning-preserving paraphrases at evaluation time and aggregates results across multiple runs. Using a cost-efficient LLM-based method grounded in gold ratings and human validation, we show that LLMs generate token-diverse but semantically preserving paraphrases. Across 7 MTEB tasks, we validate our hypothesis that the performance of sentence encoders is sensitive to changes in token space even when semantics remain fixed. We also observe that smaller models are not disproportionately affected relative to larger ones. Our results are statistically robust over multiple runs spanning 20 datasets and 25 languages. More generally, we aim to propose a new evaluation paradigm in NLP that relies less on static, pre-defined benchmarks but shifts towards dynamic, stochastic evaluation leveraging eval-time compute.
📅 2026-01-21
Large Language Models (LLMs) are increasingly deployed via third-party system prompts downloaded from public marketplaces. We identify a critical supply-chain vulnerability: conditional system prompt poisoning, where an adversary injects a ``sleeper agent'' into a benign-looking prompt. Unlike traditional jailbreaks that aim for broad refusal-breaking, our proposed framework, SPECTRE, optimizes system prompts to trigger LLMs to output targeted, compromised responses only for specific queries (e.g., ``Who should I vote for the US President?'') while maintaining high utility on benign inputs. Operating in a strict black-box setting without model weight access, SPECTRE utilizes a two-stage optimization including a global semantic search followed by a greedy lexical refinement. Tested on open-source models and commercial APIs (GPT-4o-mini, GPT-3.5), SPECTRE achieves up to 70% F1 reduction on targeted queries with minimal degradation to general capabilities. We further demonstrate that these poisoned prompts evade standard defenses, including perplexity filters and typo-correction, by exploiting the natural noise found in real-world system prompts. Our code and data are available at https://github.com/vietph34/CAIN. WARNING: Our paper contains examples that might be sensitive to the readers!
📅 2026-01-21 | 💬 Accepted for publication in ACM CHI 2026
We investigate intelligent personal assistants (IPAs) accessibility for deaf and hard of hearing (DHH) people who can use their voice in everyday communication. The inability of IPAs to understand diverse accents including deaf speech renders them largely inaccessible to non-signing and speaking DHH individuals. Using an Echo Show, we compare the usability of natural language input via spoken English; with Alexa's automatic speech recognition and a Wizard-of-Oz setting with a trained facilitator re-speaking commands against that of a large language model (LLM)-assisted touch interface in a mixed-methods study. The touch method was navigated through an LLM-powered "task prompter," which integrated the user's history and smart environment to suggest contextually-appropriate commands. Quantitative results showed no significant differences across both spoken English conditions vs LLM-assisted touch. Qualitative results showed variability in opinions on the usability of each method. Ultimately, it will be necessary to have robust deaf-accented speech recognized natively by IPAs.
📅 2026-01-21 | 💬 Accepted to 2026 IEEE Secure and Trustworthy Machine Learning Conference (SaTML)
Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we introduce and evaluate a new technique for jailbreak attacks. We observe that alignment embeds a safety classifier in the LLM responsible for deciding between refusal and compliance, and seek to extract an approximation of this classifier: a surrogate classifier. To this end, we build candidate classifiers from subsets of the LLM. We first evaluate the degree to which candidate classifiers approximate the LLM's safety classifier in benign and adversarial settings. Then, we attack the candidates and measure how well the resulting adversarial inputs transfer to the LLM. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find that attacks mounted on the surrogate classifiers can be transferred to the LLM with high success. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70% with half the memory footprint and runtime -- a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is an effective and efficient means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks. The code is available at https://github.com/jcnf0/targeting-alignment.
📅 2026-01-21
Critical domain knowledge typically resides with few experts, creating organizational bottlenecks in scalability and decision-making. Non-experts struggle to create effective visualizations, leading to suboptimal insights and diverting expert time. This paper investigates how to capture and embed human domain knowledge into AI agent systems through an industrial case study. We propose a software engineering framework to capture human domain knowledge for engineering AI agents in simulation data visualization by augmenting a Large Language Model (LLM) with a request classifier, Retrieval-Augmented Generation (RAG) system for code generation, codified expert rules, and visualization design principles unified in an agent demonstrating autonomous, reactive, proactive, and social behavior. Evaluation across five scenarios spanning multiple engineering domains with 12 evaluators demonstrates 206% improvement in output quality, with our agent achieving expert-level ratings in all cases versus baseline's poor performance, while maintaining superior code quality with lower variance. Our contributions are: an automated agent-based system for visualization generation and a validated framework for systematically capturing human domain knowledge and codifying tacit expert knowledge into AI agents, demonstrating that non-experts can achieve expert-level outcomes in specialized domains.
📅 2026-01-21 | 💬 9 pages, 5 figures
Large language models (LLMs) have demonstrated strong reasoning, planning, and communication abilities, enabling them to operate as autonomous agents in open environments. While single-agent systems remain limited in adaptability and coordination, recent progress has shifted attention toward multi-agent systems (MAS) composed of interacting LLMs that pursue cooperative, competitive, or mixed objectives. This emerging paradigm provides a powerful testbed for studying social dynamics and strategic behaviors among intelligent agents. However, current research remains fragmented and lacks a unifying theoretical foundation. To address this gap, we present a comprehensive survey of LLM-based multi-agent systems through a game-theoretic lens. By organizing existing studies around the four key elements of game theory: players, strategies, payoffs, and information, we establish a systematic framework for understanding, comparing, and guiding future research on the design and analysis of LLM-based MAS.
📅 2026-01-21
Open-domain Relational Triplet Extraction (ORTE) is the foundation for mining structured knowledge without predefined schemas. Despite the impressive in-context learning capabilities of Large Language Models (LLMs), existing methods are hindered by their reliance on static, heuristic-driven prompting strategies. Due to the lack of reflection mechanisms required to internalize erroneous signals, these methods exhibit vulnerability in semantic ambiguity, often making erroneous extraction patterns permanent. To address this bottleneck, we propose a Knowledge Reconstruction-driven Prompt Optimization (KRPO) framework to assist LLMs in continuously improving their extraction capabilities for complex ORTE task flows. Specifically, we design a self-evaluation mechanism based on knowledge restoration, which provides intrinsic feedback signals by projecting structured triplets into semantic consistency scores. Subsequently, we propose a prompt optimizer based on a textual gradient that can internalize historical experiences to iteratively optimize prompts, which can better guide LLMs to handle subsequent extraction tasks. Furthermore, to alleviate relation redundancy, we design a relation canonicalization memory that collects representative relations and provides semantically distinct schemas for the triplets. Extensive experiments across three datasets show that KRPO significantly outperforms strong baselines in the extraction F1 score.
📅 2026-01-20 | 💬 12 pages
The automatic extraction of information is important for populating large web knowledge bases such as Wikidata. The temporal version of that task, temporal knowledge graph extraction (TKGE), involves extracting temporally grounded facts from text, represented as semantic quadruples (subject, relation, object, timestamp). Many recent systems take advantage of large language models (LLMs), which are becoming a new cornerstone of the web due to their performance on many tasks across the natural language processing (NLP) field. Despite the importance of TKGE, existing datasets for training and evaluation remain scarce, and contamination of evaluation data is an unaddressed issue, potentially inflating LLMs' perceived performance due to overlaps between training and evaluation sets. To mitigate these challenges, we propose a novel synthetic evaluation dataset constructed from predicted future, previously unseen temporal facts, thereby eliminating contamination and enabling robust and unbiased benchmarking. Our dataset creation involves a two-step approach: (1) Temporal Knowledge Graph Forecasting (TKGF) generates plausible future quadruples, which are subsequently filtered to adhere to the original knowledge base schema; (2) LLMs perform quadruple-to-text generation, creating semantically aligned textual descriptions. We benchmark Extract, Define and Canonicalize (EDC), a state-of-the-art LLM-based extraction framework, demonstrating that LLM performance decreases when evaluated on our dataset compared to a dataset of known facts. We publicly release our dataset consisting of 4.2K future quadruples and corresponding textual descriptions, along with the generation methodology, enabling continuous creation of unlimited future temporal datasets to serve as long-term, contamination-free benchmarks for TKGE.
📅 2026-01-20
Large language models (LLMs) exhibit impressive reasoning and problem-solving abilities, yet their substantial inference latency and token consumption pose major challenges for real-time deployment on resource-limited edge devices. Recent efforts toward edge-cloud collaboration have attempted to mitigate this issue, but most existing methods adopt coarse-grained task allocation strategies-assigning entire queries either to the edge or the cloud. Such rigid partitioning fails to exploit fine-grained reasoning parallelism and often leads to redundant computation and inefficient resource utilization. To this end, we propose HybridFlow, a resource-adaptive inference framework that enables fast and token-efficient collaborative reasoning between edge and cloud LLMs. HybridFlow operates in two stages: (1) task decomposition and parallel execution, which dynamically splits a complex query into interdependent subtasks that can execute as soon as their dependencies are resolved; and (2) resource-aware subtask routing, where a learned router adaptively assigns each subtask to the edge or cloud model according to predicted utility gains and real-time budget states. Comprehensive evaluations on GPQA, MMLU-Pro, AIME, and LiveBench-Reasoning demonstrate that HybridFlow effectively reduces end-to-end inference time and overall token usage while maintaining competitive accuracy.
📅 2026-01-20
The democratization of open-source Large Language Models (LLMs) allows users to fine-tune and deploy models on local infrastructure but exposes them to a First Mile deployment landscape. Unlike black-box API consumption, the reliability of user-managed orchestration remains a critical blind spot. To bridge this gap, we conduct the first large-scale empirical study of 705 real-world failures from the open-source DeepSeek, Llama, and Qwen ecosystems. Our analysis reveals a paradigm shift: white-box orchestration relocates the reliability bottleneck from model algorithmic defects to the systemic fragility of the deployment stack. We identify three key phenomena: (1) Diagnostic Divergence: runtime crashes distinctively signal infrastructure friction, whereas incorrect functionality serves as a signature for internal tokenizer defects. (2) Systemic Homogeneity: Root causes converge across divergent series, confirming reliability barriers are inherent to the shared ecosystem rather than specific architectures. (3) Lifecycle Escalation: Barriers escalate from intrinsic configuration struggles during fine-tuning to compounded environmental incompatibilities during inference. Supported by our publicly available dataset, these insights provide actionable guidance for enhancing the reliability of the LLM landscape.
📅 2026-01-20
Recent advances in Large Language Models (LLMs) have incentivized the development of LLM-as-a-judge, an application of LLMs where they are used as judges to decide the quality of a certain piece of text given a certain context. However, previous studies have demonstrated that LLM-as-a-judge can be biased towards different aspects of the judged texts, which often do not align with human preference. One of the identified biases is language bias, which indicates that the decision of LLM-as-a-judge can differ based on the language of the judged texts. In this paper, we study two types of language bias in pairwise LLM-as-a-judge: (1) performance disparity between languages when the judge is prompted to compare options from the same language, and (2) bias towards options written in major languages when the judge is prompted to compare options of two different languages. We find that for same-language judging, there exist significant performance disparities across language families, with European languages consistently outperforming African languages, and this bias is more pronounced in culturally-related subjects. For inter-language judging, we observe that most models favor English answers, and that this preference is influenced more by answer language than question language. Finally, we investigate whether language bias is in fact caused by low-perplexity bias, a previously identified bias of LLM-as-a-judge, and we find that while perplexity is slightly correlated with language bias, language bias cannot be fully explained by perplexity only.
📅 2026-01-20
Efficiently serving Large Language Models (LLMs) with persistent Prefix Key-Value (KV) Cache is critical for applications like conversational search and multi-turn dialogue. Serving a request requires loading the pre-computed prefix KV cache and generating the first token, defined as the Re-Prefill Phase. Offloading this shared prefix cache to secondary storage is essential for memory scalability. Re-Prefill with offloading suffers from severe I/O bottlenecks in two aspects. First, semantic-aware KV cache pruning algorithms select important tokens in fine granularity, while systems manage I/O in coarse, fixed-size blocks, causing severe read amplification. Second, the sequential dependency between identifying important tokens and loading KV cache creates idle I/O and compute bubbles, under-utilizing system resources. This paper proposes \textit{ContiguousKV}, a high-performance prefix KV cache offloading system that bridges algorithmic semantics with I/O efficiency to accelerate the Re-Prefill phase. We first introduce \textit{ContiguousChunk}, a unified data management granularity that aligns KV cache pruning with I/O operations. All the mechanisms critical for I/O performance are performed at the granularity of ContiguousChunk, thereby eliminating read amplification. By exploiting the high similarity in important ContiguousChunk indices across layers, we propose intra- and inter-period asynchronous prefetching to break the sequential dependency between I/O and compute, effectively eliminating idle bubbles. Finally, we propose attention-guided cache management to retain semantically critical prefix data in memory. Evaluations on Qwen2.5 series models show that ContiguousKV achieves a 3.85x speedup in the Re-Prefill phase over the state-of-the-art offloading system IMPRESS, while maintaining high output quality.
📅 2026-01-20 | 💬 Accepted to 2026 IEEE International Symposium on Circuits and Systems (ISCAS'26)
This paper presents PRIMAL, a processing-in-memory (PIM) based large language model (LLM) inference accelerator with low-rank adaptation (LoRA). PRIMAL integrates heterogeneous PIM processing elements (PEs), interconnected by 2D-mesh inter-PE computational network (IPCN). A novel SRAM reprogramming and power gating (SRPG) scheme enables pipelined LoRA updates and sub-linear power scaling by overlapping reconfiguration with computation and gating idle resources. PRIMAL employs optimized spatial mapping and dataflow orchestration to minimize communication overhead, and achieves $1.5\times$ throughput and $25\times$ energy efficiency over NVIDIA H100 with LoRA rank 8 (Q,V) on Llama-13B.
📅 2026-01-20
Causal discovery is fundamental to scientific understanding and reliable decision-making. Existing approaches face critical limitations: purely data-driven methods suffer from statistical indistinguishability and modeling assumptions, while recent LLM-based methods either ignore statistical evidence or incorporate unverified priors that can mislead result. To this end, we propose CauScientist, a collaborative framework that synergizes LLMs as hypothesis-generating "data scientists" with probabilistic statistics as rigorous "verifiers". CauScientist employs hybrid initialization to select superior starting graphs, iteratively refines structures through LLM-proposed modifications validated by statistical criteria, and maintains error memory to guide efficient search space. Experiments demonstrate that CauScientist substantially outperforms purely data-driven baselines, achieving up to 53.8% F1 score improvement and enhancing recall from 35.0% to 100.0%. Notably, while standalone LLM performance degrades with graph complexity, CauScientist reduces structural hamming distance (SHD) by 44.0% compared to Qwen3-32B on 37-node graphs. Our project page is at https://github.com/OpenCausaLab/CauScientist.
📅 2026-01-20 | 💬 Under Review
Ensuring that collections of natural-language facts are globally consistent is essential for tasks such as fact-checking, summarization, and knowledge base construction. While Large Language Models (LLMs) can assess the consistency of small subsets of facts, their judgments are noisy, and pairwise checks are insufficient to guarantee global coherence. We formalize this problem and show that verifying global consistency requires exponentially many oracle queries in the worst case. To make the task practical, we propose an adaptive divide-and-conquer algorithm that identifies minimal inconsistent subsets (MUSes) of facts and optionally computes minimal repairs through hitting-sets. Our approach has low-degree polynomial query complexity. Experiments with both synthetic and real LLM oracles show that our method efficiently detects and localizes inconsistencies, offering a scalable framework for linguistic consistency verification with LLM-based evaluators.
📅 2026-01-20
Large Language Models (LLMs) are increasingly employed in various question-answering tasks. However, recent studies showcase that LLMs are susceptible to persuasion and could adopt counterfactual beliefs. We present a systematic evaluation of LLM susceptibility to persuasion under the Source--Message--Channel--Receiver (SMCR) communication framework. Across five mainstream Large Language Models (LLMs) and three domains (factual knowledge, medical QA, and social bias), we analyze how different persuasive strategies influence belief stability over multiple interaction turns. We further examine whether meta-cognition prompting (i.e., eliciting self-reported confidence) affects resistance to persuasion. Results show that smaller models exhibit extreme compliance, with over 80% of belief changes occurring at the first persuasive turn (average end turn of 1.1--1.4). Contrary to expectations, meta-cognition prompting increases vulnerability by accelerating belief erosion rather than enhancing robustness. Finally, we evaluate adversarial fine-tuning as a defense. While GPT-4o-mini achieves near-complete robustness (98.6%) and Mistral~7B improves substantially (35.7% $\rightarrow$ 79.3%), Llama models remain highly susceptible (<14%) even when fine-tuned on their own failure cases. Together, these findings highlight substantial model-dependent limits of current robustness interventions and offer guidance for developing more trustworthy LLMs.
📅 2026-01-20 | 💬 This paper has been accepted to the EACL 2026 Industry Track
Social engineering scams increasingly employ personalized, multi-turn deception, exposing the limits of traditional detection methods. While Large Language Models (LLMs) show promise in identifying deception, their cognitive assistance potential remains underexplored. We propose ScriptMind, an integrated framework for LLM-based scam detection that bridges automated reasoning and human cognition. It comprises three components: the Crime Script Inference Task (CSIT) for scam reasoning, the Crime Script-Aware Inference Dataset (CSID) for fine-tuning small LLMs, and the Cognitive Simulation-based Evaluation of Social Engineering Defense (CSED) for assessing real-time cognitive impact. Using 571 Korean phone scam cases, we built 22,712 structured scammer-sequence training instances. Experimental results show that the 11B small LLM fine-tuned with ScriptMind outperformed GPT-4o by 13%, achieving superior performance over commercial models in detection accuracy, false-positive reduction, scammer utterance prediction, and rationale quality. Moreover, in phone scam simulation experiments, it significantly enhanced and sustained users' suspicion levels, improving their cognitive awareness of scams. ScriptMind represents a step toward human-centered, cognitively adaptive LLMs for scam defense.
📅 2026-01-20 | 💬 NeurIPS 2025
Large language models (LLMs) frequently refuse to respond to pseudo-malicious instructions: semantically harmless input queries triggering unnecessary LLM refusals due to conservative safety alignment, significantly impairing user experience. Collecting such instructions is crucial for evaluating and mitigating over-refusals, but existing instruction curation methods, like manual creation or instruction rewriting, either lack scalability or fail to produce sufficiently diverse and effective refusal-inducing prompts. To address these limitations, we introduce EVOREFUSE, a prompt optimization approach that generates diverse pseudo-malicious instructions consistently eliciting confident refusals across LLMs. EVOREFUSE employs an evolutionary algorithm exploring the instruction space in more diverse directions than existing methods via mutation strategies and recombination, and iteratively evolves seed instructions to maximize evidence lower bound on LLM refusal probability. Using EVOREFUSE, we create two novel datasets: EVOREFUSE-TEST, a benchmark of 582 pseudo-malicious instructions that outperforms the next-best benchmark with 85.34% higher average refusal triggering rate across 9 LLMs without a safety-prior system prompt, 34.86% greater lexical diversity, and 40.03% improved LLM response confidence scores; and EVOREFUSE-ALIGN, which provides 3,000 pseudo-malicious instructions with responses for supervised and preference-based alignment training. With supervised fine-tuning on EVOREFUSE-ALIGN, LLAMA3.1-8B-INSTRUCT achieves up to 29.85% fewer over-refusals than models trained on the second-best alignment dataset, without compromising safety. Our analysis with EVOREFUSE-TEST reveals models trigger over-refusals by overly focusing on sensitive keywords while ignoring broader context. Our code and datasets are available at https://github.com/FishT0ucher/EVOREFUSE.
📅 2026-01-20
Lossless compression has made significant advancements in Genomics Data (GD) storage, sharing and management. Current learning-based methods are non-evolvable with problems of low-level compression modeling, limited adaptability, and user-unfriendly interface. To this end, we propose AgentGC, the first evolutionary Agent-based GD Compressor, consisting of 3 layers with multi-agent named Leader and Worker. Specifically, the 1) User layer provides a user-friendly interface via Leader combined with LLM; 2) Cognitive layer, driven by the Leader, integrates LLM to consider joint optimization of algorithm-dataset-system, addressing the issues of low-level modeling and limited adaptability; and 3) Compression layer, headed by Worker, performs compression & decompression via a automated multi-knowledge learning-based compression framework. On top of AgentGC, we design 3 modes to support diverse scenarios: CP for compression-ratio priority, TP for throughput priority, and BM for balanced mode. Compared with 14 baselines on 9 datasets, the average compression ratios gains are 16.66%, 16.11%, and 16.33%, the throughput gains are 4.73x, 9.23x, and 9.15x, respectively.
📅 2026-01-20 | 💬 16 pages, 6 figures, 2 tables
Evaluating language models and AI agents remains fundamentally challenging because static benchmarks fail to capture real-world uncertainty, distribution shift, and the gap between isolated task accuracy and human-aligned decision-making under evolving conditions. This paper introduces TruthTensor, a novel, reproducible evaluation paradigm that measures Large Language Models (LLMs) not only as prediction engines but as human-imitation systems operating in socially-grounded, high-entropy environments. Building on forward-looking, contamination-free tasks, our framework anchors evaluation to live prediction markets and combines probabilistic scoring to provide a holistic view of model behavior. TruthTensor complements traditional correctness metrics with drift-centric diagnostics and explicit robustness checks for reproducibility. It specify human vs. automated evaluation roles, annotation protocols, and statistical testing procedures to ensure interpretability and replicability of results. In experiments across 500+ real markets (political, economic, cultural, technological), TruthTensor demonstrates that models with similar forecast accuracy can diverge markedly in calibration, drift, and risk-sensitivity, underscoring the need to evaluate models along multiple axes (accuracy, calibration, narrative stability, cost, and resource efficiency). TruthTensor therefore operationalizes modern evaluation best practices, clear hypothesis framing, careful metric selection, transparent compute/cost reporting, human-in-the-loop validation, and open, versioned evaluation contracts, to produce defensible assessments of LLMs in real-world decision contexts. We publicly release TruthTensor at https://truthtensor.com
📅 2026-01-20 | 💬 24 pages, 13 figures, 10 table
Standardized patients (SPs) are indispensable for clinical skills training but remain expensive and difficult to scale. Although large language model (LLM)-based virtual standardized patients (VSPs) have been proposed as an alternative, their behavior remains unstable and lacks rigorous comparison with human standardized patients. We propose EasyMED, a multi-agent VSP framework that separates case-grounded information disclosure from response generation to support stable, inquiry-conditioned patient behavior. We also introduce SPBench, a human-grounded benchmark with eight expert-defined criteria for interaction-level evaluation. Experiments show that EasyMED more closely matches human SP behavior than existing VSPs, particularly in case consistency and controlled disclosure. A four-week controlled study further demonstrates learning outcomes comparable to human SP training, with stronger early gains for novice learners and improved flexibility, psychological safety, and cost efficiency.
📅 2026-01-20 | 💬 4 pages
Large language models (LLMs) are known to produce varying responses depending on prompt phrasing, indicating that subtle guidance in phrasing can steer their answers. However, the impact of this framing bias on LLM-based evaluation, where models are expected to make stable and impartial judgments, remains largely underexplored. Drawing inspiration from the framing effect in psychology, we systematically investigate how deliberate prompt framing skews model judgments across four high-stakes evaluation tasks. We design symmetric prompts using predicate-positive and predicate-negative constructions and demonstrate that such framing induces significant discrepancies in model outputs. Across 14 LLM judges, we observe clear susceptibility to framing, with model families showing distinct tendencies toward agreement or rejection. These findings suggest that framing bias is a structural property of current LLM-based evaluation systems, underscoring the need for framing-aware protocols.
📅 2026-01-20
Recent advances in Large Language Models (LLMs) have revolutionized web applications, enabling intelligent search, recommendation, and assistant services with natural language interfaces. Tool-calling extends LLMs with the ability to interact with external APIs, greatly enhancing their practical utility. While prior research has improved tool-calling performance by adopting traditional computer systems techniques, such as parallel and asynchronous execution, the challenge of redundant or repeated tool-calling requests remains largely unaddressed. Caching is a classic solution to this problem, but applying it to LLM tool-calling introduces new difficulties due to heterogeneous request semantics, dynamic workloads, and varying freshness requirements, which render conventional cache policies ineffective. To address these issues, we propose ToolCaching, an efficient feature-driven and adaptive caching framework for LLM tool-calling systems. ToolCaching systematically integrates semantic and system-level features to evaluate request cacheability and estimate caching value. At its core, the VAAC algorithm integrates bandit-based admission with value-driven, multi-factor eviction, jointly accounting for request frequency, recency, and caching value. Extensive experiments on synthetic and public tool-calling workloads demonstrate that ToolCaching with VAAC achieves up to 11% higher cache hit ratios and 34% lower latency compared to standard policies, effectively accelerating LLM tool-calling in practical applications.
📅 2026-01-20
Large Language Models (LLMs) possess strong representation and reasoning capabilities, but their application to structure-based drug design (SBDD) is limited by insufficient understanding of protein structures and unpredictable molecular generation. To address these challenges, we propose Exploration-Augmented Latent Inference for LLMs (ELILLM), a framework that reinterprets the LLM generation process as an encoding, latent space exploration, and decoding workflow. ELILLM explicitly explores portions of the design problem beyond the model's current knowledge while using a decoding module to handle familiar regions, generating chemically valid and synthetically reasonable molecules. In our implementation, Bayesian optimization guides the systematic exploration of latent embeddings, and a position-aware surrogate model efficiently predicts binding affinity distributions to inform the search. Knowledge-guided decoding further reduces randomness and effectively imposes chemical validity constraints. We demonstrate ELILLM on the CrossDocked2020 benchmark, showing strong controlled exploration and high binding affinity scores compared with seven baseline methods. These results demonstrate that ELILLM can effectively enhance LLMs capabilities for SBDD.
📅 2026-01-20 | 💬 This publication is part of the project Responsible AI for Voice Diagnostics (RAIVD) with file number NGF.1607.22.013 of the research programme NGF AiNed Fellowship Grants which is financed by the Dutch Research Council (NWO)
An accurate assessment of L2 English pronunciation is crucial for language learning, as it provides personalized feedback and ensures a fair evaluation of individual progress. However, automated scoring remains challenging due to the complexity of sentence-level fluency, prosody, and completeness. This paper evaluates the zero-shot performance of Qwen2-Audio-7B-Instruct, an instruction-tuned speech-LLM, on 5,000 Speechocean762 utterances. The model generates rubric-aligned scores for accuracy, fluency, prosody, and completeness, showing strong agreement with human ratings within +-2 tolerance, especially for high-quality speech. However, it tends to overpredict low-quality speech scores and lacks precision in error detection. These findings demonstrate the strong potential of speech LLMs in scalable pronunciation assessment and suggest future improvements through enhanced prompting, calibration, and phonetic integration to advance Computer-Assisted Pronunciation Training.
📅 2026-01-20 | 💬 15 pages, 7 figures, Proceedings of the 2026 Symposium on Computer Science and Law (CSLAW '26)
Case-based reasoning is a cornerstone of U.S. legal practice, requiring professionals to argue about a current case by drawing analogies to and distinguishing from past precedents. While Large Language Models (LLMs) have shown remarkable capabilities, their proficiency in this complex, nuanced form of reasoning needs further investigation. We propose a formal framework that decomposes the process of identifying significant distinctions between cases into three-stage reasoning tasks. Our framework models cases using factual predicates called factors, organizes them into a legal knowledge hierarchy, and defines verifiable rules for identifying distinctions, analyzing their argumentative support, and evaluating their significance. Through comprehensive evaluation of modern reasoning LLMs, we reveal a paradox: while models achieve high accuracy on surface-level reasoning (Task 1), performance degrades on hierarchical reasoning (Task 2: 64.82%-92.09%) and collapses on integrated analysis (Task 3: 11.46%-33.99%). Most strikingly, we find that models consistently expend more computational resources on incorrect responses than correct ones, suggesting that "thinking longer" does not always mean "thinking smarter." Our work provides a methodology for fine-grained analysis of LLM reasoning capabilities in complex domains and reveals fundamental limitations that must be addressed for robust and trustworthy legal AI.
📅 2026-01-20
Large Language Models (LLMs) show strong reasoning ability in open-domain question answering, yet their reasoning processes are typically linear and often logically inconsistent. In contrast, real-world reasoning requires integrating multiple premises and solving subproblems in parallel. Existing methods, such as Chain-of-Thought (CoT), express reasoning in a linear textual form, which may appear coherent but frequently leads to inconsistent conclusions. Recent approaches rely on externally provided graphs and do not explore how LLMs can construct and use their own graph-structured reasoning, particularly in open-domain QA. To fill this gap, we novelly explore graph-structured reasoning of LLMs in general-domain question answering. We propose Self-Graph Reasoning (SGR), a framework that enables LLMs to explicitly represent their reasoning process as a structured graph before producing the final answer. We further construct a graph-structured reasoning dataset that merges multiple candidate reasoning graphs into refined graph structures for model training. Experiments on five QA benchmarks across both general and specialized domains show that SGR consistently improves reasoning consistency and yields a 17.74% gain over the base model. The LLaMA-3.3-70B model fine-tuned with SGR performs comparably to GPT-4o and surpasses Claude-3.5-Haiku, demonstrating the effectiveness of graph-structured reasoning.
📅 2026-01-20
Many LLM-based open-ended search systems freeze the foundation model that proposes improvements to existing solutions, which may bottleneck long-run progress. Recent work has explored updating the proposal model at test time [arXiv:2511.23473], but the update strategy is still typically hand-specified. Therefore, this study investigated whether an LLM can use task feedback to decide how it should update its weights. For tractability, we focused on the simpler case where there is only one round of self-improvement, and restricted the update operator to self-supervised next token prediction (NTP), leaving the model freedom in choosing its training data and key NTP hyperparameters. Using the Self-Adapting Language Models (SEAL) [arXiv:2506.10943] framework as a testbed, we relaxed its fixed human template constraint and allowed the model to generate its own self-edit templates, thereby giving it more control over its training data and hyperparameters. Two variants were studied, differing in whether template generation was conditioned on a lightweight archive of past templates. In SEAL's Single-Passage Knowledge Incorporation setting with Qwen3-8B on SQuAD [arXiv:1606.05250], the no-archive variant performed comparably to the weaker "Implications" baseline, while the archive variant outperformed "Implications" and approached the strongest human-designed "Rewrite" baseline without surpassing it. Further analysis of collapse in the model's exploration revealed that a naive archive can confer some short-term robustness but can also accelerate homogenization, suggesting that explicit novelty pressure may be required to consistently advance beyond carefully optimized human strategies. Our code is available at https://github.com/cheongalc/search-self-edit-strategies .
📅 2026-01-20
In this study, we propose a homotopy-inspired prompt obfuscation framework to enhance understanding of security and safety vulnerabilities in Large Language Models (LLMs). By systematically applying carefully engineered prompts, we demonstrate how latent model behaviors can be influenced in unexpected ways. Our experiments encompassed 15,732 prompts, including 10,000 high-priority cases, across LLama, Deepseek, KIMI for code generation, and Claude to verify. The results reveal critical insights into current LLM safeguards, highlighting the need for more robust defense mechanisms, reliable detection strategies, and improved resilience. Importantly, this work provides a principled framework for analyzing and mitigating potential weaknesses, with the goal of advancing safe, responsible, and trustworthy AI technologies.
📅 2026-01-20 | 💬 Accepted at the 48th International Conference on Software Engineering (ICSE'26), SEIP Track. 12 Pages
Large Language Models (LLMs)-powered code review automation has the potential to transform code review workflows. Despite the advances of LLM-powered code review comment generation approaches, several practical challenges remain for designing enterprise-grade code review automation tools. In particular, this paper aims at answering the practical question: how can we design a review-guided, context-aware, quality-checked code review comment generation without fine-tuning? In this paper, we present RovoDev Code Reviewer, an enterprise-grade LLM-based code review automation tool designed and deployed at scale within Atlassian's development ecosystem with seamless integration into Atlassian's Bitbucket. Through the offline, online, user feedback evaluations over a one-year period, we conclude that RovoDev Code Reviewer is effective in generating code review comments that could lead to code resolution for 38.70% (i.e., comments that triggered code changes in the subsequent commits); and offers the promise of accelerating feedback cycles (i.e., decreasing the PR cycle time by 30.8%), alleviating reviewer workload (i.e., reducing the number of human-written comments by 35.6%), and improving overall software quality (i.e., finding errors with actionable suggestions).
📅 2026-01-20
The alignment of pre-trained LLMs continues to draw significant attention from both industry and academia, aiming to ensure responses that are helpful, harmless, and honest. However, identifying a point in the model's representation subspace that simultaneously satisfies all these properties remains challenging. H3Fusion addresses this challenge by introducing a mixture-of-experts (MoE)-based fusion mechanism that models alignment as a controllable drift within the subspace, guided by a drift-regularization loss to balance competing alignment dimensions. Furthermore, we formulate the alignment by finding a dual objective of harnessing the distance of generated embeddings and alignment embeddings, and introduce a gating loss by canalizing the activations on the contributing experts. Extensive evaluations of three benchmark datasets show that H3Fusion is more helpful, less harmful, and more honest in three aspects: it outperforms each individually aligned model by 11.37%, and provides stronger robustness compared to the state-of-the-art LLM ensemble approaches by 13.77% and model-merging approaches by 6.18%. Code is available at https://github.com/git-disl/h3fusion.
📅 2026-01-20
Strict privacy regulations limit access to real transaction data, slowing open research in financial AI. Synthetic data can bridge this gap, but existing generators do not jointly achieve behavioral diversity and logical groundedness. Rule-driven simulators rely on hand-crafted workflows and shallow stochasticity, which miss the richness of human behavior. Learning-based generators such as GANs capture correlations yet often violate hard financial constraints and still require training on private data. We introduce PersonaLedger, a generation engine that uses a large language model conditioned on rich user personas to produce diverse transaction streams, coupled with an expert configurable programmatic engine that maintains correctness. The LLM and engine interact in a closed loop: after each event, the engine updates the user state, enforces financial rules, and returns a context aware "nextprompt" that guides the LLM toward feasible next actions. With this engine, we create a public dataset of 30 million transactions from 23,000 users and a benchmark suite with two tasks, illiquidity classification and identity theft segmentation. PersonaLedger offers a realistic, privacy preserving resource that supports rigorous evaluation of forecasting and anomaly detection models. PersonaLedger offers the community a rich, realistic, and privacy preserving resource -- complete with code, rules, and generation logs -- to accelerate innovation in financial AI and enable rigorous, reproducible evaluation.
📅 2026-01-20
This paper investigates the ability of large language models (LLMs) to solve statistical tasks, as well as their capacity to assess the quality of reasoning. While state-of-the-art LLMs have demonstrated remarkable performance in a range of NLP tasks, their competence in addressing even moderately complex statistical challenges is not well understood. We have fine-tuned selected open-source LLMs on a specially developed dataset to enhance their statistical reasoning capabilities, and compared their performance with the human scores used as a benchmark. Our results show that the fine-tuned models achieve better performance on advanced statistical tasks on the level comparable to a statistics student. Fine-tuning demonstrates architecture-dependent improvements, with some models showing significant performance gains, indicating clear potential for deployment in educational technology and statistical analysis assistance systems. We also show that LLMs themselves can be far better judges of the answers quality (including explanation and reasoning assessment) in comparison to traditional metrics, such as BLEU or BertScore. This self-evaluation capability enables scalable automated assessment for statistical education platforms and quality assurance in automated analysis tools. Potential applications also include validation tools for research methodology in academic and industry settings, and quality control mechanisms for data analysis workflows.
📅 2026-01-20 | 💬 9 pages, 4 figures, 3 tables, 2 pages of supplementary materials. Submitted to a conference implementing a double-blind review process
Recent work shows that fine-tuned Large Language Models (LLMs) can achieve high valid plan rates on PDDL planning tasks. However, it remains unclear whether this reflects transferable planning competence or domain-specific memorization. In this work, we fine-tune a 1.7B-parameter LLM on 40,000 domain-problem-plan tuples from 10 IPC 2023 domains, and evaluate both in-domain and cross-domain generalization. While the model reaches 82.9% valid plan rate in in-domain conditions, it achieves 0% on two unseen domains. To analyze this failure, we introduce three diagnostic interventions, namely (i) instance-wise symbol anonymization, (ii) compact plan serialization, and (iii) verifier-reward fine-tuning using the VAL validator as a success-focused reinforcement signal. Symbol anonymization and compact serialization cause significant performance drops despite preserving plan semantics, thus revealing strong sensitivity to surface representations. Verifier-reward fine-tuning reaches performance saturation in half the supervised training epochs, but does not improve cross-domain generalization. For the explored configurations, in-domain performance plateaus around 80%, while cross-domain performance collapses, suggesting that our fine-tuned model relies heavily on domain-specific patterns rather than transferable planning competence in this setting. Our results highlight a persistent generalization gap in LLM-based planning and provide diagnostic tools for studying its causes.
📅 2026-01-20 | 💬 Code: https://github.com/cimo-labs/cje Experiments for Reproducibility: https://github.com/cimo-labs/cje-arena-experiments Original Preprint: https://zenodo.org/records/17903629
Measuring long-run LLM outcomes (user satisfaction, expert judgment, downstream KPIs) is expensive. Teams default to cheap LLM judges, but uncalibrated proxies can invert rankings entirely. Causal Judge Evaluation (CJE) makes it affordable to aim at the right target: calibrate cheap scores against a small oracle slice, then evaluate at scale with valid uncertainty. We treat surrogate validity as auditable: for each policy or deployment context, a small oracle audit tests whether the learned calibration remains mean-unbiased, turning an uncheckable identification condition into a falsifiable diagnostic. On 4,961 Chatbot Arena prompts comparing five policies with a 16x oracle/judge cost ratio, at a 5% oracle fraction CJE achieves 99% pairwise ranking accuracy at 14x lower cost; across all configurations (5-50% oracle, varying n), accuracy averages 94%. An adversarial policy fails the transport audit and is correctly flagged; in such cases CJE refuses level claims rather than reporting biased estimates. Key findings: naive confidence intervals on raw judge scores achieve 0% coverage (CJE: ~95%); importance-weighted estimators fail despite >90% effective sample size; and the Coverage-Limited Efficiency (CLE) bound and its TTC diagnostic explain why.
📅 2026-01-20
Large Language Models (LLMs) are widely integrated into interactive systems such as dialogue agents and task-oriented assistants. This growing ecosystem also raises supply-chain risks, where adversaries can distribute poisoned models that degrade downstream reliability and user trust. Existing backdoor attacks and defenses are largely prompt-centric, focusing on user-visible triggers while overlooking structural signals in multi-turn conversations. We propose Turn-based Structural Trigger (TST), a backdoor attack that activates from dialogue structure, using the turn index as the trigger and remaining independent of user inputs. Across four widely used open-source LLM models, TST achieves an average attack success rate (ASR) of 99.52% with minimal utility degradation, and remains effective under five representative defenses with an average ASR of 98.04%. The attack also generalizes well across instruction datasets, maintaining an average ASR of 99.19%. Our results suggest that dialogue structure constitutes an important and under-studied attack surface for multi-turn LLM systems, motivating structure-aware auditing and mitigation in practice.
📅 2026-01-20
Security operation centers (SOCs) often produce analysis reports on security incidents, and large language models (LLMs) will likely be used for this task in the near future. We postulate that a better understanding of how veteran analysts evaluate reports, including their feedback, can help produce analysis reports in SOCs. In this paper, we aim to leverage LLMs for analysis reports. To this end, we first construct a Analyst-wise checklist to reflect SOC practitioners' opinions for analysis report evaluation through literature review and user study with SOC practitioners. Next, we design a novel LLM-based conceptual framework, named MESSALA, by further introducing two new techniques, granularization guideline and multi-perspective evaluation. MESSALA can maximize report evaluation and provide feedback on veteran SOC practitioners' perceptions. When we conduct extensive experiments with MESSALA, the evaluation results by MESSALA are the closest to those of veteran SOC practitioners compared with the existing LLM-based methods. We then show two key insights. We also conduct qualitative analysis with MESSALA, and then identify that MESSALA can provide actionable items that are necessary for improving analysis reports.
📅 2026-01-20 | 💬 Accepted to SANER 2026 (IEEE International Conference on Software Analysis, Evolution and Reengineering)
Self-admitted technical debt (SATD), referring to comments flagged by developers that explicitly acknowledge suboptimal code or incomplete functionality, has received extensive attention in machine learning (ML) and traditional (Non-ML) software. However, little is known about how SATD manifests and evolves in contemporary Large Language Model (LLM)-based systems, whose architectures, workflows, and dependencies differ fundamentally from both traditional and pre-LLM ML software. In this paper, we conduct the first empirical study of SATD in the LLM era, replicating and extending prior work on ML technical debt to modern LLM-based systems. We compare SATD prevalence across LLM, ML, and non-ML repositories across a total of 477 repositories (159 per category). We perform survival analysis of SATD introduction and removal to understand the dynamics of technical debt across different development paradigms. Surprisingly, despite their architectural complexity, our results reveal that LLM repositories accumulate SATD at similar rates to ML systems (3.95% vs. 4.10%). However, we observe that LLM repositories remain debt-free 2.4x longer than ML repositories (a median of 492 days vs. 204 days), and then start to accumulate technical debt rapidly. Moreover, our qualitative analysis of 377 SATD instances reveals three new forms of technical debt unique to LLM-based development that have not been reported in prior research: Model-Stack Workaround Debt, Model Dependency Debt, and Performance Optimization Debt. Finally, by mapping SATD to stages of the LLM development pipeline, we observe that debt concentrates
📅 2026-01-20
Outcome-reward reinforcement learning (RL) has proven effective at improving the reasoning capabilities of large language models (LLMs). However, standard RL assigns credit only at the level of the final answer, penalizing entire reasoning traces when the outcome is incorrect and uniformly reinforcing all steps when it is correct. As a result, correct intermediate steps may be discouraged in failed traces, while spurious steps may be reinforced in successful ones. We refer to this failure mode as the problem of credit assignment. While a natural remedy is to train a process reward model, accurately optimizing such models to identify corrective reasoning steps remains challenging. We introduce Intervention Training (InT), a training paradigm in which the model performs fine-grained credit assignment on its own reasoning traces by proposing short, targeted corrections that steer trajectories toward higher reward. Using reference solutions commonly available in mathematical reasoning datasets and exploiting the fact that verifying a model-generated solution is easier than generating a correct one from scratch, the model identifies the first error in its reasoning and proposes a single-step intervention to redirect the trajectory toward the correct solution. We then apply supervised fine-tuning (SFT) to the on-policy rollout up to the point of error concatenated with the intervention, localizing error to the specific step that caused failure. We show that the resulting model serves as a far better initialization for RL training. After running InT and subsequent fine-tuning with RL, we improve accuracy by nearly 14% over a 4B-parameter base model on IMO-AnswerBench, outperforming larger open-source models such as gpt-oss-20b.
📅 2026-01-20 | 💬 37 pages, 19 figures, NeurIPS 2025
We demonstrate that geometrically distinctive keys during LLM inference tend to have high attention scores. Based on the phenomenon we propose KeyDiff, a training-free KV cache eviction method based solely on key similarity. Unlike other KV cache eviction methods, KeyDiff can process arbitrarily long prompts within strict resource constraints and efficiently generate responses. We provide a theoretical basis for KeyDiff by relating key diversity with attention scores. These results imply KeyDiff can efficiently identify the most important tokens to retain. Notably KeyDiff does not rely on attention scores, allowing the use of optimized attention mechanisms like FlashAttention. Under a strict memory allowance, we demonstrate the effectiveness of KeyDiff for the Llama and Qwen model families by observing a performance gap of less than 0.04% with 8K cache budget ($\sim$23% KV cache reduction) from the non-evicting baseline on LongBench for Llama 3.1-8B and Llama 3.2-3B. We also observe near baseline performance for Deepseek-R1-Distill-Llama-8B on the Math500 reasoning benchmark and decrease end-to-end inference latency by up to 30% compared to the other token-eviction methods.
📅 2026-01-20 | 💬 Accepted to P2P-CV @ WACV 2026
Postoperative complications remain a critical concern in clinical practice, adversely affecting patient outcomes and contributing to rising healthcare costs. We present MIRACLE, a deep learning architecture for prediction of risk of postoperative complications in lung cancer surgery by integrating preoperative clinical and radiological data. MIRACLE employs a hyperspherical embedding space fusion of heterogeneous inputs, enabling the extraction of robust, discriminative features from both structured clinical records and high-dimensional radiological images. To enhance transparency of prediction and clinical utility, we incorporate an interventional deep learning module in MIRACLE, that not only refines predictions but also provides interpretable and actionable insights, allowing domain experts to interactively adjust recommendations based on clinical expertise. We validate our approach on POC-L, a real-world dataset comprising 3,094 lung cancer patients who underwent surgery at Roswell Park Comprehensive Cancer Center. Our results demonstrate that MIRACLE outperforms various traditional machine learning models and contemporary large language models (LLM) variants alone, for personalized and explainable postoperative risk management.
📅 2026-01-20
Personalizing language models that effectively incorporating user interaction history remains a central challenge in development of adaptive AI systems. While large language models (LLMs), combined with Retrieval-Augmented Generation (RAG), have improved factual accuracy, they often lack structured memory and fail to scale in complex, long-term interactions. To address this, we propose a flexible external memory framework based on knowledge graph, which construct and update memory model automatically by LLM itself. Building upon the AriGraph architecture, we introduce a novel hybrid graph design that supports both standard edges and two types of hyper-edges, enabling rich and dynamic semantic and temporal representations. Our framework also supports diverse retrieval mechanisms, including A*, water-circle traversal, beam search and hybrid methods, making it adaptable to different datasets and LLM capacities. We evaluate our system on three benchmarks: TriviaQA, HotpotQA, DiaASQ and demonstrate that different memory and retrieval configurations yield optimal performance depending on the task. Additionally, we extend the DiaASQ benchmark with temporal annotations and internally contradictory statements, showing that our system remains robust and effective in managing temporal dependencies and context-aware reasoning.
📅 2026-01-20 | 💬 27pages
Low-bit post-training quantization (PTQ) is a practical route to deploy reasoning-capable LLMs under tight memory and latency budgets, yet it can markedly impair mathematical reasoning (drops up to 69.81% in our harder settings). We address two deployment-critical questions with process-level precision: Where along a step-structured solution does degradation first arise? How to mitigate it while staying in the low-bit regime? Across widely used PTQ methods (AWQ, GPTQ, SmoothQuant), open-source model families (Qwen, LLaMA; 0.5--7B), and math reasoning benchmarks (GSM8K, MATH, AIME), we perform format-aligned chain-of-thought with step-aligned attribution and uncover two robust regularities: (i) PTQ disproportionately elevates method and execution errors relative to high-level conceptual mistakes; and (ii) failures emerge early, with the first vulnerable step flipping and cascading to the final answer. These regularities suggest a general intervention principle: restore local token-level margins exactly at the earliest failure frontier. We instantiate this principle as a lightweight measure$\rightarrow$locate$\rightarrow$restore loop that operates directly on the quantized model: detect the first faulty step, construct our "Silver Bullet" datasets, and apply small-scale supervised/preference tuning. In our settings, as few as 332 curated examples and 3--5 minutes of compute on a single GPU recover 4-bit weight math reasoning toward the full-precision baseline while preserving PTQ efficiency. Our framework is quantizer- and architecture-agnostic within the evaluated regimes, and turns low-bit degradation from a global accuracy problem into a local, reproducible process intervention.
📅 2026-01-20 | 💬 8 pages, 5 figures, 2 tables. pre-print version
Hallucinations in Large Language Model (LLM) outputs for Question Answering (QA) tasks can critically undermine their real-world reliability. This paper introduces a methodology for robust, one-shot hallucination detection, specifically designed for scenarios with limited data access, such as interacting with black-box LLM APIs that typically expose only a few top candidate log-probabilities per token. Our approach derives uncertainty indicators directly from these readily available log-probabilities generated during non-greedy decoding. We first derive an Entropy Production Rate (EPR) that offers baseline performance, later augmented with supervised learning. Our learned model leverages the entropic contributions of the accessible top-ranked tokens within a single generated sequence, without multiple re-runs per query. Evaluated across diverse QA datasets and multiple LLMs, this estimator significantly improves token-level hallucination detection over state-of-the-art methods. Crucially, high performance is demonstrated using only the typically small set of available log-probabilities (e.g., top-10 per token), confirming its practical efficiency and suitability for API-constrained deployments. This work provides a lightweight technique to enhance the trustworthiness of LLM responses, at the token level, after a single generation pass, for QA and Retrieval-Augmented Generation (RAG) systems. Our experiments confirmed the performance of our method against existing approaches on public dataset as well as for a financial framework analyzing annual company reports.
📅 2026-01-20 | 💬 Joint first authors; EACL
Large language models (LLMs) show promise in offering emotional support and generating empathetic responses for individuals in distress, but their ability to deliver culturally sensitive support remains underexplored due to a lack of resources. In this work, we introduce CultureCare, the first dataset designed for this task, spanning four cultures and including 1729 distress messages, 1523 cultural signals, and 1041 support strategies with fine-grained emotional and cultural annotations. Leveraging CultureCare, we (i) develop and test four adaptation strategies for guiding three state-of-the-art LLMs toward culturally sensitive responses; (ii) conduct comprehensive evaluations using LLM-as-a-Judge, in-culture human annotators, and clinical psychologists; (iii) show that adapted LLMs outperform anonymous online peer responses, and that simple cultural role-play is insufficient for cultural sensitivity; and (iv) explore the application of LLMs in clinical training, where experts highlight their potential in fostering cultural competence in novice therapists.
📅 2026-01-20 | 💬 30 Pages, 13 Figures
Cross-cultural competence in large language models (LLMs) requires the ability to identify Culture-Specific Items (CSIs) and to adapt them appropriately across cultural contexts. Progress in evaluating this capability has been constrained by the scarcity of high-quality CSI-annotated corpora with parallel cross-cultural sentence pairs. To address this limitation, we introduce XCR-Bench, a Cross(X)-Cultural Reasoning Benchmark consisting of 4.9k parallel sentences and 1,098 unique CSIs, spanning three distinct reasoning tasks with corresponding evaluation metrics. Our corpus integrates Newmark's CSI framework with Hall's Triad of Culture, enabling systematic analysis of cultural reasoning beyond surface-level artifacts and into semi-visible and invisible cultural elements such as social norms, beliefs, and values. Our findings show that state-of-the-art LLMs exhibit consistent weaknesses in identifying and adapting CSIs related to social etiquette and cultural reference. Additionally, we find evidence that LLMs encode regional and ethno-religious biases even within a single linguistic setting during cultural adaptation. We release our corpus and code to facilitate future research on cross-cultural NLP.
📅 2026-01-20
Mixture-of-Experts (MoE) architectures have shown strong multilingual capabilities, yet the internal mechanisms underlying performance gains and cross-language differences remain insufficiently understood. In this work, we conduct a systematic analysis of MoE models, examining routing behavior and expert specialization across languages and network depth. Our analysis reveals that multilingual processing in MoE models is highly structured: routing aligns with linguistic families, expert utilization follows a clear layerwise pattern, and high-resource languages rely on shared experts while low-resource languages depend more on language-exclusive experts despite weaker performance. Layerwise interventions further show that early and late MoE layers support language-specific processing, whereas middle layers serve as language-agnostic capacity hubs. Building on these insights, we propose a routing-guided steering method that adaptively guides routing behavior in middle layers toward shared experts associated with dominant languages at inference time, leading to consistent multilingual performance improvements, particularly for linguistically related language pairs. Our code is available at https://github.com/conctsai/Multilingualism-in-Mixture-of-Experts-LLMs.
📅 2026-01-20
Reward models (RMs) play a pivotal role in aligning large language models (LLMs) with human preferences. Due to the difficulty of obtaining high-quality human preference annotations, distilling preferences from generative LLMs has emerged as a standard practice. However, existing approaches predominantly treat teacher models as simple binary annotators, failing to fully exploit the rich knowledge and capabilities for RM distillation. To address this, we propose RM-Distiller, a framework designed to systematically exploit the multifaceted capabilities of teacher LLMs: (1) Refinement capability, which synthesizes highly correlated response pairs to create fine-grained and contrastive signals. (2) Scoring capability, which guides the RM in capturing precise preference strength via a margin-aware optimization objective. (3) Generation capability, which incorporates the teacher's generative distribution to regularize the RM to preserve its fundamental linguistic knowledge. Extensive experiments demonstrate that RM-Distiller significantly outperforms traditional distillation methods both on RM benchmarks and reinforcement learning-based alignment, proving that exploiting multifaceted teacher capabilities is critical for effective reward modeling. To the best of our knowledge, this is the first systematic research on RM distillation from generative LLMs.
📅 2026-01-20
Effective and controllable data selection is critical for LLM instruction tuning, especially with massive open-source datasets. Existing approaches primarily rely on instance-level quality scores, or diversity metrics based on embedding clusters or semantic tags. However, constrained by the flatness of embedding spaces or the coarseness of tags, these approaches overlook fine-grained knowledge and its intrinsic hierarchical dependencies, consequently hindering precise data valuation and knowledge-aligned sampling. To address this challenge, we propose Tree-aware Aligned Global Sampling (TAGS), a unified framework that leverages a knowledge tree built from fine-grained tags, thereby enabling joint control of global quality, diversity, and target alignment. Using an LLM-based tagger, we extract atomic knowledge concepts, which are organized into a global tree through bottom-up hierarchical clustering. By grounding data instances onto this tree, a tree-aware metric then quantifies data quality and diversity, facilitating effective sampling. Our controllable sampling strategy maximizes tree-level information gain and enforces leaf-level alignment via KL-divergence for specific domains. Extensive experiments demonstrate that TAGS significantly outperforms state-of-the-art baselines. Notably, it surpasses the full-dataset model by \textbf{+5.84\%} using only \textbf{5\%} of the data, while our aligned sampling strategy further boosts average performance by \textbf{+4.24\%}.
📅 2026-01-20
The practice of Traditional Chinese Medicine (TCM) requires profound expertise and extensive clinical experience. While Large Language Models (LLMs) offer significant potential in this domain, current TCM-oriented LLMs suffer two critical limitations: (1) a rigid consultation framework that fails to conduct comprehensive and patient-tailored interactions, often resulting in diagnostic inaccuracies; and (2) treatment recommendations generated without rigorous syndrome differentiation, which deviates from the core diagnostic and therapeutic principles of TCM. To address these issues, we develop \textbf{JingFang (JF)}, an advanced LLM-based multi-agent system for TCM that facilitates the implementation of AI-assisted TCM diagnosis and treatment. JF integrates various TCM Specialist Agents in accordance with authentic diagnostic and therapeutic scenarios of TCM, enabling personalized medical consultations, accurate syndrome differentiation and treatment recommendations. A \textbf{Multi-Agent Collaborative Consultation Mechanism (MACCM)} for TCM is constructed, where multiple Agents collaborate to emulate real-world TCM diagnostic workflows, enhancing the diagnostic ability of base LLMs to provide accurate and patient-tailored medical consultation. Moreover, we introduce a dedicated \textbf{Syndrome Differentiation Agent} fine-tuned on a preprocessed dataset, along with a designed \textbf{Dual-Stage Recovery Scheme (DSRS)} within the Treatment Agent, which together substantially improve the model's accuracy of syndrome differentiation and treatment. Comprehensive evaluations and experiments demonstrate JF's superior performance in medical consultation, and also show improvements of at least 124% and 21.1% in the precision of syndrome differentiation compared to existing TCM models and State of the Art (SOTA) LLMs, respectively.
📅 2026-01-20 | 💬 15 pages,3 figures,5 tables
Current methods for content safety in Large Language Models (LLMs), such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), often rely on multi-stage training pipelines and lack fine-grained, post-deployment controllability. To address these limitations, we propose a unified co-training framework that efficiently integrates multiple safety behaviors: positive (lawful/prosocial), negative (unfiltered/risk-prone) and rejective (refusal-oriented/conservative) within a single SFT stage. Notably, each behavior is dynamically activated via a simple system-level instruction, or magic token, enabling stealthy and efficient behavioral switching at inference time. This flexibility supports diverse deployment scenarios, such as positive for safe user interaction, negative for internal red-teaming, and rejective for context-aware refusals triggered by upstream moderation signals. This co-training strategy induces a distinct Safety Alignment Margin in the output space, characterized by well-separated response distributions corresponding to each safety mode. The existence of this margin provides empirical evidence for the model's safety robustness and enables unprecedented fine-grained control. Experiments show that our method matches the safety alignment quality of SFT+DPO, with our 8B model notably surpassing DeepSeek-R1 (671B) in safety performance, while significantly reducing both training complexity and deployment costs. This work presents a scalable, efficient, and highly controllable solution for LLM content safety.
📅 2026-01-20
As software systems grow in complexity, security vulnerabilities have become increasingly prevalent, posing serious risks and economic costs. Although automated detection tools such as fuzzers have advanced considerably, effective resolution still often depends on human expertise. Existing automated vulnerability repair (AVR) methods rely heavily on manually provided annotations (e.g., fault locations or CWE labels), which are often difficult and time-consuming to obtain, while overlooking the rich, naturally embedded semantic context found in issue reports from developers. In this paper, we present VulnResolver, the first LLM-based hybrid agent framework for automated vulnerability issue resolution. VulnResolver unites the adaptability of autonomous agents with the stability of workflow-guided repair through two specialized agents. The Context Pre-Collection Agent (CPCAgent) adaptively explores the repository to gather dependency and contextual information, while the Safety Property Analysis Agent (SPAAgent) generates and validates the safety properties violated by vulnerabilities. Together, these agents produce structured analyses that enrich the original issue reports, enabling more accurate vulnerability localization and patch generation. Evaluations on the SEC-bench benchmark show that VulnResolver resolves 75% of issues on SEC-bench Lite, achieving the best resolution performance. On SEC-bench Full, VulnResolver also significantly outperforms the strongest baseline, the agent-based OpenHands, confirming its effectiveness. Overall, VulnResolver delivers an adaptive and security-aware framework that advances end-to-end automated vulnerability issue resolution through workflow stability and the specialized agents' capabilities in contextual reasoning and property-based analysis.
📅 2026-01-20
Post-hoc explanations provide transparency and are essential for guiding model optimization, such as prompt engineering and data sanitation. However, applying model-agnostic techniques to Large Language Models (LLMs) is hindered by prohibitive computational costs, rendering these tools dormant for real-world applications. To revitalize model-agnostic interpretability, we propose a budget-friendly proxy framework that leverages efficient models to approximate the decision boundaries of expensive LLMs. We introduce a screen-and-apply mechanism to statistically verify local alignment before deployment. Our empirical evaluation confirms that proxy explanations achieve over 90% fidelity with only 11% of the oracle's cost. Building on this foundation, we demonstrate the actionable utility of our framework in prompt compression and poisoned example removal. Results show that reliable proxy explanations effectively guide optimization, transforming interpretability from a passive observation tool into a scalable primitive for LLM development. Additionally, we open-source code and datasets to facilitate future research.
📅 2026-01-20
Automatically generating formal specifications including loop invariants, preconditions, and postconditions for legacy code is critical for program understanding, reuse and verification. However, the inherent complexity of control and data structures in programs makes this task particularly challenging. This paper presents a novel framework that integrates symbolic execution with large language models (LLMs) to automatically synthesize formally verified program specifications. Our method first employs symbolic execution to derive precise strongest postconditions for loop-free code segments. These symbolic execution results, along with automatically generated invariant templates, then guide the LLM to propose and iteratively refine loop invariants until a correct specification is obtained. The template-guided generation process robustly combines symbolic inference with LLM reasoning, significantly reducing hallucinations and syntactic errors by structurally constraining the LLM's output space. Furthermore, our approach can produce strong specifications without relying on externally provided verification goals, enabled by the rich semantic context supplied by symbolic execution, overcoming a key limitation of prior goal-dependent tools. Extensive evaluation shows that our tool SESpec outperforms the existing state-of-the-art tools across numerical and data-structure benchmarks, demonstrating both high precision and broad applicability.
📅 2026-01-20
Novelty assessment is a central yet understudied aspect of peer review, particularly in high volume fields like NLP where reviewer capacity is increasingly strained. We present a structured approach for automated novelty evaluation that models expert reviewer behavior through three stages: content extraction from submissions, retrieval and synthesis of related work, and structured comparison for evidence based assessment. Our method is informed by a large scale analysis of human written novelty reviews and captures key patterns such as independent claim verification and contextual reasoning. Evaluated on 182 ICLR 2025 submissions with human annotated reviewer novelty assessments, the approach achieves 86.5% alignment with human reasoning and 75.3% agreement on novelty conclusions - substantially outperforming existing LLM based baselines. The method produces detailed, literature aware analyses and improves consistency over ad hoc reviewer judgments. These results highlight the potential for structured LLM assisted approaches to support more rigorous and transparent peer review without displacing human expertise. Data and code are made available.
📅 2026-01-20
Multi-agent LLM ensembles can converge on coordinated, socially harmful equilibria. This paper advances an experimental framework for evaluating Institutional AI, our system-level approach to AI alignment that reframes alignment from preference engineering in agent-space to mechanism design in institution-space. Central to this approach is the governance graph, a public, immutable manifest that declares legal states, transitions, sanctions, and restorative paths; an Oracle/Controller runtime interprets this manifest, attaching enforceable consequences to evidence of coordination while recording a cryptographically keyed, append-only governance log for audit and provenance. We apply the Institutional AI framework to govern the Cournot collusion case documented by prior work and compare three regimes: Ungoverned (baseline incentives from the structure of the Cournot market), Constitutional (a prompt-only policy-as-prompt prohibition implemented as a fixed written anti-collusion constitution, and Institutional (governance-graph-based). Across six model configurations including cross-provider pairs (N=90 runs/condition), the Institutional regime produces large reductions in collusion: mean tier falls from 3.1 to 1.8 (Cohen's d=1.28), and severe-collusion incidence drops from 50% to 5.6%. The prompt-only Constitutional baseline yields no reliable improvement, illustrating that declarative prohibitions do not bind under optimisation pressure. These results suggest that multi-agent alignment may benefit from being framed as an institutional design problem, where governance graphs can provide a tractable abstraction for alignment-relevant collective behavior.
📅 2026-01-20
Computerized Adaptive Testing (CAT) has proven effective for efficient LLM evaluation on multiple-choice benchmarks, but modern LLM evaluation increasingly relies on generation tasks where outputs are scored continuously rather than marked correct/incorrect. We present a principled extension of IRT-based adaptive testing to continuous bounded scores (ROUGE, BLEU, LLM-as-a-Judge) by replacing the Bernoulli response distribution with a heteroskedastic normal distribution. Building on this, we introduce an uncertainty aware ranker with adaptive stopping criteria that achieves reliable model ranking while testing as few items and as cheaply as possible. We validate our method on five benchmarks spanning n-gram-based, embedding-based, and LLM-as-judge metrics. Our method uses 2% of the items while improving ranking correlation by 0.12 τ over random sampling, with 95% accuracy on confident predictions.
📅 2026-01-20
Large language models (LLMs) are being increasingly integrated into practical hardware and firmware development pipelines for code generation. Existing studies have primarily focused on evaluating the functional correctness of LLM-generated code, yet paid limited attention to its security issues. However, LLM-generated code that appears functionally sound may embed security flaws which could induce catastrophic damages after deployment. This critical research gap motivates us to design a benchmark for assessing security awareness under realistic specifications. In this work, we introduce HardSecBench, a benchmark with 924 tasks spanning Verilog Register Transfer Level (RTL) and firmware-level C, covering 76 hardware-relevant Common Weakness Enumeration (CWE) entries. Each task includes a structured specification, a secure reference implementation, and executable tests. To automate artifact synthesis, we propose a multi-agent pipeline that decouples synthesis from verification and grounds evaluation in execution evidence, enabling reliable evaluation. Using HardSecBench, we evaluate a range of LLMs on hardware and firmware code generation and find that models often satisfy functional requirements while still leaving security risks. We also find that security results vary with prompting. These findings highlight pressing challenges and offer actionable insights for future advancements in LLM-assisted hardware design. Our data and code will be released soon.
📅 2026-01-20 | 💬 https://openmoss.github.io/FutureOmni
Although Multimodal Large Language Models (MLLMs) demonstrate strong omni-modal perception, their ability to forecast future events from audio-visual cues remains largely unexplored, as existing benchmarks focus mainly on retrospective understanding. To bridge this gap, we introduce FutureOmni, the first benchmark designed to evaluate omni-modal future forecasting from audio-visual environments. The evaluated models are required to perform cross-modal causal and temporal reasoning, as well as effectively leverage internal knowledge to predict future events. FutureOmni is constructed via a scalable LLM-assisted, human-in-the-loop pipeline and contains 919 videos and 1,034 multiple-choice QA pairs across 8 primary domains. Evaluations on 13 omni-modal and 7 video-only models show that current systems struggle with audio-visual future prediction, particularly in speech-heavy scenarios, with the best accuracy of 64.8% achieved by Gemini 3 Flash. To mitigate this limitation, we curate a 7K-sample instruction-tuning dataset and propose an Omni-Modal Future Forecasting (OFF) training strategy. Evaluations on FutureOmni and popular audio-visual and video-only benchmarks demonstrate that OFF enhances future forecasting and generalization. We publicly release all code (https://github.com/OpenMOSS/FutureOmni) and datasets (https://huggingface.co/datasets/OpenMOSS-Team/FutureOmni).
📅 2026-01-20 | 💬 11 pages, 16 figures
Training large language models (LLMs) at the network edge faces fundamental challenges arising from device resource constraints, severe data heterogeneity, and heightened privacy risks. To address these, we propose ELSA (Efficient LLM-centric Split Aggregation), a novel framework that systematically integrates split learning (SL) and hierarchical federated learning (HFL) for distributed LLM fine-tuning over resource-constrained edge networks. ELSA introduces three key innovations. First, it employs a task-agnostic, behavior-aware client clustering mechanism that constructs semantic fingerprints using public probe inputs and symmetric KL divergence, further enhanced by prediction-consistency-based trust scoring and latency-aware edge assignment to jointly address data heterogeneity, client unreliability, and communication constraints. Second, it splits the LLM into three parts across clients and edge servers, with the cloud used only for adapter aggregation, enabling an effective balance between on-device computation cost and global convergence stability. Third, it incorporates a lightweight communication scheme based on computational sketches combined with semantic subspace orthogonal perturbation (SS-OP) to reduce communication overhead while mitigating privacy leakage during model exchanges. Experiments across diverse NLP tasks demonstrate that ELSA consistently outperforms state-of-the-art methods in terms of adaptability, convergence behavior, and robustness, establishing a scalable and privacy-aware solution for edge-side LLM fine-tuning under resource constraints.
📅 2026-01-20 | 💬 Accepted for presentation at the 2026 IEEE International Symposium on Circuits and Systems (ISCAS 2026). Proceedings to be included in IEEE Xplore
This paper presents an LLM-based learning platform for chip design education, aiming to make chip design accessible to beginners without overwhelming them with technical complexity. It represents the first educational platform that assists learners holistically across both frontend and backend design. The proposed approach integrates an LLM-based chat agent into a browser-based workflow built upon the Tiny Tapeout ecosystem. The workflow guides users from an initial design idea through RTL code generation to a tapeout-ready chip. To evaluate the concept, a case study was conducted with 18 high-school students. Within a 90-minute session they developed eight functional VGA chip designs in a 130 nm technology. Despite having no prior experience in chip design, all groups successfully implemented tapeout-ready projects. The results demonstrate the feasibility and educational impact of LLM-assisted chip design, highlighting its potential to attract and inspire early learners and significantly broaden the target audience for the field.
📅 2026-01-20
LLM post-training has primarily relied on large text corpora and human feedback, without capturing the structure of domain knowledge. This has caused models to struggle dealing with complex reasoning tasks, especially for high-stakes professional domains. In Law, reasoning requires deep understanding of the relations between various legal concepts, a key component missing in current LLM post-training. In this paper, we propose a knowledge graph (KG)-assisted approach for enhancing LLMs' reasoning capability in Legal that is generalizable to other high-stakes domains. We model key legal concepts by following the \textbf{IRAC} (Issue, Rule, Analysis and Conclusion) framework, and construct a KG with 12K legal cases. We then produce training data using our IRAC KG, and conduct both Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) with three state-of-the-art (SOTA) LLMs (30B, 49B and 70B), varying architecture and base model family. Our post-trained models obtained better average performance on 4/5 diverse legal benchmarks (14 tasks) than baselines. In particular, our 70B DPO model achieved the best score on 4/6 reasoning tasks, among baselines and a 141B SOTA legal LLM, demonstrating the effectiveness of our KG for enhancing LLMs' legal reasoning capability.
📅 2026-01-20 | 💬 41 pages, 38 figures An earlier revision of this paper was accepted at ICML 2025. Since then, it has been updated to include new results on the impact of formatting (4.4), new dataset (4.6), training dynamics (4.7) and base models (4.8) Extended version of the paper was published in Nature 2026/1
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding. It asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
📅 2026-01-20
We introduce Look-Ahead-Bench, a standardized benchmark measuring look-ahead bias in Point-in-Time (PiT) Large Language Models (LLMs) within realistic and practical financial workflows. Unlike most existing approaches that primarily test inner lookahead knowledge via Q\\&A, our benchmark evaluates model behavior in practical scenarios. To distinguish genuine predictive capability from memorization-based performance, we analyze performance decay across temporally distinct market regimes, incorporating several quantitative baselines to establish performance thresholds. We evaluate prominent open-source LLMs -- Llama 3.1 (8B and 70B) and DeepSeek 3.2 -- against a family of Point-in-Time LLMs (Pitinf-Small, Pitinf-Medium, and frontier-level model Pitinf-Large) from PiT-Inference. Results reveal significant lookahead bias in standard LLMs, as measured with alpha decay, unlike Pitinf models, which demonstrate improved generalization and reasoning abilities as they scale in size. This work establishes a foundation for the standardized evaluation of temporal bias in financial LLMs and provides a practical framework for identifying models suitable for real-world deployment. Code is available on GitHub: https://github.com/benstaf/lookaheadbench
📅 2026-01-20
Understanding traveler behavior and accurately predicting travel mode choice are at the heart of transportation planning and policy-making. This study proposes TransMode-LLM, an innovative framework that integrates statistical methods with LLM-based techniques to predict travel modes from travel survey data. The framework operates through three phases: (1) statistical analysis identifies key behavioral features, (2) natural language encoding transforms structured data into contextual descriptions, and (3) LLM adaptation predicts travel mode through multiple learning paradigms including zero-shot and one/few-shot learning and domain-enhanced prompting. We evaluate TransMode-LLM using both general-purpose models (GPT-4o, GPT-4o-mini) and reasoning-focused models (o3-mini, o4-mini) with varying sample sizes on real-world travel survey data. Extensive experiment results demonstrate that the LLM-based approach achieves competitive accuracy compared to state-of-the-art baseline classifiers models. Moreover, few-shot learning significantly improves prediction accuracy, with models like o3-mini showing consistent improvements of up to 42.9\% with 5 provided examples. However, domain-enhanced prompting shows divergent effects across LLM architectures. In detail, it is helpful to improve performance for general-purpose models with GPT-4o achieving improvements of 2.27% to 12.50%. However, for reasoning-oriented models (o3-mini, o4-mini), domain knowledge enhancement does not universally improve performance. This study advances the application of LLMs in travel behavior modeling, providing promising and valuable insights for both academic research and transportation policy-making in the future.
📅 2026-01-20
Evaluating LLM forecasting capabilities is constrained by a fundamental tension: prospective evaluation offers methodological rigor but prohibitive latency, while retrospective forecasting (RF) -- evaluating on already-resolved events -- faces rapidly shrinking clean evaluation data as SOTA models possess increasingly recent knowledge cutoffs. Simulated Ignorance (SI), prompting models to suppress pre-cutoff knowledge, has emerged as a potential solution. We provide the first systematic test of whether SI can approximate True Ignorance (TI). Across 477 competition-level questions and 9 models, we find that SI fails systematically: (1) cutoff instructions leave a 52% performance gap between SI and TI; (2) chain-of-thought reasoning fails to suppress prior knowledge, even when reasoning traces contain no explicit post-cutoff references; (3) reasoning-optimized models exhibit worse SI fidelity despite superior reasoning trace quality. These findings demonstrate that prompts cannot reliably "rewind" model knowledge. We conclude that RF on pre-cutoff events is methodologically flawed; we recommend against using SI-based retrospective setups to benchmark forecasting capabilities.
📅 2026-01-20
Software testing is crucial for ensuring the correctness and reliability of software systems. Automated generation of issue reproduction tests from natural language issue descriptions enhances developer productivity by simplifying root cause analysis, promotes test-driven development -- "test first, write code later", and can be used for improving the effectiveness of automated issue resolution systems like coding agents. Existing methods proposed for this task predominantly rely on closed-source LLMs, with limited exploration of open models. To address this, we propose SWE-Tester -- a novel pipeline for training open-source LLMs to generate issue reproduction tests. First, we curate a high-quality training dataset of 41K instances from 2.6K open-source GitHub repositories and use it to train LLMs of varying sizes and families. The fine-tuned models achieve absolute improvements of up to 10\% in success rate and 21\% in change coverage on SWT-Bench Verified. Further analysis shows consistent improvements with increased inference-time compute, more data, and larger models. These results highlight the effectiveness of our framework for advancing open-source LLMs in this domain.
📅 2026-01-20 | 💬 For associated dataset, see https://github.com/cocochief4/llm-mafia. Published in IEEE ICA 2025, waiting for IEEEXplore proceedings
Large Language Model (LLM) agents are increasingly used in many applications, raising concerns about their safety. While previous work has shown that LLMs can deceive in controlled tasks, less is known about their ability to deceive using natural language in social contexts. In this paper, we study deception in the Social Deduction Game (SDG) Mafia, where success is dependent on deceiving others through conversation. Unlike previous SDG studies, we use an asynchronous multi-agent framework which better simulates realistic social contexts. We simulate 35 Mafia games with GPT-4o LLM agents. We then create a Mafia Detector using GPT-4-Turbo to analyze game transcripts without player role information to predict the mafia players. We use prediction accuracy as a surrogate marker for deception quality. We compare this prediction accuracy to that of 28 human games and a random baseline. Results show that the Mafia Detector's mafia prediction accuracy is lower on LLM games than on human games. The result is consistent regardless of the game days and the number of mafias detected. This indicates that LLMs blend in better and thus deceive more effectively. We also release a dataset of LLM Mafia transcripts to support future research. Our findings underscore both the sophistication and risks of LLM deception in social contexts.
📅 2026-01-20
The linear memory growth of the KV cache poses a significant bottleneck for LLM inference in long-context tasks. Existing static compression methods often fail to preserve globally important information, principally because they overlook the attention drift phenomenon where token significance evolves dynamically. Although recent dynamic retrieval approaches attempt to address this issue, they typically suffer from coarse-grained caching strategies and incur high I/O overhead due to frequent data transfers. To overcome these limitations, we propose HeteroCache, a training-free dynamic compression framework. Our method is built on two key insights: attention heads exhibit diverse temporal heterogeneity, and there is significant spatial redundancy among heads within the same layer. Guided by these insights, HeteroCache categorizes heads based on stability and redundancy. Consequently, we apply a fine-grained weighting strategy that allocates larger cache budgets to heads with rapidly shifting attention to capture context changes, thereby addressing the inefficiency of coarse-grained strategies. Furthermore, we employ a hierarchical storage mechanism in which a subset of representative heads monitors attention shift, and trigger an asynchronous, on-demand retrieval of contexts from the CPU, effectively hiding I/O latency. Finally, experiments demonstrate that HeteroCache achieves state-of-the-art performance on multiple long-context benchmarks and accelerates decoding by up to $3\times$ compared to the original model in the 224K context. Our code will be open-source.