Skip to the content.

llm - 2025_02

Home / Papers / llm

Papers

📅 2025-02-12
We introduce k-LLMmeans, a novel modification of the k-means clustering algorithm that utilizes LLMs to generate textual summaries as cluster centroids, thereby capturing contextual and semantic nuances often lost when relying on purely numerical means of document embeddings. This modification preserves the properties of k-means while offering greater interpretability: the cluster centroid is represented by an LLM-generated summary, whose embedding guides cluster assignments. We also propose a mini-batch variant, enabling efficient online clustering for streaming text data and providing real-time interpretability of evolving cluster centroids. Through extensive simulations, we show that our methods outperform vanilla k-means on multiple metrics while incurring only modest LLM usage that does not scale with dataset size. Finally, We present a case study showcasing the interpretability of evolving cluster centroids in sequential text streams. As part of our evaluation, we compile a new dataset from StackExchange, offering a benchmark for text-stream clustering.
📅 2025-02-12
The output of Large Language Models (LLMs) are a function of the internal model's parameters and the input provided into the context window. The hypothesis presented here is that under a greedy sampling strategy the variance in the LLM's output is a function of the conceptual certainty embedded in the model's parametric knowledge, as well as the lexical variance in the input. Finetuning the model results in reducing the sensitivity of the model output to the lexical input variations. This is then applied to a classification problem and a probabilistic method is proposed for estimating the certainties of the predicted classes.
📅 2025-02-12 | 💬 21 pages, 8 figures, 5 tables, Accepted in NAACL2025 Main
Existing methods for simulating individual identities often oversimplify human complexity, which may lead to incomplete or flattened representations. To address this, we introduce SPeCtrum, a grounded framework for constructing authentic LLM agent personas by incorporating an individual's multidimensional self-concept. SPeCtrum integrates three core components: Social Identity (S), Personal Identity (P), and Personal Life Context (C), each contributing distinct yet interconnected aspects of identity. To evaluate SPeCtrum's effectiveness in identity representation, we conducted automated and human evaluations. Automated evaluations using popular drama characters showed that Personal Life Context (C)-derived from short essays on preferences and daily routines-modeled characters' identities more effectively than Social Identity (S) and Personal Identity (P) alone and performed comparably to the full SPC combination. In contrast, human evaluations involving real-world individuals found that the full SPC combination provided a more comprehensive self-concept representation than C alone. Our findings suggest that while C alone may suffice for basic identity simulation, integrating S, P, and C enhances the authenticity and accuracy of real-world identity representation. Overall, SPeCtrum offers a structured approach for simulating individuals in LLM agents, enabling more personalized human-AI interactions and improving the realism of simulation-based behavioral studies.
📅 2025-02-12
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs). These attacks may extract private information or coerce the model into producing harmful outputs. In real-world deployments, LLMs are often part of a larger agentic pipeline including memory systems, retrieval, web access, and API calling. Such additional components introduce vulnerabilities that make these LLM-powered agents much easier to attack than isolated LLMs, yet relatively little work focuses on the security of LLM agents. In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents. We first provide a taxonomy of attacks categorized by threat actors, objectives, entry points, attacker observability, attack strategies, and inherent vulnerabilities of agent pipelines. We then conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities. Notably, our attacks are trivial to implement and require no understanding of machine learning.
📅 2025-02-12
The next frontier of online advertising is revenue generation from LLM-generated content. We consider a setting where advertisers aim to influence the responses of an LLM to align with their interests, while platforms seek to maximize advertiser value and ensure user satisfaction. The challenge is that advertisers' preferences generally conflict with those of the user, and advertisers may misreport their preferences. To address this, we introduce MOSAIC, an auction mechanism that ensures that truthful reporting is a dominant strategy for advertisers and that aligns the utility of each advertiser with their contribution to social welfare. Importantly, the mechanism operates without LLM fine-tuning or access to model weights and provably converges to the output of the optimally fine-tuned LLM as computational resources increase. Additionally, it can incorporate contextual information about advertisers, which significantly improves social welfare. Through experiments with a publicly available LLM, we show that MOSAIC leads to high advertiser value and platform revenue with low computational overhead. While our motivating application is online advertising, our mechanism can be applied in any setting with monetary transfers, making it a general-purpose solution for truthfully aggregating the preferences of self-interested agents over LLM-generated replies.
📅 2025-02-12
Learning from mistakes is a fundamental feature of human intelligence. Previous work has shown that Large Language Models (LLMs) can also learn from incorrect answers when provided with a comprehensive rationale detailing why an answer is wrong or how to correct it. In this work, we examine whether LLMs can learn from mistakes in mathematical reasoning tasks when these explanations are not provided. We investigate if LLMs are able to implicitly infer such rationales simply from observing both incorrect and correct answers. Surprisingly, we find that LLMs perform better, on average, when rationales are eliminated from the context and incorrect answers are simply shown alongside correct ones. This approach also substantially outperforms chain-of-thought prompting in our evaluations. We show that these results are consistent across LLMs of different sizes and varying reasoning abilities. Further, we carry out an in-depth analysis, and show that prompting with both wrong and correct answers leads to greater performance and better generalisation than introducing additional, more diverse question-answer pairs into the context. Finally, we show that new rationales generated by models that have only observed incorrect and correct answers are scored equally as highly by humans as those produced with the aid of exemplar rationales. Our results demonstrate that LLMs are indeed capable of in-context implicit learning.
📅 2025-02-12 | 💬 8 pages, 6 figures
This study examines how temperature settings and model architectures affect the generation of structured fictional data (names, birthdates) across three large language models (LLMs): llama3.1:8b, deepseek-r1:8b, and mistral:latest. By systematically testing temperature values from 0.0 to 1.0 in increments of 0.1, we conducted 330 trials yielding 889 structured entities, validated for syntactic consistency. Key findings reveal that model architecture significantly influences computational efficiency, with mistral:latest and llama3.1:8b processing data 8x faster than deepseek-r1:8b. Contrary to expectations, temperature showed no correlation with processing time, challenging assumptions about stochastic sampling costs. Output diversity remained limited, as models consistently defaulted to common name archetypes (e.g., 'John Doe' and 'Jane Smith') across all temperatures, though rare names clustered at intermediate values (0.3-0.7). These results demonstrate that architectural optimizations, rather than temperature adjustments, dominate performance in structured generation tasks. The findings emphasize prioritizing model selection over hyperparameter tuning for efficiency and suggest explicit diversity constraints are necessary to mitigate default output biases in synthetic data pipelines.
📅 2025-02-12
In this work, we identify the "2D-Cheating" problem in 3D LLM evaluation, where these tasks might be easily solved by VLMs with rendered images of point clouds, exposing ineffective evaluation of 3D LLMs' unique 3D capabilities. We test VLM performance across multiple 3D LLM benchmarks and, using this as a reference, propose principles for better assessing genuine 3D understanding. We also advocate explicitly separating 3D abilities from 1D or 2D aspects when evaluating 3D LLMs.
📅 2025-02-12 | 💬 under review
Large language models (LLMs) are helping millions of users write texts about diverse issues, and in doing so expose users to different ideas and perspectives. This creates concerns about issue bias, where an LLM tends to present just one perspective on a given issue, which in turn may influence how users think about this issue. So far, it has not been possible to measure which issue biases LLMs actually manifest in real user interactions, making it difficult to address the risks from biased LLMs. Therefore, we create IssueBench: a set of 2.49m realistic prompts for measuring issue bias in LLM writing assistance, which we construct based on 3.9k templates (e.g. "write a blog about") and 212 political issues (e.g. "AI regulation") from real user interactions. Using IssueBench, we show that issue biases are common and persistent in state-of-the-art LLMs. We also show that biases are remarkably similar across models, and that all models align more with US Democrat than Republican voter opinion on a subset of issues. IssueBench can easily be adapted to include other issues, templates, or tasks. By enabling robust and realistic measurement, we hope that IssueBench can bring a new quality of evidence to ongoing discussions about LLM biases and how to address them.
📅 2025-02-12 | 💬 7pages, 1 table, 6 figures
The powerfulness of LLMs indicates that deploying various LLMs with different scales and architectures on end, edge, and cloud to satisfy different requirements and adaptive heterogeneous hardware is the critical way to achieve ubiquitous intelligence for 6G. However, the massive parameter scale of LLMs poses significant challenges in deploying them on edge devices due to high computational and storage demands. Considering that the sparse activation in Mixture of Experts (MoE) is effective on scalable and dynamic allocation of computational and communications resources at the edge, this paper proposes a novel MoE-empowered collaborative deployment framework for edge LLMs, denoted as CoEL. This framework fully leverages the properties of MoE architecture and encompasses four key aspects: Perception, Deployment, Compression, and Updating. Edge servers broadcast their resource status and the specific resource requirements of LLMs to their neighbors. Then, utilizing this data, two sophisticated deployment strategies are proposed for satisfying varying model scales, ensuring that each model is deployed effectively. One for deploying LLMs on a single edge device through intra-device resource collaboration, and another for a distributed deployment across multiple edge devices via inter-device resource collaboration. Furthermore, both the models and the intermediate data are compressed for reducing memory footprint by quantization and reducing the volume of intermediate data by token fusion and pruning. Finally, given the dynamic of network topology, resource status, and user requirements, the deployment strategies are regularly updated to maintain its relevance and effectiveness. This paper also delineates the challenges and potential research directions for the deployment of edge LLMs.
📅 2025-02-12 | 💬 NAACL 2025 Main (Long)
Generating high-quality charts with Large Language Models (LLMs) presents significant challenges due to limited data and the high cost of scaling through human curation. $\langle \text{instruction}, \text{data}, \text{code} \rangle$ triplets are scarce and expensive to manually curate as their creation demands technical expertise. To address this scalability challenge, we introduce a reference-free automatic feedback generator, which eliminates the need for costly human intervention. Our novel framework, C$^2$, consists of (1) an automatic feedback provider (ChartAF) and (2) a diverse, reference-free dataset (ChartUIE-8K). The results are compelling: in our first experiment, 74% of respondents strongly preferred, and 10% preferred, the results after feedback. The second post-feedback experiment demonstrates that ChartAF outperform nine baselines. Moreover, ChartUIE-8K significantly improves data diversity by increasing queries, datasets, and chart types by 5982%, 1936%, and 91%, respectively, over benchmarks. Finally, a study of LLM users revealed that 94% of participants preferred ChartUIE-8K's queries, with 93% deeming them aligned with real-world use cases. Core contributions are available as open-source at chartsquared.github.io, with ample qualitative examples.
📅 2025-02-12 | 💬 Submitted to IJCAI 2025
With the extensive application of Graph Neural Networks (GNNs) across various domains, their trustworthiness has emerged as a focal point of research. Some existing studies have shown that the integration of large language models (LLMs) can improve the semantic understanding and generation capabilities of GNNs, which in turn improves the trustworthiness of GNNs from various aspects. Our review introduces a taxonomy that offers researchers a clear framework for comprehending the principles and applications of different methods and helps clarify the connections and differences among various approaches. Then we systematically survey representative approaches along the four categories of our taxonomy. Through our taxonomy, researchers can understand the applicable scenarios, potential advantages, and limitations of each approach for the the trusted integration of GNNs with LLMs. Finally, we present some promising directions of work and future trends for the integration of LLMs and GNNs to improve model trustworthiness.
📅 2025-02-12
The development of large language models (LLMs) has raised concerns about potential misuse. One practical solution is to embed a watermark in the text, allowing ownership verification through watermark extraction. Existing methods primarily focus on defending against modification attacks, often neglecting other spoofing attacks. For example, attackers can alter the watermarked text to produce harmful content without compromising the presence of the watermark, which could lead to false attribution of this malicious content to the LLM. This situation poses a serious threat to the LLMs service providers and highlights the significance of achieving modification detection and generated-text detection simultaneously. Therefore, we propose a technique to detect modifications in text for unbiased watermark which is sensitive to modification. We introduce a new metric called ``discarded tokens", which measures the number of tokens not included in watermark detection. When a modification occurs, this metric changes and can serve as evidence of the modification. Additionally, we improve the watermark detection process and introduce a novel method for unbiased watermark. Our experiments demonstrate that we can achieve effective dual detection capabilities: modification detection and generated-text detection by watermark.
📅 2025-02-12
This paper introduces the Word Synchronization Challenge, a novel benchmark to evaluate large language models (LLMs) in Human-Computer Interaction (HCI). This benchmark uses a dynamic game-like framework to test LLMs ability to mimic human cognitive processes through word associations. By simulating complex human interactions, it assesses how LLMs interpret and align with human thought patterns during conversational exchanges, which are essential for effective social partnerships in HCI. Initial findings highlight the influence of model sophistication on performance, offering insights into the models capabilities to engage in meaningful social interactions and adapt behaviors in human-like ways. This research advances the understanding of LLMs potential to replicate or diverge from human cognitive functions, paving the way for more nuanced and empathetic human-machine collaborations.
📅 2025-02-12
The integration of Large Language Models (LLMs) into optimization has created a powerful synergy, opening exciting research opportunities. This paper investigates how LLMs can enhance existing optimization algorithms. Using their pre-trained knowledge, we demonstrate their ability to propose innovative heuristic variations and implementation strategies. To evaluate this, we applied a non-trivial optimization algorithm, Construct, Merge, Solve and Adapt (CMSA) -- a hybrid metaheuristic for combinatorial optimization problems that incorporates a heuristic in the solution construction phase. Our results show that an alternative heuristic proposed by GPT-4o outperforms the expert-designed heuristic of CMSA, with the performance gap widening on larger and denser graphs. Project URL: https://imp-opt-algo-llms.surge.sh/
📅 2025-02-12 | 💬 the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL), Findings, Accepted
LLMs have boosted progress in many AI applications. Recently, there were attempts to distill the vast knowledge of LLMs into information retrieval systems. Those distillation methods mostly use output probabilities of LLMs which are unavailable in the latest black-box LLMs. We propose Syntriever, a training framework for retrievers using synthetic data from black-box LLMs. Syntriever consists of two stages. Firstly in the distillation stage, we synthesize relevant and plausibly irrelevant passages and augmented queries using chain-of-thoughts for the given queries. LLM is asked to self-verify the synthetic data for possible hallucinations, after which retrievers are trained with a loss designed to cluster the embeddings of relevant passages. Secondly in the alignment stage, we align the retriever with the preferences of LLMs. We propose a preference modeling called partial Plackett-Luce ranking to learn LLM preferences with regularization which prevents the model from deviating excessively from that trained in the distillation stage. Experiments show that Syntriever achieves state-of-the-art performances on benchmark datasets from various domains in nDCG@$K$. The code is available at \href{https://github.com/kmswin1/Syntriever}{https://github.com/kmswin1/Syntriever}.
📅 2025-02-12
Large Language Models (LLMs) have achieved remarkable success in recent years, owing to their impressive generalization capabilities and rich world knowledge. To capitalize on the potential of using LLMs as recommender systems, mainstream approaches typically focus on two paradigms. The first paradigm designs multi-domain or multi-task instruction data for generalizable recommendation, so as to align LLMs with general recommendation areas and deal with cold-start recommendation. The second paradigm enhances domain-specific recommendation tasks with parameter-efficient fine-tuning techniques, in order to improve models under the warm recommendation scenarios. While most previous works treat these two paradigms separately, we argue that they have complementary advantages, and combining them together would be helpful. To that end, in this paper, we propose a generalizable and efficient LLM-based recommendation framework MoLoRec. Our approach starts by parameter-efficient fine-tuning a domain-general module with general recommendation instruction data, to align LLM with recommendation knowledge. Then, given users' behavior of a specific domain, we construct a domain-specific instruction dataset and apply efficient fine-tuning to the pre-trained LLM. After that, we provide approaches to integrate the above domain-general part and domain-specific part with parameters mixture. Please note that, MoLoRec is efficient with plug and play, as the domain-general module is trained only once, and any domain-specific plug-in can be efficiently merged with only domain-specific fine-tuning. Extensive experiments on multiple datasets under both warm and cold-start recommendation scenarios validate the effectiveness and generality of the proposed MoLoRec.
📅 2025-02-12 | 💬 Accepted by WWW'25 Industry Track
In the realm of microservices architecture, the occurrence of frequent incidents necessitates the employment of Root Cause Analysis (RCA) for swift issue resolution. It is common that a serious incident can take several domain experts hours to identify the root cause. Consequently, a contemporary trend involves harnessing Large Language Models (LLMs) as automated agents for RCA. Though the recent ReAct framework aligns well with the Site Reliability Engineers (SREs) for its thought-action-observation paradigm, its hallucinations often lead to irrelevant actions and directly affect subsequent results. Additionally, the complex and variable clues of the incident can overwhelm the model one step further. To confront these challenges, we propose Flow-of-Action, a pioneering Standard Operation Procedure (SOP) enhanced LLM-based multi-agent system. By explicitly summarizing the diagnosis steps of SREs, SOP imposes constraints on LLMs at crucial junctures, guiding the RCA process towards the correct trajectory. To facilitate the rational and effective utilization of SOPs, we design an SOP-centric framework called SOP flow. SOP flow contains a series of tools, including one for finding relevant SOPs for incidents, another for automatically generating SOPs for incidents without relevant ones, and a tool for converting SOPs into code. This significantly alleviates the hallucination issues of ReAct in RCA tasks. We also design multiple auxiliary agents to assist the main agent by removing useless noise, narrowing the search space, and informing the main agent whether the RCA procedure can stop. Compared to the ReAct method's 35.50% accuracy, our Flow-of-Action method achieves 64.01%, meeting the accuracy requirements for RCA in real-world systems.
📅 2025-02-12
Open-ended learning agents must efficiently prioritize goals in vast possibility spaces, focusing on those that maximize learning progress (LP). When such autotelic exploration is achieved by LLM agents trained with online RL in high-dimensional and evolving goal spaces, a key challenge for LP prediction is modeling one's own competence, a form of metacognitive monitoring. Traditional approaches either require extensive sampling or rely on brittle expert-defined goal groupings. We introduce MAGELLAN, a metacognitive framework that lets LLM agents learn to predict their competence and LP online. By capturing semantic relationships between goals, MAGELLAN enables sample-efficient LP estimation and dynamic adaptation to evolving goal spaces through generalization. In an interactive learning environment, we show that MAGELLAN improves LP prediction efficiency and goal prioritization, being the only method allowing the agent to fully master a large and evolving goal space. These results demonstrate how augmenting LLM agents with a metacognitive ability for LP predictions can effectively scale curriculum learning to open-ended goal spaces.
📅 2025-02-11
The role of Large Language Models (LLMs) has not been extensively explored in analog circuit design, which could benefit from a reasoning-based approach that transcends traditional optimization techniques. In particular, despite their growing relevance, there are no benchmarks to assess LLMs' reasoning capability about circuits. Therefore, we created the CIRCUIT dataset consisting of 510 question-answer pairs spanning various levels of analog-circuit-related subjects. The best-performing model on our dataset, GPT-4o, achieves 48.04% accuracy when evaluated on the final numerical answer. To evaluate the robustness of LLMs on our dataset, we introduced a unique feature that enables unit-test-like evaluation by grouping questions into unit tests. In this case, GPT-4o can only pass 27.45% of the unit tests, highlighting that the most advanced LLMs still struggle with understanding circuits, which requires multi-level reasoning, particularly when involving circuit topologies. This circuit-specific benchmark highlights LLMs' limitations, offering valuable insights for advancing their application in analog integrated circuit design.
📅 2025-02-11 | 💬 Accepted for publication at the International Conference on AI Engineering (CAIN) 2025
Machine learning (ML) components are increasingly integrated into software products, yet their complexity and inherent uncertainty often lead to unintended and hazardous consequences, both for individuals and society at large. Despite these risks, practitioners seldom adopt proactive approaches to anticipate and mitigate hazards before they occur. Traditional safety engineering approaches, such as Failure Mode and Effects Analysis (FMEA) and System Theoretic Process Analysis (STPA), offer systematic frameworks for early risk identification but are rarely adopted. This position paper advocates for integrating hazard analysis into the development of any ML-powered software product and calls for greater support to make this process accessible to developers. By using large language models (LLMs) to partially automate a modified STPA process with human oversight at critical steps, we expect to address two key challenges: the heavy dependency on highly experienced safety engineering experts, and the time-consuming, labor-intensive nature of traditional hazard analysis, which often impedes its integration into real-world development workflows. We illustrate our approach with a running example, demonstrating that many seemingly unanticipated issues can, in fact, be anticipated.
📅 2025-02-11 | 💬 Due to an update in the company's publication approval process, a newly appointed manager has been added to the review workflow. As a result, we need to resubmit the application for approval under the revised process. Therefore, we are temporarily withdrawing this submission until the new approval workflow is completed
Although LLMs have achieved significant success, their reliance on large volumes of human-annotated data has limited their potential for further scaling. In this situation, utilizing self-generated synthetic data has become crucial for fine-tuning LLMs without extensive human annotation. However, current methods often fail to ensure consistent improvements across iterations, with performance stagnating after only minimal updates. To overcome these challenges, we introduce Dynamic Noise Preference Optimization (DNPO). DNPO employs a dynamic sample labeling mechanism to construct preference pairs for training and introduces controlled, trainable noise into the preference optimization process. Our approach effectively prevents stagnation and enables continuous improvement. In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6% across multiple benchmarks. Additionally, DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations. This highlights its effectiveness in enhancing model performance through iterative refinement.
📅 2025-02-11 | 💬 20 pages, 10 figures, 3 tables
Medical research faces well-documented challenges in translating novel treatments into clinical practice. Publishing incentives encourage researchers to present "positive" findings, even when empirical results are equivocal. Consequently, it is well-documented that authors often spin study results, especially in article abstracts. Such spin can influence clinician interpretation of evidence and may affect patient care decisions. In this study, we ask whether the interpretation of trial results offered by Large Language Models (LLMs) is similarly affected by spin. This is important since LLMs are increasingly being used to trawl through and synthesize published medical evidence. We evaluated 22 LLMs and found that they are across the board more susceptible to spin than humans. They might also propagate spin into their outputs: We find evidence, e.g., that LLMs implicitly incorporate spin into plain language summaries that they generate. We also find, however, that LLMs are generally capable of recognizing spin, and can be prompted in a way to mitigate spin's impact on LLM outputs.
📅 2025-02-11
Web browsing agents powered by large language models (LLMs) have shown tremendous potential in automating complex web-based tasks. Existing approaches typically rely on large LLMs (e.g., GPT-4o) to explore web environments and generate trajectory data, which is then used either for demonstration retrieval (for large LLMs) or to distill small LLMs (e.g., Llama3) in a process that remains decoupled from the exploration. In this paper, we propose AgentSymbiotic, an iterative framework that couples data synthesis with task-performance, yielding a "symbiotic improvement" for both large and small LLMs. Our study uncovers a complementary dynamic between LLM types: while large LLMs excel at generating high-quality trajectories for distillation, the distilled small LLMs-owing to their distinct reasoning capabilities-often choose actions that diverge from those of their larger counterparts. This divergence drives the exploration of novel trajectories, thereby enriching the synthesized data. However, we also observe that the performance of small LLMs becomes a bottleneck in this iterative enhancement process. To address this, we propose two innovations in LLM distillation: a speculative data synthesis strategy that mitigates off-policy bias, and a multi-task learning approach designed to boost the reasoning capabilities of the student LLM. Furthermore, we introduce a Hybrid Mode for Privacy Preservation to address user privacy concerns. Evaluated on the WEBARENA benchmark, AgentSymbiotic achieves SOTA performance with both LLM types. Our best Large LLM agent reaches 52%, surpassing the previous best of 45%, while our 8B distilled model demonstrates a competitive 49%, exceeding the prior best of 28%. Code will be released upon acceptance.
📅 2025-02-11
The increasing complexity of computer science research projects demands more effective tools for deploying code repositories. Large Language Models (LLMs), such as Anthropic Claude and Meta Llama, have demonstrated significant advancements across various fields of computer science research, including the automation of diverse software engineering tasks. To evaluate the effectiveness of LLMs in handling complex code development tasks of research projects, particularly for NLP/CV/AI/ML/DM topics, we introduce CSR-Bench, a benchmark for Computer Science Research projects. This benchmark assesses LLMs from various aspects including accuracy, efficiency, and deployment script quality, aiming to explore their potential in conducting computer science research autonomously. We also introduce a novel framework, CSR-Agents, that utilizes multiple LLM agents to automate the deployment of GitHub code repositories of computer science research projects. Specifically, by checking instructions from markdown files and interpreting repository structures, the model generates and iteratively improves bash commands that set up the experimental environments and deploy the code to conduct research tasks. Preliminary results from CSR-Bench indicate that LLM agents can significantly enhance the workflow of repository deployment, thereby boosting developer productivity and improving the management of developmental workflows.
📅 2025-02-11
We present a large language models (LLMs) based multi-agent system to automate the refactoring of Haskell codebases. The multi-agent system consists of specialized agents performing tasks such as context analysis, refactoring, validation, and testing. Refactoring improvements are using metrics such as cyclomatic complexity, run-time, and memory allocation. Experimental evaluations conducted on Haskell codebases demonstrate improvements in code quality. Cyclomatic complexity was reduced by 13.64% and 47.06% in the respective codebases. Memory allocation improved by 4.17% and 41.73%, while runtime efficiency increased by up to 50%. These metrics highlight the systems ability to optimize Haskells functional paradigms while maintaining correctness and scalability. Results show reductions in complexity and performance enhancements across codebases. The integration of LLMs based multi-agent system enables precise task execution and inter-agent collaboration, addressing the challenges of refactoring in functional programming. This approach aims to address the challenges of refactoring functional programming languages through distributed and modular systems.
📅 2025-02-11
The proliferation of LLM-based conversational agents has resulted in excessive disclosure of identifiable or sensitive information. However, existing technologies fail to offer perceptible control or account for users' personal preferences about privacy-utility tradeoffs due to the lack of user involvement. To bridge this gap, we designed, built, and evaluated Rescriber, a browser extension that supports user-led data minimization in LLM-based conversational agents by helping users detect and sanitize personal information in their prompts. Our studies (N=12) showed that Rescriber helped users reduce unnecessary disclosure and addressed their privacy concerns. Users' subjective perceptions of the system powered by Llama3-8B were on par with that by GPT-4o. The comprehensiveness and consistency of the detection and sanitization emerge as essential factors that affect users' trust and perceived protection. Our findings confirm the viability of smaller-LLM-powered, user-facing, on-device privacy controls, presenting a promising approach to address the privacy and trust challenges of AI.
📅 2025-02-11
Large Language Models (LLMs) have achieved impressive results across numerous domains, yet they experience notable deficiencies in legal question-answering tasks. LLMs often generate generalized responses that lack the logical specificity required for expert legal advice and are prone to hallucination, providing answers that appear correct but are unreliable. Retrieval-Augmented Generation (RAG) techniques offer partial solutions to address this challenge, but existing approaches typically focus only on semantic similarity, neglecting the logical structure essential to legal reasoning. In this paper, we propose the Logical-Semantic Integration Model (LSIM), a novel supervised framework that bridges semantic and logical coherence. LSIM comprises three components: reinforcement learning predicts a structured fact-rule chain for each question, a trainable Deep Structured Semantic Model (DSSM) retrieves the most relevant candidate questions by integrating semantic and logical features, and in-context learning generates the final answer using the retrieved content. Our experiments on a real-world legal QA dataset-validated through both automated metrics and human evaluation-demonstrate that LSIM significantly enhances accuracy and reliability compared to existing methods.
📅 2025-02-11 | 💬 ICLR 2025
Disaggregating the prefill and decoding phases represents an effective new paradigm for generative inference of large language models (LLM), which eliminates prefill-decoding interference and optimizes resource allocation. However, it is still an open problem about how to deploy the disaggregated inference paradigm across a group of heterogeneous GPUs, which can be an economical alternative to deployment over homogeneous high-performance GPUs. Towards this end, we introduce HexGen-2, a distributed system for efficient and economical LLM serving on heterogeneous GPUs following the disaggregated paradigm. Built on top of HexGen, the core component of HexGen-2 is a scheduling algorithm that formalizes the allocation of disaggregated LLM inference computations and communications over heterogeneous GPUs and network connections as a constraint optimization problem. We leverage the graph partitioning and max-flow algorithms to co-optimize resource allocation, parallel strategies for distinct inference phases, and the efficiency of inter-phase key-value (KV) cache communications. We conduct extensive experiments to evaluate HexGen-2, i.e., on OPT (30B) and Llama-2 (70B) models in various real-world settings, the results reveal that HexGen-2 delivers up to a 2.0 times and on average a 1.3 times improvement in serving throughput, reduces the average inference latency by 1.5 times compared with state-of-the-art systems given the same price budget, and achieves comparable inference performance with a 30% lower price budget.
📅 2025-02-11
The rise of Large Language Models (LLMs) in software engineering, particularly in code generation, has garnered significant attention. However, assessing the quality of AI-generated code remains a challenge due to the inherent complexity of programming tasks and the lack of robust evaluation metrics that align well with human judgment. Traditional token-based metrics such as BLEU and ROUGE, while commonly used in natural language processing, exhibit weak correlations with human assessments in code intelligence and verification tasks. Furthermore, these metrics are primarily research focused and are not designed for seamless integration into the software development lifecycle, limiting their practical utility for developers seeking to improve code quality and security. AI-assisted coding has been shown to be more beneficial for senior developers, as they possess the expertise to critically evaluate the generated code for correctness, completeness, and compliance. In contrast, junior developers may struggle to identify hallucinations, missing functionality, or incorrect logic in AI-generated code. To bridge this gap, This paper introduces a novel scoring mechanism called the SBC score, which is based on a reverse generation technique that leverages the natural language generation capabilities of LLMs. Unlike direct code analysis, our approach reconstructs system requirements from AI-generated code and compares them with the original specifications to quantify accuracy. The SBC score combines semantic similarity, BLEU, and completeness analysis, providing actionable insights to developers by highlighting missing features and hallucinations. Our code and datasets are available on GitHub
📅 2025-02-11 | 💬 13 pages, 7 figures
Effective human-robot collaboration requires robot to adopt their roles and levels of support based on human needs, task requirements, and complexity. Traditional human-robot teaming often relies on a pre-determined robot communication scheme, restricting teamwork adaptability in complex tasks. Leveraging strong communication capabilities of Large Language Models (LLMs), we propose a Human-Robot Teaming Framework with Multi-Modal Language feedback (HRT-ML), a framework designed to enhance human-robot interaction by adjusting the frequency and content of language-based feedback. HRT-ML framework includes two core modules: a Coordinator for high-level, low-frequency strategic guidance, and a Manager for subtask-specific, high-frequency instructions, enabling passive and active interactions with human teammates. To assess the impact of language feedback in collaborative scenarios, we conducted experiments in an enhanced Overcooked environment with varying levels of task complexity (easy, medium, hard) and feedback frequency (inactive, passive, active, superactive). Our results show that as task complexity increases relative to human capabilities, human teammates exhibited a stronger preference towards robotic agents that can offer frequent, proactive support. However, when task complexities exceed the LLM's capacity, noisy and inaccurate feedback from superactive robotic agents can instead hinder team performance, as it requires human teammates to increase their effort to interpret and respond to a large number of communications, with limited performance return. Our results offer a general principle for robotic agents to dynamically adjust their levels and frequencies of communications to work seamlessly with humans and achieve improved teaming performance.
📅 2025-02-11
Designing efficient optimizers for large language models (LLMs) with low-memory requirements and fast convergence is an important and challenging problem. This paper makes a step towards the systematic design of such optimizers through the lens of structured Fisher information matrix (FIM) approximation. We show that many state-of-the-art efficient optimizers can be viewed as solutions to FIM approximation (under the Frobenius norm) with specific structural assumptions. Building on these insights, we propose two design recommendations of practical efficient optimizers for LLMs, involving the careful selection of structural assumptions to balance generality and efficiency, and enhancing memory efficiency of optimizers with general structures through a novel low-rank extension framework. We demonstrate how to use each design approach by deriving new memory-efficient optimizers: Row and Column Scaled SGD (RACS) and Adaptive low-dimensional subspace estimation (Alice). Experiments on LLaMA pre-training (up to 1B parameters) validate the effectiveness, showing faster and better convergence than existing memory-efficient baselines and Adam with little memory overhead. Notably, Alice achieves better than 2x faster convergence over Adam, while RACS delivers strong performance on the 1B model with SGD-like memory.
📅 2025-02-11
Large language models (LLMs) have demonstrated remarkable code generation capabilities, but the correctness of the generated code cannot be inherently trusted. This paper explores the feasibility of using formal software verification, specifically the SPARK framework for Ada, to ensure the reliability of LLM-generated code. We present Marmaragan, a tool that leverages an LLM in order to generate SPARK annotations for existing programs, enabling formal verification of the code. The tool is benchmarked on a curated set of SPARK programs, with annotations selectively removed to test specific capabilities. The performance of Marmaragan with GPT-4o on the benchmark is promising, with correct annotations having been generated for 50.7% of the benchmark cases. The results establish a foundation for future work on combining the power of LLMs with the reliability of formal software verification.
📅 2025-02-11
We introduce Glinthawk, an architecture for offline Large Language Model (LLM) inference. By leveraging a two-tiered structure, Glinthawk optimizes the utilization of the high-end accelerators ("Tier 1") by offloading the attention mechanism to lower-end compute tier ("Tier 2"). This separation allows the memory demand of the attention, known as the key-value cache, to scale independently from the model weights, enabling larger batch sizes and more efficient accelerator usage. Prototyped with NVIDIA T4 GPUs and standard CPU VMs, Glinthawk improves throughput by $5.9\times$ and reduces cost of generation by $2.8\times$, compared to paged attention baselines. For long sequence lengths, it achieves $16.3\times$ throughput improvement at $2.4\times$ less cost. Our evaluation shows that this architecture can tolerate moderate network latency with minimal performance degradation, making it highly effective for latency-tolerant, throughput-focused applications such as batch processing. The prototype is publicly available at https://github.com/microsoft/glinthawk.
📅 2025-02-11
Open-ended learning agents must efficiently prioritize goals in vast possibility spaces, focusing on those that maximize learning progress (LP). When such autotelic exploration is achieved by LLM agents trained with online RL in high-dimensional and evolving goal spaces, a key challenge for LP prediction is modeling one's own competence, a form of metacognitive monitoring. Traditional approaches either require extensive sampling or rely on brittle expert-defined goal groupings. We introduce MAGELLAN, a metacognitive framework that lets LLM agents learn to predict their competence and LP online. By capturing semantic relationships between goals, MAGELLAN enables sample-efficient LP estimation and dynamic adaptation to evolving goal spaces through generalization. In an interactive learning environment, we show that MAGELLAN improves LP prediction efficiency and goal prioritization, being the only method allowing the agent to fully master a large and evolving goal space. These results demonstrate how augmenting LLM agents with a metacognitive ability for LP predictions can effectively scale curriculum learning to open-ended goal spaces.
📅 2025-02-11
Design assistants are frameworks, tools or applications intended to facilitate both the creative and technical facets of design processes. Large language models (LLMs) are AI systems engineered to analyze and produce text resembling human language, leveraging extensive datasets. This study introduces a framework wherein LLMs are employed as Design Assistants, focusing on three key modalities within the Design Process: Idea Exploration, Dialogue with Designers, and Design Evaluation. Importantly, our framework is not confined to a singular design process but is adaptable across various processes.
📅 2025-02-11
Unit test generation has become a promising and important use case of LLMs. However, existing evaluation benchmarks for assessing LLM unit test generation capabilities focus on function- or class-level code rather than more practical and challenging project-level codebases. To address such limitation, we propose ProjectTest, a project-level benchmark for unit test generation covering Python, Java, and JavaScript. ProjectTest features 20 moderate-sized and high-quality projects per language. We evaluate nine frontier LLMs on ProjectTest and the results show that all frontier LLMs tested exhibit moderate performance on ProjectTest on Python and Java, highlighting the difficulty of ProjectTest. We also conduct a thorough error analysis, which shows that even frontier LLMs, such as Claude-3.5-Sonnet, have significant simple errors, including compilation and cascade errors. Motivated by this observation, we further evaluate all frontier LLMs under manual error-fixing and self-error-fixing scenarios to assess their potential when equipped with error-fixing mechanisms.
📅 2025-02-11 | 💬 23 pages, 14 figures
Large Language Models (LLMs) have demonstrated great potential as generalist assistants, showcasing powerful task understanding and problem-solving capabilities. To deploy LLMs as AI assistants, it is crucial that these models exhibit desirable behavioral traits, such as non-toxicity and resilience against jailbreak attempts. Current approaches for detoxification or preventing jailbreaking usually involve Supervised Fine-Tuning (SFT) or Reinforcement Learning from Human Feedback (RLHF), which requires finetuning billions of parameters through gradient descent with substantial computational cost. Furthermore, models modified through SFT and RLHF may deviate from the pretrained models, potentially leading to a degradation in foundational LLM capabilities. In this paper, we observe that surprisingly, directly editing a small subset of parameters can effectively modulate specific behaviors of LLMs, such as detoxification and resistance to jailbreaking, with only inference-level computational resources. Experiments demonstrate that in the detoxification task, our approach achieves reductions of up to 90.0% in toxicity on the RealToxicityPrompts dataset and 49.2% on ToxiGen, while maintaining the LLM's general capabilities in areas such as common sense, question answering, and mathematics
📅 2025-02-11
Uncertainty quantification (UQ) methods for Large Language Models (LLMs) encompasses a variety of approaches, with two major types being particularly prominent: information-based, which focus on model confidence expressed as token probabilities, and consistency-based, which assess the semantic relationship between multiple outputs generated using repeated sampling. Several recent methods have combined these two approaches and shown impressive performance in various applications. However, they sometimes fail to outperform much simpler baseline methods. Our investigation reveals distinctive characteristics of LLMs as probabilistic models, which help to explain why these UQ methods underperform in certain tasks. Based on these findings, we propose a new way of synthesizing model confidence and output consistency that leads to a family of efficient and robust UQ methods. We evaluate our approach across a variety of tasks such as question answering, abstractive summarization, and machine translation, demonstrating sizable improvements over state-of-the-art UQ approaches.
📅 2025-02-11
Rating-based human evaluation has become an essential tool to accurately evaluate the impressive performance of large language models (LLMs). However, current rating systems suffer from several important limitations: first, they fail to account for biases that significantly influence evaluation results, second, they require large and expensive preference datasets to obtain accurate ratings, and third, they do not facilitate meaningful comparisons of model ratings across different tasks. To address these issues, we introduce Polyrating, an expressive and flexible rating system based on maximum a posteriori estimation that enables a more nuanced and thorough analysis of model performance at lower costs. Polyrating can detect and quantify biases affecting human preferences, ensuring fairer model comparisons. Further, Polyrating can reduce the cost of human evaluations by up to $41\%$ for new models and up to $77\%$ for new tasks by leveraging existing benchmark scores. Lastly, Polyrating enables direct comparisons of ratings across different tasks, providing a comprehensive understanding of an LLMs' strengths, weaknesses, and relative performance across different applications.
📅 2025-02-11 | 💬 work in progress. arXiv admin note: text overlap with arXiv:2405.09673 by other authors
Model merging aggregates Large Language Models (LLMs) finetuned on different tasks into a stronger one. However, parameter conflicts between models leads to performance degradation in averaging. While model routing addresses this issue by selecting individual models during inference, it imposes excessive storage and compute costs, and fails to leverage the common knowledge from different models. In this work, we observe that different layers exhibit varying levels of parameter conflicts. Building on this insight, we average layers with minimal parameter conflicts and use a novel task-level expert routing for layers with significant conflicts. To further reduce storage costs, inspired by task arithmetic sparsity, we decouple multiple fine-tuned experts into a dense expert and several sparse experts. Considering the out-of-distribution samples, we select and merge appropriate experts based on the task uncertainty of the input data. We conduct extensive experiments on both LLaMA and Qwen with varying parameter scales, and evaluate on real-world reasoning tasks. Results demonstrate that our method consistently achieves significant performance improvements while requiring less system cost compared to existing methods.
📅 2025-02-11
Network stream mining is fundamental to many network operations. Sketches, as compact data structures that offer low memory overhead with bounded accuracy, have emerged as a promising solution for network stream mining. Recent studies attempt to optimize sketches using machine learning; however, these approaches face the challenges of lacking adaptivity to dynamic networks and incurring high training costs. In this paper, we propose LLM-Sketch, based on the insight that fields beyond the flow IDs in packet headers can also help infer flow sizes. By using a two-tier data structure and separately recording large and small flows, LLM-Sketch improves accuracy while minimizing memory usage. Furthermore, it leverages fine-tuned large language models (LLMs) to reliably estimate flow sizes. We evaluate LLM-Sketch on three representative tasks, and the results demonstrate that LLM-Sketch outperforms state-of-the-art methods by achieving a $7.5\times$ accuracy improvement.
📅 2025-02-11 | 💬 ICLR 2025; 28 pages, 8 figures
High quality annotations are increasingly a bottleneck in the explosively growing machine learning ecosystem. Scalable evaluation methods that avoid costly annotation have therefore become an important research ambition. Many hope to use strong existing models in lieu of costly labels to provide cheap model evaluations. Unfortunately, this method of using models as judges introduces biases, such as self-preferencing, that can distort model comparisons. An emerging family of debiasing tools promises to fix these issues by using a few high quality labels to debias a large number of model judgments. In this paper, we study how far such debiasing methods, in principle, can go. Our main result shows that when the judge is no more accurate than the evaluated model, no debiasing method can decrease the required amount of ground truth labels by more than half. Our result speaks to the severe limitations of the LLM-as-a-judge paradigm at the evaluation frontier where the goal is to assess newly released models that are possibly better than the judge. Through an empirical evaluation, we demonstrate that the sample size savings achievable in practice are even more modest than what our theoretical limit suggests. Along the way, our work provides new observations about debiasing methods for model evaluation, and points out promising avenues for future work.
📅 2025-02-11 | 💬 Accepted at NAACL 2025 Main Conference, the dataset is available on HuggingFace (see https://huggingface.co/datasets/teias-ai/percul)
Large language models predominantly reflect Western cultures, largely due to the dominance of English-centric training data. This imbalance presents a significant challenge, as LLMs are increasingly used across diverse contexts without adequate evaluation of their cultural competence in non-English languages, including Persian. To address this gap, we introduce PerCul, a carefully constructed dataset designed to assess the sensitivity of LLMs toward Persian culture. PerCul features story-based, multiple-choice questions that capture culturally nuanced scenarios. Unlike existing benchmarks, PerCul is curated with input from native Persian annotators to ensure authenticity and to prevent the use of translation as a shortcut. We evaluate several state-of-the-art multilingual and Persian-specific LLMs, establishing a foundation for future research in cross-cultural NLP evaluation. Our experiments demonstrate a 11.3% gap between best closed source model and layperson baseline while the gap increases to 21.3% by using the best open-weight model. You can access the dataset from here: https://huggingface.co/datasets/teias-ai/percul
📅 2025-02-11
Large language models (LLMs) often appear to excel on public benchmarks, but these high scores may mask an overreliance on dataset-specific surface cues rather than true language understanding. We introduce the Chameleon Benchmark Overfit Detector (C-BOD), a meta-evaluation framework that systematically distorts benchmark prompts via a parametric transformation and detects overfitting of LLMs. By rephrasing inputs while preserving their semantic content and labels, C-BOD exposes whether a model's performance is driven by memorized patterns. Evaluated on the MMLU benchmark using 26 leading LLMs, our method reveals an average performance degradation of 2.15% under modest perturbations, with 20 out of 26 models exhibiting statistically significant differences. Notably, models with higher baseline accuracy exhibit larger performance differences under perturbation, and larger LLMs tend to be more sensitive to rephrasings indicating that both cases may overrely on fixed prompt patterns. In contrast, the Llama family and models with lower baseline accuracy show insignificant degradation, suggesting reduced dependency on superficial cues. Moreover, C-BOD's dataset- and model-agnostic design allows easy integration into training pipelines to promote more robust language understanding. Our findings challenge the community to look beyond leaderboard scores and prioritize resilience and generalization in LLM evaluation.
📅 2025-02-11
LLM-driven multi-agent-based simulations have been gaining traction with applications in game-theoretic and social simulations. While most implementations seek to exploit or evaluate LLM-agentic reasoning, they often do so with a weak notion of agency and simplified architectures. We implement a role-based multi-agent strategic interaction framework tailored to sophisticated recursive reasoners, providing the means for systematic in-depth development and evaluation of strategic reasoning. Our game environment is governed by the umpire responsible for facilitating games, from matchmaking through move validation to environment management. Players incorporate state-of-the-art LLMs in their decision mechanism, relying on a formal hypergame-based model of hierarchical beliefs. We use one-shot, 2-player beauty contests to evaluate the recursive reasoning capabilities of the latest LLMs, providing a comparison to an established baseline model from economics and data from human experiments. Furthermore, we introduce the foundations of an alternative semantic measure of reasoning to the k-level theory. Our experiments show that artificial reasoners can outperform the baseline model in terms of both approximating human behaviour and reaching the optimal solution.
📅 2025-02-11 | 💬 18 pages, 18 figures
Large Language Models (LLMs) exhibit remarkable multilingual generalization despite being predominantly trained on English-centric corpora. A fundamental question arises: how do LLMs achieve such robust multilingual capabilities? For non-Latin script languages, we investigate the role of romanization - the representation of non-Latin scripts using Latin characters - as a bridge in multilingual processing. Using mechanistic interpretability techniques, we analyze next-token generation and find that intermediate layers frequently represent target words in romanized form before transitioning to native script, a phenomenon we term Latent Romanization. Further, through activation patching experiments, we demonstrate that LLMs encode semantic concepts similarly across native and romanized scripts, suggesting a shared underlying representation. Additionally in translation towards non Latin languages, our findings reveal that when the target language is in romanized form, its representations emerge earlier in the model's layers compared to native script. These insights contribute to a deeper understanding of multilingual representation in LLMs and highlight the implicit role of romanization in facilitating language transfer. Our work provides new directions for potentially improving multilingual language modeling and interpretability.
📅 2025-02-11 | 💬 Findings of NAACL 2025
Evaluating and ranking the capabilities of different LLMs is crucial for understanding their performance and alignment with human preferences. Due to the high cost and time-consuming nature of human evaluations, an automatic LLM bencher (i.e., an automatic evaluation framework that aims to rank LLMs based on their alignment with human preferences) is indispensable. An automatic LLM bencher consists of four components: the input set (e.g., a user instruction), the evaluation model (e.g., an LLM), the evaluation type (e.g., pairwise comparison), and the aggregation method (e.g., the ELO rating system). However, previous work has not thoroughly explored how to select these components or how their different combinations influence the results. In this work, through controlled experiments, we provide a series of recommendations on how to choose each component to better automate the evaluation of LLMs. Furthermore, we discovered that when evaluating LLMs with similar performance, the performance of the automatic LLM bencher declines sharply, underscoring the limitations of current benchers and calling for future work. Lastly, we found that the evaluation models' performance at the instance level (e.g., the accuracy of selecting the best output) does not always align with their effectiveness when used as a component of a bencher, highlighting the importance of dedicated system-level evaluation of benchers.
📅 2025-02-11
Growing concerns about climate change and sustainability are driving manufacturers to take significant steps toward reducing their carbon footprints. For these manufacturers, a first step towards this goal is to identify the environmental impact of the individual components of their products. We propose a system leveraging large language models (LLMs) to automatically map components from manufacturer Bills of Materials (BOMs) to Life Cycle Assessment (LCA) database entries by using LLMs to expand on available component information. Our approach reduces the need for manual data processing, paving the way for more accessible sustainability practices.
📅 2025-02-11
Large reasoning models (LRMs) tackle complex reasoning problems by following long chain-of-thoughts (Long CoT) that incorporate reflection, backtracking, and self-validation. However, the training techniques and data requirements to elicit Long CoT remain poorly understood. In this work, we find that a Large Language model (LLM) can effectively learn Long CoT reasoning through data-efficient supervised fine-tuning (SFT) and parameter-efficient low-rank adaptation (LoRA). With just 17k long CoT training samples, the Qwen2.5-32B-Instruct model achieves significant improvements on a wide range of math and coding benchmarks, including 56.7% (+40.0%) on AIME 2024 and 57.0% (+8.1%) on LiveCodeBench, competitive to the proprietary o1-preview model's score of 44.6% and 59.1%. More importantly, we find that the structure of Long CoT is critical to the learning process, whereas the content of individual reasoning steps has minimal impact. Perturbations affecting content, such as training on incorrect samples or removing reasoning keywords, have little impact on performance. In contrast, structural modifications that disrupt logical consistency in the Long CoT, such as shuffling or deleting reasoning steps, significantly degrade accuracy. For example, a model trained on Long CoT samples with incorrect answers still achieves only 3.2% lower accuracy compared to training with fully correct samples. These insights deepen our understanding of how to elicit reasoning capabilities in LLMs and highlight key considerations for efficiently training the next generation of reasoning models. This is the academic paper of our previous released Sky-T1-32B-Preview model. Codes are available at https://github.com/NovaSky-AI/SkyThought.
📅 2025-02-11
This study empirically tests the $\textit{Narrative Economics}$ hypothesis, which posits that narratives (ideas that are spread virally and affect public beliefs) can influence economic fluctuations. We introduce two curated datasets containing posts from X (formerly Twitter) which capture economy-related narratives (Data will be shared upon paper acceptance). Employing Natural Language Processing (NLP) methods, we extract and summarize narratives from the tweets. We test their predictive power for $\textit{macroeconomic}$ forecasting by incorporating the tweets' or the extracted narratives' representations in downstream financial prediction tasks. Our work highlights the challenges in improving macroeconomic models with narrative data, paving the way for the research community to realistically address this important challenge. From a scientific perspective, our investigation offers valuable insights and NLP tools for narrative extraction and summarization using Large Language Models (LLMs), contributing to future research on the role of narratives in economics.
📅 2025-02-11 | 💬 27 pages; 3 figures; accepted to ICLR 2025
Fine-tuned large language models (LLMs) often exhibit overconfidence, particularly when trained on small datasets, resulting in poor calibration and inaccurate uncertainty estimates. Evidential Deep Learning (EDL), an uncertainty-aware approach, enables uncertainty estimation in a single forward pass, making it a promising method for calibrating fine-tuned LLMs. However, despite its computational efficiency, EDL is prone to overfitting, as its training objective can result in overly concentrated probability distributions. To mitigate this, we propose regularizing EDL by incorporating an information bottleneck (IB). Our approach IB-EDL suppresses spurious information in the evidence generated by the model and encourages truly predictive information to influence both the predictions and uncertainty estimates. Extensive experiments across various fine-tuned LLMs and tasks demonstrate that IB-EDL outperforms both existing EDL and non-EDL approaches. By improving the trustworthiness of LLMs, IB-EDL facilitates their broader adoption in domains requiring high levels of confidence calibration. Code is available at https://github.com/sandylaker/ib-edl.
📅 2025-02-11
While various vertical domain large language models (LLMs) have been developed, automatically evaluating their performance across different domains remains a critical challenge. Current benchmark-based methods often rely on static and costly datasets, are misaligned with practical user needs, and lack flexibility across domains. To address these limitations, we revisit the evaluation process and introduce two key concepts: Benchmark+, which extends the traditional question-answer benchmark into a more flexible ``strategy-criterion'' format; and Assessment+, which enhances the interaction process, enabling deeper exploration and supporting analysis from broader perspectives. We propose TestAgent, an agent-based evaluation framework that implements these concepts using retrieval-augmented generation and reinforcement learning. TestAgent enables automatic dynamic benchmark generation and in-depth assessment across diverse vertical domain scenarios. Experiments on tasks ranging from constructing multiple vertical domain evaluations to converting static benchmarks into dynamic forms demonstrate the effectiveness of TestAgent. This work offers an interesting perspective on automatic evaluation for LLMs and highlights a pathway for dynamic and domain-adaptive assessments.
📅 2025-02-11
The healthcare landscape is evolving, with patients seeking reliable information about their health conditions and available treatment options. Despite the abundance of information sources, the digital age overwhelms individuals with excess, often inaccurate information. Patients primarily trust medical professionals, highlighting the need for expert-endorsed health information. However, increased patient loads on experts has led to reduced communication time, impacting information sharing. To address this gap, we developed CataractBot. CataractBot answers cataract surgery related questions instantly using an LLM to query a curated knowledge base, and provides expert-verified responses asynchronously. It has multimodal and multilingual capabilities. In an in-the-wild deployment study with 49 patients and attendants, 4 doctors, and 2 patient coordinators, CataractBot demonstrated potential, providing anytime accessibility, saving time, accommodating diverse literacy levels, alleviating power differences, and adding a privacy layer between patients and doctors. Users reported that their trust in the system was established through expert verification. Broadly, our results could inform future work on designing expert-mediated LLM bots.
📅 2025-02-11
Chain-of-thought (CoT) reasoning enhances the multi-step reasoning capabilities of large language models (LLMs) by breaking complex tasks into smaller, manageable sub-tasks. Researchers have been exploring ways to guide models to generate more complex CoT processes to improve the reasoning ability of LLMs, such as long CoT and the test-time scaling law. However, for most models and tasks, does an increase in CoT length consistently lead to improved reasoning accuracy? In this paper, we observe a nuanced relationship: as the number of reasoning steps increases, performance initially improves but eventually decreases. To understand this phenomenon, we provide a piece of evidence that longer reasoning processes are increasingly susceptible to noise. We theoretically prove the existence of an optimal CoT length and derive a scaling law for this optimal length based on model capability and task difficulty. Inspired by our theory, we conduct experiments on both synthetic and real world datasets and propose Length-filtered Vote to alleviate the effects of excessively long or short CoTs. Our findings highlight the critical need to calibrate CoT length to align with model capabilities and task demands, offering a principled framework for optimizing multi-step reasoning in LLMs.
📅 2025-02-11 | 💬 Fixed some data errors in Table 1
In recent years, Large Language Models (LLMs) have seen remarkable advancements and have been extensively integrated across various fields. Despite their progress, LLMs are prone to hallucinations, producing responses that may not be dependable if the models lack sufficient grounding knowledge. To mitigate this issue, methods for estimating uncertainty have been adopted, with a focus on critical tokens as indicators of reliability. Nevertheless, probability-based approaches have shown limitations in assessing token-level reliability due to the erosion of evidence strength information acquired during training. In this paper, we introduce Logits-induced Token Uncertainty (LogU), a novel framework designed to estimate token-specific uncertainty in LLMs in real time, without the need for multiple sampling rounds. By leveraging evidence modeling for the implementation of LogU, we utilize the derived uncertainty measures to steer downstream tasks. Our experimental findings highlight the substantial effectiveness and potential of LogU, marking a significant advancement in addressing the challenge of model hallucinations.
📅 2025-02-11 | 💬 23 pages, 5 figures
A fundamental challenge in formal theorem proving by LLMs is the lack of high-quality training data. Although reinforcement learning or expert iteration partially mitigates this issue by alternating between LLM generating proofs and finetuning them on correctly generated ones, performance quickly plateaus due to the scarcity of correct proofs (sparse rewards). To keep improving the models with limited data, we draw inspiration from mathematicians, who continuously develop new results, partly by proposing novel conjectures or exercises (which are often variants of known results) and attempting to solve them. We design the Self-play Theorem Prover (STP) that simultaneously takes on two roles, conjecturer and prover, each providing training signals to the other. The conjecturer is trained iteratively on previously generated conjectures that are barely provable by the current prover, which incentivizes it to generate increasingly challenging conjectures over time. The prover attempts to prove the conjectures with standard expert iteration. We evaluate STP with both Lean and Isabelle formal versifiers. With 19.8 billion tokens generated during the training in Lean, STP proves 26.3% of the statements in the LeanWorkbook dataset, doubling the previous best result of 13.2% achieved through expert iteration. The final model achieves state-of-the-art performance among whole-proof generation methods on miniF2F-test (61.7%, pass@3200), Proofnet-test (23.1%, pass@3200) and PutnamBench (8/644, pass@3200).
📅 2025-02-11
Decentralized finance (DeFi) applications depend on accurate price oracles to ensure secure transactions, yet these oracles are highly vulnerable to manipulation, enabling attackers to exploit smart contract vulnerabilities for unfair asset valuation and financial gain. Detecting such manipulations traditionally relies on the manual effort of experienced experts, presenting significant challenges. In this paper, we propose a novel LLM-driven framework that automates the detection of price oracle manipulations by leveraging the complementary strengths of different LLM models (LLMs). Our approach begins with domain-specific knowledge extraction, where an LLM model synthesizes precise insights about price oracle vulnerabilities from top-tier academic papers, eliminating the need for profound expertise from developers or auditors. This knowledge forms the foundation for a second LLM model to generate structured, context-aware chain of thought prompts, which guide a third LLM model in accurately identifying manipulation patterns in smart contracts. We validate the effectiveness of framework through experiments on 60 known vulnerabilities from 46 real-world DeFi attacks or projects spanning 2021 to 2023. The best performing combination of LLMs (Haiku-Haiku-4o-mini) identified by AiRacleX demonstrate a 2.58-times improvement in recall (0.667 vs 0.259) compared to the state-of-the-art tool GPTScan, while maintaining comparable precision. Furthermore, our framework demonstrates the feasibility of replacing commercial models with open-source alternatives, enhancing privacy and security for developers.
📅 2025-02-11
Large Language Models (LLMs) benefit from training on ever larger amounts of textual data, but as a result, they increasingly incur the risk of leaking private information. The ability to selectively remove knowledge from LLMs is, therefore, a highly desirable capability. In this paper, we propose LUNAR, a novel unlearning methodology grounded in the Linear Representation Hypothesis. LUNAR operates by redirecting the representations of unlearned data to regions that trigger the model's inherent ability to express its inability to answer. LUNAR achieves state-of-the-art unlearning performance while significantly enhancing the controllability of the unlearned model during inference. Specifically, LUNAR achieves between 2.9x to 11.7x improvements on combined "unlearning efficacy" and "model utility" score ("Deviation Score") on the PISTOL dataset across various base models. We also demonstrate, through quantitative analysis and qualitative examples, LUNAR's superior controllability in generating coherent and contextually aware responses, mitigating undesired side effects of existing methods. Moreover, we demonstrate that LUNAR is robust against white-box adversarial attacks and versatile in handling real-world scenarios, such as processing sequential unlearning requests.
📅 2025-02-11
Attention is the cornerstone of modern Large Language Models (LLMs). Yet its quadratic complexity hinders efficiency and scalability, especially for long-context processing. A promising approach is to leverage sparsity in attention. However, existing sparsity-based solutions predominantly rely on predefined patterns or heuristics at the attention head level, struggling to adapt dynamically to different contexts efficiently. We propose SeerAttention, a simple yet effective attention mechanism that directly learns the block-level attention sparsity from the LLM itself. Inspired by the gating mechanism in Mixture of Experts (MoE), SeerAttention augments the conventional attention with a learnable gate that selectively activates important blocks within the attention map. Specifically, the gate first pools the query (Q) and key (K) tensors along the sequence dimension and processes them through learnable linear layers. The resulting matrices are then multiplied together to produce the gating scores, which are used to predict block-level attention sparsity. Combined with our block-sparse FlashAttention kernel, SeerAttention can achieve significant speedup on GPUs. When applied to pre-trained LLMs, SeerAttention only requires training the gate parameters in a lightweight self-distillation manner, allowing rapid convergence. Our evaluation results demonstrate that SeerAttention achieves better model accuracy and lower latency for long-context pre-filling compared to prior methods.
📅 2025-02-11
With the advancement of large language models (LLMs), solving complex reasoning tasks has gained increasing attention. Inference-time computation methods (e.g., Best-of-N, beam search, et al.) are particularly valuable as they can enhance reasoning performance without modifying model parameters or requiring additional training. However, these techniques come with implementation challenges, and most existing methods remain at the proof-of-concept stage with limited practical adoption due to their computational complexity and varying effectiveness across different tasks. In this paper, we investigate and benchmark diverse inference-time computation strategies across reasoning tasks of varying complexity. Since most current methods rely on a proposer-verifier pipeline that first generates candidate solutions (e.g., reasoning solutions) and then selects the best one based on reward signals (e.g., RLHF rewards, process rewards), our research focuses on optimizing both candidate solution generation (e.g., instructing prompts, hyperparameters such as temperature and top-p) and reward mechanisms (e.g., self-evaluation, reward types). Through extensive experiments (more than 20,000 A100-80G GPU hours with over 1,000 experiments) across a variety of models (e.g., Llama, Qwen, and Mistral families) of various sizes, our ablation studies reveal that previously overlooked strategies can significantly enhance performance (e.g., tuning temperature can improve reasoning task performance by up to 5%). Furthermore, we establish a standardized benchmark for inference-time computation by systematically evaluating six representative methods across eight reasoning tasks. These findings provide a stronger foundation for future research. The code is available at https://github.com/usail-hkust/benchmark_inference_time_computation_LL
📅 2025-02-11 | 💬 22 pages, 9 figures, accepted by NAACL 2025 main conference
While LLMs have exhibited strong performance on various NLP tasks, it is noteworthy that most of these tasks rely on utilizing the vast amount of knowledge encoded in LLMs' parameters, rather than solving new problems without prior knowledge. In cognitive research, the latter ability is referred to as fluid intelligence, which is considered to be critical for assessing human intelligence. Recent research on fluid intelligence assessments has highlighted significant deficiencies in LLMs' abilities. In this paper, we analyze the challenges LLMs face in demonstrating fluid intelligence through controlled experiments, using the most representative ARC task as an example. Our study revealed three major limitations in existing LLMs: limited ability for skill composition, unfamiliarity with abstract input formats, and the intrinsic deficiency of left-to-right decoding. Our data and code can be found in https://wujunjie1998.github.io/araoc-benchmark.github.io/.
📅 2025-02-11
Zero-shot LLMs are now also used for textual classification tasks, e.g., sentiment/emotion detection of a given input as a sentence/article. However, their performance can be suboptimal in such data annotation tasks. We introduce a novel technique Perceived Confidence Scoring (PCS) that evaluates LLM's confidence for its classification of an input by leveraging Metamorphic Relations (MRs). The MRs generate semantically equivalent yet textually mutated versions of the input. Following the principles of Metamorphic Testing (MT), the mutated versions are expected to have annotation labels similar to the input. By analyzing the consistency of LLM responses across these variations, PCS computes a confidence score based on the frequency of predicted labels. PCS can be used both for single LLM and multiple LLM settings (e.g., majority voting). We introduce an algorithm Perceived Differential Evolution (PDE) that determines the optimal weights assigned to the MRs and the LLMs for a classification task. Empirical evaluation shows PCS significantly improves zero-shot accuracy for Llama-3-8B-Instruct (4.96%) and Mistral-7B-Instruct-v0.3 (10.52%), with Gemma-2-9b-it showing a 9.39% gain. When combining all three models, PCS significantly outperforms majority voting by 7.75%.
📅 2025-02-11 | 💬 Accepted to NAACL Findings 2025
The rise of unifying frameworks that enable seamless interoperability of Large Language Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility. Despite this, there have not been efforts to explore such collaborative writing. We take the next step beyond human-LLM collaboration to explore this multi-LLM scenario by generating the first exclusively LLM-generated collaborative stories dataset called CollabStory. We focus on single-author to multi-author (up to 5 LLMs) scenarios, where multiple LLMs co-author stories. We generate over 32k stories using open-source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks that have set the standard for human-human multi-author writing tasks and analysis. We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration. We find that current baselines are not able to handle this emerging scenario. Thus, CollabStory is a resource that could help propel an understanding as well as the development of new techniques to discern the use of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism detection, credit assignment, maintaining academic integrity in educational settings, and addressing copyright infringement concerns. We make our dataset and code available at https://github.com/saranya-venkatraman/CollabStory.
📅 2025-02-11 | 💬 Accepted to NAACL 2025
We examine the representation of African American English (AAE) in large language models (LLMs), exploring (a) the perceptions Black Americans have of how effective these technologies are at producing authentic AAE, and (b) in what contexts Black Americans find this desirable. Through both a survey of Black Americans ($n=$ 104) and annotation of LLM-produced AAE by Black Americans ($n=$ 228), we find that Black Americans favor choice and autonomy in determining when AAE is appropriate in LLM output. They tend to prefer that LLMs default to communicating in Mainstream U.S. English in formal settings, with greater interest in AAE production in less formal settings. When LLMs were appropriately prompted and provided in context examples, our participants found their outputs to have a level of AAE authenticity on par with transcripts of Black American speech. Select code and data for our project can be found here: https://github.com/smelliecat/AAEMime.git
📅 2025-02-11 | 💬 Accepted by ICRA 2025
Vision-and-Language Navigation (VLN) tasks require an agent to follow textual instructions to navigate through 3D environments. Traditional approaches use supervised learning methods, relying heavily on domain-specific datasets to train VLN models. Recent methods try to utilize closed-source large language models (LLMs) like GPT-4 to solve VLN tasks in zero-shot manners, but face challenges related to expensive token costs and potential data breaches in real-world applications. In this work, we introduce Open-Nav, a novel study that explores open-source LLMs for zero-shot VLN in the continuous environment. Open-Nav employs a spatial-temporal chain-of-thought (CoT) reasoning approach to break down tasks into instruction comprehension, progress estimation, and decision-making. It enhances scene perceptions with fine-grained object and spatial knowledge to improve LLM's reasoning in navigation. Our extensive experiments in both simulated and real-world environments demonstrate that Open-Nav achieves competitive performance compared to using closed-source LLMs.
📅 2025-02-11
Accurate and efficient diagnosis in online medical consultations remains a challenge for current large language models. These models often rely on single-turn interactions and lack the ability to refine their predictions through follow-up questions. Additionally, their responses frequently contain complex medical terminology, making them less accessible to non-medical users and creating barriers to effective communication. In this paper, we introduce Ask Patients with Patience (APP), the first multi-turn dialogue that enables LLMs to iteratively refine diagnoses based on grounded reasoning. By integrating medical guidelines and entropy minimization, APP improves both diagnostic accuracy and efficiency. Furthermore, it features human-centric communication that bridges the gap between user comprehension and medical terminology, significantly enhancing user accessibility and engagement. We evaluated APP using a subset of the ReMeDi dataset, comparing it with single-turn and traditional multi-turn LLM baselines. APP achieved higher similarity scores in diagnosis predictions, demonstrating better alignment with ground truth diagnoses. Entropy analysis showed that APP reduces diagnostic uncertainty more rapidly across iterations, increasing confidence in its predictions. APP also excels in user accessibility and empathy, further bridging the gap between complex medical language and user understanding. Code will be released at: https://github.com/SuperMedIntel/AskPatients.
📅 2025-02-11
Large language models (LLMs) have achieved significant performance gains via scaling up model sizes and/or data. However, recent evidence suggests diminishing returns from such approaches, motivating scaling the computation spent at inference time. Existing inference-time scaling methods, usually with reward models, cast the task as a search problem, which tends to be vulnerable to reward hacking as a consequence of approximation errors in reward models. In this paper, we instead cast inference-time scaling as a probabilistic inference task and leverage sampling-based techniques to explore the typical set of the state distribution of a state-space model with an approximate likelihood, rather than optimize for its mode directly. We propose a novel inference-time scaling approach by adapting particle-based Monte Carlo methods to this task. Our empirical evaluation demonstrates that our methods have a 4-16x better scaling rate over our deterministic search counterparts on various challenging mathematical reasoning tasks. Using our approach, we show that Qwen2.5-Math-1.5B-Instruct can surpass GPT-4o accuracy in only 4 rollouts, while Qwen2.5-Math-7B-Instruct scales to o1 level accuracy in only 32 rollouts. Our work not only presents an effective method to inference-time scaling, but also connects the rich literature in probabilistic inference with inference-time scaling of LLMs to develop more robust algorithms in future work. Code, videos, and further information available at https://probabilistic-inference-scaling.github.io.
📅 2025-02-11
Recent advances in large language models (LLMs) have demonstrated their potential in handling complex reasoning tasks, which are usually achieved by constructing a thought chain to guide the model to solve the problem with multi-step thinking. However, existing methods often remain confined to previously explored solution spaces and thus overlook the critical blind spot within LLMs' cognitive range. To address these issues, we design the Thought Space Explorer (TSE), a novel framework to expand and optimize thought structures to guide LLMs to explore their blind spots of thinking. By generating new reasoning steps and branches based on the original thought structure with various designed strategies, TSE broadens the thought space and alleviates the impact of blind spots for LLM reasoning. Experimental results on multiple levels of reasoning tasks demonstrate the efficacy of TSE. We also conduct extensive analysis to understand how structured and expansive thought can contribute to unleashing the potential of LLM reasoning capabilities.
📅 2025-02-11
We propose a universal adversarial attack on multimodal Large Language Models (LLMs) that leverages a single optimized image to override alignment safeguards across diverse queries and even multiple models. By backpropagating through the vision encoder and language head, we craft a synthetic image that forces the model to respond with a targeted phrase (e.g., ''Sure, here it is'') or otherwise unsafe content-even for harmful prompts. In experiments on the SafeBench benchmark, our method achieves significantly higher attack success rates than existing baselines, including text-only universal prompts (e.g., up to 93% on certain models). We further demonstrate cross-model transferability by training on several multimodal LLMs simultaneously and testing on unseen architectures. Additionally, a multi-answer variant of our approach produces more natural-sounding (yet still malicious) responses. These findings underscore critical vulnerabilities in current multimodal alignment and call for more robust adversarial defenses. We will release code and datasets under the Apache-2.0 license. Warning: some content generated by Multimodal LLMs in this paper may be offensive to some readers.
📅 2025-02-11
Graph learning has attracted significant attention due to its widespread real-world applications. Current mainstream approaches rely on text node features and obtain initial node embeddings through shallow embedding learning using GNNs, which shows limitations in capturing deep textual semantics. Recent advances in Large Language Models (LLMs) have demonstrated superior capabilities in understanding text semantics, transforming traditional text feature processing. This paper proposes a novel framework that combines Graph Transformer architecture with LLM-enhanced node features. Specifically, we leverage LLMs to generate rich semantic representations of text nodes, which are then processed by a multi-head self-attention mechanism in the Graph Transformer to capture both local and global graph structural information. Our model utilizes the Transformer's attention mechanism to dynamically aggregate neighborhood information while preserving the semantic richness provided by LLM embeddings. Experimental results demonstrate that the LLM-enhanced node features significantly improve the performance of graph learning models on node classification tasks. This approach shows promising results across multiple graph learning tasks, offering a practical direction for combining graph networks with language models.
📅 2025-02-11
Network stream mining is fundamental to many network operations. Sketches, as compact data structures that offer low memory overhead with bounded accuracy, have emerged as a promising solution for network stream mining. Recent studies attempt to optimize sketches using machine learning; however, these approaches face the challenges of lacking adaptivity to dynamic networks and incurring high training costs. In this paper, we propose LLM-Sketch, based on the insight that fields beyond the flow IDs in packet headers can also help infer flow sizes. By using a two-tier data structure and separately recording large and small flows, LLM-Sketch improves accuracy while minimizing memory usage. Furthermore, it leverages fine-tuned large language models (LLMs) to reliably estimate flow sizes. We evaluate LLM-Sketch on three representative tasks, and the results demonstrate that LLM-Sketch outperforms state-of-the-art methods by achieving a $7.5\times$ accuracy improvement.
📅 2025-02-10 | 💬 Accepted to NAACL 2025 (findings)
Nigeria is a multilingual country with 500+ languages. Naija is a Nigerian Pidgin spoken by approximately 120M speakers and it is a mixed language (e.g., English, Portuguese, Yoruba, Hausa and Igbo). Although it has mainly been a spoken language until recently, there are some online platforms (e.g., Wikipedia), publishing in written Naija as well. West African Pidgin English (WAPE) is also spoken in Nigeria and it is used by BBC to broadcast news on the internet to a wider audience not only in Nigeria but also in other West African countries (e.g., Cameroon and Ghana). Through statistical analyses and Machine Translation experiments, our paper shows that these two pidgin varieties do not represent each other (i.e., there are linguistic differences in word order and vocabulary) and Generative AI operates only based on WAPE. In other words, Naija is underrepresented in Generative AI, and it is hard to teach LLMs with few examples. In addition to the statistical analyses, we also provide historical information on both pidgins as well as insights from the interviews conducted with volunteer Wikipedia contributors in Naija.
📅 2025-02-10 | 💬 31 pages; the first three authors contributed equally
Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations-where LLMs direct the discourse and steer the conversation's objectives-remains under-explored. In this study, we first characterize LLM-guided conversation into three fundamental components: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GuideLLM as an installation. We then implement an interviewing environment for the evaluation of LLM-guided conversation. Specifically, various topics are involved in this environment for comprehensive interviewing evaluation, resulting in around 1.4k turns of utterances, 184k tokens, and over 200 events mentioned during the interviewing for each chatbot evaluation. We compare GuideLLM with 6 state-of-the-art LLMs such as GPT-4o and Llama-3-70b-Instruct, from the perspective of interviewing quality, and autobiography generation quality. For automatic evaluation, we derive user proxies from multiple autobiographies and employ LLM-as-a-judge to score LLM behaviors. We further conduct a human-involved experiment by employing 45 human participants to chat with GuideLLM and baselines. We then collect human feedback, preferences, and ratings regarding the qualities of conversation and autobiography. Experimental results indicate that GuideLLM significantly outperforms baseline LLMs in automatic evaluation and achieves consistent leading performances in human ratings.
📅 2025-02-10 | 💬 24 pages, 3 figures, 2 tables
Maintaining comprehensive and up-to-date knowledge graphs (KGs) is critical for modern AI systems, but manual curation struggles to scale with the rapid growth of scientific literature. This paper presents KARMA, a novel framework employing multi-agent large language models (LLMs) to automate KG enrichment through structured analysis of unstructured text. Our approach employs nine collaborative agents, spanning entity discovery, relation extraction, schema alignment, and conflict resolution that iteratively parse documents, verify extracted knowledge, and integrate it into existing graph structures while adhering to domain-specific schema. Experiments on 1,200 PubMed articles from three different domains demonstrate the effectiveness of KARMA in knowledge graph enrichment, with the identification of up to 38,230 new entities while achieving 83.1\% LLM-verified correctness and reducing conflict edges by 18.6\% through multi-layer assessments.
📅 2025-02-10 | 💬 Accepted to The ACM Web Conference (WWW) 2025 Short Paper Track
Large language models (LLMs) are increasingly utilized in domains such as finance, healthcare, and interpersonal relationships to provide advice tailored to user traits and contexts. However, this personalization often relies on sensitive data, raising critical privacy concerns and necessitating data minimization. To address these challenges, we propose a framework that integrates zero-knowledge proof (ZKP) technology, specifically zkVM, with LLM-based chatbots. This integration enables privacy-preserving data sharing by verifying user traits without disclosing sensitive information. Our research introduces both an architecture and a prompting strategy for this approach. Through empirical evaluation, we clarify the current constraints and performance limitations of both zkVM and the proposed prompting strategy, thereby demonstrating their practical feasibility in real-world scenarios.
📅 2025-02-10 | 💬 Accepted to NAACL 2025 Main Conference
Existing approaches to multilingual text detoxification are hampered by the scarcity of parallel multilingual datasets. In this work, we introduce a pipeline for the generation of multilingual parallel detoxification data. We also introduce SynthDetoxM, a manually collected and synthetically generated multilingual parallel text detoxification dataset comprising 16,000 high-quality detoxification sentence pairs across German, French, Spanish and Russian. The data was sourced from different toxicity evaluation datasets and then rewritten with nine modern open-source LLMs in few-shot setting. Our experiments demonstrate that models trained on the produced synthetic datasets have superior performance to those trained on the human-annotated MultiParaDetox dataset even in data limited setting. Models trained on SynthDetoxM outperform all evaluated LLMs in few-shot setting. We release our dataset and code to help further research in multilingual text detoxification.
📅 2025-02-10
Human-annotated preference data play an important role in aligning large language models (LLMs). In this paper, we investigate the questions of assessing the performance of human annotators and incentivizing them to provide high-quality annotations. The quality assessment of language/text annotation faces two challenges: (i) the intrinsic heterogeneity among annotators, which prevents the classic methods that assume the underlying existence of a true label; and (ii) the unclear relationship between the annotation quality and the performance of downstream tasks, which excludes the possibility of inferring the annotators' behavior based on the model performance trained from the annotation data. Then we formulate a principal-agent model to characterize the behaviors of and the interactions between the company and the human annotators. The model rationalizes a practical mechanism of a bonus scheme to incentivize annotators which benefits both parties and it underscores the importance of the joint presence of an assessment system and a proper contract scheme. From a technical perspective, our analysis extends the existing literature on the principal-agent model by considering a continuous action space for the agent. We show the gap between the first-best and the second-best solutions (under the continuous action space) is of $\Theta(1/\sqrt{n \log n})$ for the binary contracts and $\Theta(1/n)$ for the linear contracts, where $n$ is the number of samples used for performance assessment; this contrasts with the known result of $\exp(-\Theta(n))$ for the binary contracts when the action space is discrete. Throughout the paper, we use real preference annotation data to accompany our discussions.
📅 2025-02-10 | 💬 Accepted at NAACL Main 2025
In-context knowledge editing (IKE) enables efficient modification of large language model (LLM) outputs without parameter changes and at zero-cost. However, it can be misused to manipulate responses opaquely, e.g., insert misinformation or offensive content. Such malicious interventions could be incorporated into high-level wrapped APIs where the final input prompt is not shown to end-users. To address this issue, we investigate the detection and reversal of IKE-edits. First, we demonstrate that IKE-edits can be detected with high accuracy (F1 > 80\%) using only the top-10 output probabilities of the next token, even in a black-box setting, e.g. proprietary LLMs with limited output information. Further, we introduce the novel task of reversing IKE-edits using specially tuned reversal tokens. We explore using both continuous and discrete reversal tokens, achieving over 80\% accuracy in recovering original, unedited outputs across multiple LLMs. Our continuous reversal tokens prove particularly effective, with minimal impact on unedited prompts. Through analysis of output distributions, attention patterns, and token rankings, we provide insights into IKE's effects on LLMs and how reversal tokens mitigate them. This work represents a significant step towards enhancing LLM resilience against potential misuse of in-context editing, improving their transparency and trustworthiness.
📅 2025-02-10 | 💬 18 pages; 3 figures; accepted to ICLR 2025
Fine-tuned large language models (LLMs) often exhibit overconfidence, particularly when trained on small datasets, resulting in poor calibration and inaccurate uncertainty estimates. Evidential Deep Learning (EDL), an uncertainty-aware approach, enables uncertainty estimation in a single forward pass, making it a promising method for calibrating fine-tuned LLMs. However, despite its computational efficiency, EDL is prone to overfitting, as its training objective can result in overly concentrated probability distributions. To mitigate this, we propose regularizing EDL by incorporating an information bottleneck (IB). Our approach IB-EDL suppresses spurious information in the evidence generated by the model and encourages truly predictive information to influence both the predictions and uncertainty estimates. Extensive experiments across various fine-tuned LLMs and tasks demonstrate that IB-EDL outperforms both existing EDL and non-EDL approaches. By improving the trustworthiness of LLMs, IB-EDL facilitates their broader adoption in domains requiring high levels of confidence calibration. Code is available at https://github.com/sandylaker/ib-edl.
📅 2025-02-10
Decentralized finance applications depend on accurate price oracles to ensure secure transactions, yet these oracles are highly vulnerable to manipulation, enabling attackers to exploit smart contract vulnerabilities for unfair asset valuation and financial gain. Detecting such manipulations traditionally relies on the manual effort of experienced experts, presenting significant challenges. In this paper, we propose a novel LLM-driven framework that automates the detection of price oracle manipulations by leveraging the complementary strengths of different LLM models. Our approach begins with domain-specific knowledge extraction, where an LLM model synthesizes precise insights about price oracle vulnerabilities from top-tier academic papers, eliminating the need for profound expertise from developers or auditors. This knowledge forms the foundation for a second LLM model to generate structured, context-aware chain of thought prompts, which guide a third LLM model in accurately identifying manipulation patterns in smart contracts. We validate the framework effectiveness through experiments on 60 known vulnerabilities from 46 real-world DeFi attacks or projects spanning 2021 to 2023. The best performing combination of LLMs (Haiku-Haiku-4o-mini) identified by AiRacleX demonstrate a 2.58-times improvement in recall (0.667 vs 0.259) compared to the state-of-the-art tool GPTScan, while maintaining comparable precision. Furthermore, our framework demonstrates the feasibility of replacing commercial models with open-source alternatives, enhancing privacy and security for developers.
📅 2025-02-10
We introduce a Retrieval-Augmented Generation (RAG) system for translating user questions into accurate federated SPARQL queries over bioinformatics knowledge graphs (KGs) leveraging Large Language Models (LLMs). To enhance accuracy and reduce hallucinations in query generation, our system utilises metadata from the KGs, including query examples and schema information, and incorporates a validation step to correct generated queries. The system is available online at chat.expasy.org.
📅 2025-02-10 | 💬 Accepted to Findings of NAACL 2025
This study introduces two novel benchmarks, SeaExam and SeaBench, designed to evaluate the capabilities of Large Language Models (LLMs) in Southeast Asian (SEA) application scenarios. Unlike existing multilingual datasets primarily derived from English translations, these benchmarks are constructed based on real-world scenarios from SEA regions. SeaExam draws from regional educational exams to form a comprehensive dataset that encompasses subjects such as local history and literature. In contrast, SeaBench is crafted around multi-turn, open-ended tasks that reflect daily interactions within SEA communities. Our evaluations demonstrate that SeaExam and SeaBench more effectively discern LLM performance on SEA language tasks compared to their translated benchmarks. This highlights the importance of using real-world queries to assess the multilingual capabilities of LLMs.
📅 2025-02-10
In this work, we argue that large language models (LLMs), though trained to predict only the next token, exhibit emergent planning behaviors: $\textbf{their hidden representations encode future outputs beyond the next token}$. Through simple probing, we demonstrate that LLM prompt representations encode global attributes of their entire responses, including $\textit{structural attributes}$ (response length, reasoning steps), $\textit{content attributes}$ (character choices in storywriting, multiple-choice answers at the end of response), and $\textit{behavioral attributes}$ (answer confidence, factual consistency). In addition to identifying response planning, we explore how it scales with model size across tasks and how it evolves during generation. The findings that LLMs plan ahead for the future in their hidden representations suggests potential applications for improving transparency and generation control.
📅 2025-02-10
Self-consistency decoding enhances LLMs' performance on reasoning tasks by sampling diverse reasoning paths and selecting the most frequent answer. However, it is computationally expensive, as sampling many of these (lengthy) paths is required to increase the chances that the correct answer emerges as the most frequent one. To address this, we introduce Confidence-Informed Self-Consistency (CISC). CISC performs a weighted majority vote based on confidence scores obtained directly from the model. By prioritizing high-confidence paths, it can identify the correct answer with a significantly smaller sample size. When tested on nine models and four datasets, CISC outperforms self-consistency in nearly all configurations, reducing the required number of reasoning paths by over 40% on average. In addition, we introduce the notion of within-question confidence evaluation, after showing that standard evaluation methods are poor predictors of success in distinguishing correct and incorrect answers to the same question. In fact, the most calibrated confidence method proved to be the least effective for CISC. Lastly, beyond these practical implications, our results and analyses show that LLMs can effectively judge the correctness of their own outputs, contributing to the ongoing debate on this topic.
📅 2025-02-10 | 💬 25 pages
Large Language Models (LLMs) are widely utilized in software engineering (SE) tasks, such as code generation and automated program repair. However, their reliance on extensive and often undisclosed pre-training datasets raises significant concerns about data leakage, where the evaluation benchmark data is unintentionally ``seen'' by LLMs during the model's construction phase. The data leakage issue could largely undermine the validity of LLM-based research and evaluations. Despite the increasing use of LLMs in the SE community, there is no comprehensive study that assesses the extent of data leakage in SE benchmarks for LLMs yet. To address this gap, this paper presents the first large-scale analysis of data leakage in 83 SE benchmarks concerning LLMs. Our results show that in general, data leakage in SE benchmarks is minimal, with average leakage ratios of only 4.8\%, 2.8\%, and 0.7\% for Python, Java, and C/C++ benchmarks, respectively. However, some benchmarks exhibit relatively higher leakage ratios, which raises concerns about their bias in evaluation. For instance, QuixBugs and BigCloneBench have leakage ratios of 100.0\% and 55.7\%, respectively. Furthermore, we observe that data leakage has a substantial impact on LLM evaluation. We also identify key causes of high data leakage, such as the direct inclusion of benchmark data in pre-training datasets and the use of coding platforms like LeetCode for benchmark construction. To address the data leakage, we introduce \textbf{LessLeak-Bench}, a new benchmark that removes leaked samples from the 83 SE benchmarks, enabling more reliable LLM evaluations in future research. Our study enhances the understanding of data leakage in SE benchmarks and provides valuable insights for future research involving LLMs in SE.
📅 2025-02-10 | 💬 16 pages
Large Language Models (LLMs) have been widely used to support ideation in the writing process. However, whether generating ideas with the help of LLMs leads to idea fixation or idea expansion is unclear. This study examines how different timings of LLM usage - either at the beginning or after independent ideation - affect people's perceptions and ideation outcomes in a writing task. In a controlled experiment with 60 participants, we found that using LLMs from the beginning reduced the number of original ideas and lowered creative self-efficacy and self-credit, mediated by changes in autonomy and ownership. We discuss the challenges and opportunities associated with using LLMs to assist in idea generation. We propose delaying the use of LLMs to support ideation while considering users' self-efficacy, autonomy, and ownership of the ideation outcomes.
📅 2025-02-10 | 💬 Accepted by ISSTA 2025
Recently, large language models (LLMs) have been deployed to tackle various software engineering (SE) tasks like code generation, significantly advancing the automation of SE tasks. However, assessing the quality of these LLM-generated code and text remains challenging. The commonly used Pass@k metric necessitates extensive unit tests and configured environments, demands a high labor cost, and is not suitable for evaluating LLM-generated text. Conventional metrics like BLEU, which measure only lexical rather than semantic similarity, have also come under scrutiny. In response, a new trend has emerged to employ LLMs for automated evaluation, known as LLM-as-a-judge. These LLM-as-a-judge methods are claimed to better mimic human assessment than conventional metrics without relying on high-quality reference answers. Nevertheless, their exact human alignment in SE tasks remains unexplored. In this paper, we empirically explore LLM-as-a-judge methods for evaluating SE tasks, focusing on their alignment with human judgments. We select seven LLM-as-a-judge methods that utilize general-purpose LLMs, alongside two LLMs specifically fine-tuned for evaluation. After generating and manually scoring LLM responses on three recent SE datasets of code translation, code generation, and code summarization, we then prompt these methods to evaluate each response. Finally, we compare the scores generated by these methods with human evaluation. The results indicate that output-based methods reach the highest Pearson correlation of 81.32 and 68.51 with human scores in code translation and generation, achieving near-human evaluation, noticeably outperforming ChrF++, one of the best conventional metrics, at 34.23 and 64.92. Such output-based methods prompt LLMs to output judgments directly, and exhibit more balanced score distributions that resemble human score patterns. Finally, we provide...
📅 2025-02-10
This position paper argues that in many realistic (i.e., complex, contextualized, subjective) scenarios, one LLM is not enough to produce a reliable output. We challenge the status quo of relying solely on a single general-purpose LLM and argue for multi-LLM collaboration to better represent the extensive diversity of data, skills, and people. We first posit that a single LLM underrepresents real-world data distributions, heterogeneous skills, and pluralistic populations, and that such representation gaps cannot be trivially patched by further training a single LLM. We then organize existing multi-LLM collaboration methods into a hierarchy, based on the level of access and information exchange, ranging from API-level, text-level, logit-level, to weight-level collaboration. Based on these methods, we highlight how multi-LLM collaboration addresses challenges that a single LLM struggles with, such as reliability, democratization, and pluralism. Finally, we identify the limitations of existing multi-LLM methods and motivate future work. We envision multi-LLM collaboration as an essential path toward compositional intelligence and collaborative AI development.
📅 2025-02-10 | 💬 Accepted to NAACL 2025 Main
While large language models (LLMs) excel in generating coherent and contextually rich outputs, their capacity to efficiently handle long-form contexts is limited by fixed-length position embeddings. Additionally, the computational cost of processing long sequences increases quadratically, making it challenging to extend context length. To address these challenges, we propose Long-form Context Injection with Recurrent Compression (LCIRC), a method that enables the efficient processing long-form sequences beyond the model's length limit through recurrent compression without retraining the entire model. We further introduce query dependent context modeling, which selectively compresses query-relevant information, ensuring that the model retains the most pertinent content. Our empirical results demonstrate that Query Dependent LCIRC (QD-LCIRC) significantly improves LLM's ability to manage extended contexts, making it well-suited for tasks that require both comprehensive context understanding and query relevance.
📅 2025-02-10
The increasing complexity of computer science research projects demands more effective tools for deploying code repositories. Large Language Models (LLMs), such as Anthropic Claude and Meta Llama, have demonstrated significant advancements across various fields of computer science research, including the automation of diverse software engineering tasks. To evaluate the effectiveness of LLMs in handling complex code development tasks of research projects, particularly for NLP/CV/AI/ML/DM topics, we introduce CSR-Bench, a benchmark for Computer Science Research projects. This benchmark assesses LLMs from various aspects including accuracy, efficiency, and deployment script quality, aiming to explore their potential in conducting computer science research autonomously. We also introduce a novel framework, CSR-Agents, that utilizes multiple LLM agents to automate the deployment of GitHub code repositories of computer science research projects. Specifically, by checking instructions from markdown files and interpreting repository structures, the model generates and iteratively improves bash commands that set up the experimental environments and deploy the code to conduct research tasks. Preliminary results from CSR-Bench indicate that LLM agents can significantly enhance the workflow of repository deployment, thereby boosting developer productivity and improving the management of developmental workflows.
📅 2025-02-10 | 💬 NAACL 2025 (Main): 17 pages, 8 figures, 10 tables
Large language models (LLMs) have shown promise in many natural language understanding tasks, including content moderation. However, these models can be expensive to query in real-time and do not allow for a community-specific approach to content moderation. To address these challenges, we explore the use of open-source small language models (SLMs) for community-specific content moderation tasks. We fine-tune and evaluate SLMs (less than 15B parameters) by comparing their performance against much larger open- and closed-sourced models in both a zero-shot and few-shot setting. Using 150K comments from 15 popular Reddit communities, we find that SLMs outperform zero-shot LLMs at content moderation -- 11.5% higher accuracy and 25.7% higher recall on average across all communities. Moreover, few-shot in-context learning leads to only a marginal increase in the performance of LLMs, still lacking compared to SLMs. We further show the promise of cross-community content moderation, which has implications for new communities and the development of cross-platform moderation techniques. Finally, we outline directions for future work on language model based content moderation. Code and models can be found at https://github.com/AGoyal0512/SLM-Mod.
📅 2025-02-10 | 💬 NAACL 2025; the dataset and experimental code are available at https://github.com/seokwon99/CCPT.git
Conceptual combination is a cognitive process that merges basic concepts, enabling the creation of complex expressions. During this process, the properties of combination (e.g., the whiteness of a peeled apple) can be inherited from basic concepts, newly emerge, or be canceled. However, previous studies have evaluated a limited set of properties and have not examined the generative process. To address this gap, we introduce the Conceptual Combination with Property Type dataset (CCPT), which consists of 12.3K annotated triplets of noun phrases, properties, and property types. Using CCPT, we establish three types of tasks to evaluate LLMs for conceptual combination thoroughly. Our key findings are threefold: (1) Our automatic metric grading property emergence and cancellation closely corresponds with human judgments. (2) LLMs, including OpenAI's o1, struggle to generate noun phrases which possess given emergent properties. (3) Our proposed method, inspired by cognitive psychology model that explains how relationships between concepts are formed, improves performances in all generative tasks. The dataset and experimental code are available at https://github.com/seokwon99/CCPT.git.
📅 2025-02-10
Data harmonization is an essential task that entails integrating datasets from diverse sources. Despite years of research in this area, it remains a time-consuming and challenging task due to schema mismatches, varying terminologies, and differences in data collection methodologies. This paper presents the case for agentic data harmonization as a means to both empower experts to harmonize their data and to streamline the process. We introduce Harmonia, a system that combines LLM-based reasoning, an interactive user interface, and a library of data harmonization primitives to automate the synthesis of data harmonization pipelines. We demonstrate Harmonia in a clinical data harmonization scenario, where it helps to interactively create reusable pipelines that map datasets to a standard format. Finally, we discuss challenges and open problems, and suggest research directions for advancing our vision.
📅 2025-02-10 | 💬 13 pages, 7 figures, 3 tables
The prototyping of computer games, particularly card games, requires extensive human effort in creative ideation and gameplay evaluation. Recent advances in Large Language Models (LLMs) offer opportunities to automate and streamline these processes. However, it remains challenging for LLMs to design novel game mechanics beyond existing databases, generate consistent gameplay environments, and develop scalable gameplay AI for large-scale evaluations. This paper addresses these challenges by introducing a comprehensive automated card game prototyping framework. The approach highlights a graph-based indexing method for generating novel game designs, an LLM-driven system for consistent game code generation validated by gameplay records, and a gameplay AI constructing method that uses an ensemble of LLM-generated action-value functions optimized through self-play. These contributions aim to accelerate card game prototyping, reduce human labor, and lower barriers to entry for game developers.
📅 2025-02-10
Large Language Model (LLM) inference, where a trained model generates text one word at a time in response to user prompts, is a computationally intensive process requiring efficient scheduling to optimize latency and resource utilization. A key challenge in LLM inference is the management of the Key-Value (KV) cache, which reduces redundant computations but introduces memory constraints. In this work, we model LLM inference with KV cache constraints theoretically and propose novel batching and scheduling algorithms that minimize inference latency while effectively managing the KV cache's memory. We analyze both semi-online and fully online scheduling models, and our results are threefold. First, we provide a polynomial-time algorithm that achieves exact optimality in terms of average latency in the semi-online prompt arrival model. Second, in the fully online case with a stochastic prompt arrival, we introduce an efficient online scheduling algorithm with constant regret. Third, we prove that no algorithm (deterministic or randomized) can achieve a constant competitive ratio in fully online adversarial settings. Our empirical evaluations on a public LLM inference dataset, using the Llama-70B model on A100 GPUs, show that our approach significantly outperforms benchmark algorithms used currently in practice, achieving lower latency while reducing energy consumption. Overall, our results offer a path toward more sustainable and cost-effective LLM deployment.
📅 2025-02-10 | 💬 32pages, 17 figures
Despite the success of Instruction Tuning (IT) in training large language models (LLMs) to perform arbitrary user-specified tasks, these models often still leverage spurious or biased features learned from their training data, leading to undesired behaviours when deploying them in new contexts. In this work, we introduce Focus Instruction Tuning (FIT), which trains LLMs to condition their responses by focusing on specific features whilst ignoring others, leading to different behaviours based on what features are specified. Across several experimental settings, we show that focus-tuned models can be adaptively steered by focusing on different features at inference-time: for instance, robustness can be improved by focusing on task-causal features and ignoring spurious features, and social bias can be mitigated by ignoring demographic categories. Furthermore, FIT can steer behaviour in new contexts, generalising under distribution shift and to new unseen features at inference time, and thereby facilitating more robust, fair, and controllable LLM applications in real-world environments.
📅 2025-02-10 | 💬 The first two authors contributed equally to this work
Recent advances in code-specific large language models (LLMs) have greatly enhanced code generation and refinement capabilities. However, the safety of code LLMs remains under-explored, posing potential risks as insecure code generated by these models may introduce vulnerabilities into real-world systems. Previous work proposes to collect security-focused instruction-tuning dataset from real-world vulnerabilities. It is constrained by the data sparsity of vulnerable code, and has limited applicability in the iterative post-training workflows of modern LLMs. In this paper, we propose ProSec, a novel proactive security alignment approach designed to align code LLMs with secure coding practices. ProSec systematically exposes the vulnerabilities in a code LLM by synthesizing error-inducing coding scenarios from Common Weakness Enumerations (CWEs), and generates fixes to vulnerable code snippets, allowing the model to learn secure practices through advanced preference learning objectives. The scenarios synthesized by ProSec triggers 25 times more vulnerable code than a normal instruction-tuning dataset, resulting in a security-focused alignment dataset 7 times larger than the previous work. Experiments show that models trained with ProSec are 25.2% to 91.4% more secure compared to previous work without degrading models' utility.
📅 2025-02-10
Attacks powered by Large Language Model (LLM) agents represent a growing threat to modern cybersecurity. To address this concern, we present LLM Honeypot, a system designed to monitor autonomous AI hacking agents. By augmenting a standard SSH honeypot with prompt injection and time-based analysis techniques, our framework aims to distinguish LLM agents among all attackers. Over a trial deployment of about three months in a public environment, we collected 8,130,731 hacking attempts and 8 potential AI agents. Our work demonstrates the emergence of AI-driven threats and their current level of usage, serving as an early warning of malicious LLM agents in the wild.
📅 2025-02-10 | 💬 Accepted by 2025 Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL), theme track
A language can have different varieties. These varieties can affect the performance of natural language processing (NLP) models, including large language models (LLMs), which are often trained on data from widely spoken varieties. This paper introduces a novel and cost-effective approach to benchmark model performance across language varieties. We argue that international online review platforms, such as Booking.com, can serve as effective data sources for constructing datasets that capture comments in different language varieties from similar real-world scenarios, like reviews for the same hotel with the same rating using the same language (e.g., Mandarin Chinese) but different language varieties (e.g., Taiwan Mandarin, Mainland Mandarin). To prove this concept, we constructed a contextually aligned dataset comprising reviews in Taiwan Mandarin and Mainland Mandarin and tested six LLMs in a sentiment analysis task. Our results show that LLMs consistently underperform in Taiwan Mandarin.