Skip to the content.

llm - 2025_02

Home / Papers / llm

Papers

📅 2025-02-06
With the development of large language models (LLMs), efficient inference through Key-Value (KV) cache compression has attracted considerable attention, especially for long-context generation. To compress the KV cache, recent methods identify critical KV tokens through heuristic ranking with attention scores. However, these methods often struggle to accurately determine critical tokens as they neglect the \textit{temporal patterns} in attention scores, resulting in a noticeable degradation in LLM performance. To address this challenge, we propose AttentionPredictor, which is the first learning-based critical token identification approach. Specifically, AttentionPredictor learns a lightweight convolution model to capture spatiotemporal patterns and predict the next-token attention score. An appealing feature of AttentionPredictor is that it accurately predicts the attention score while consuming negligible memory. Moreover, we propose a cross-token critical cache prefetching framework that hides the token estimation time overhead to accelerate the decoding stage. By retaining most of the attention information, AttentionPredictor achieves 16$\times$ KV cache compression with comparable LLM performance, significantly outperforming the state-of-the-art.
📅 2025-02-06 | 💬 19 pages, 9 figures
Large language models (LLMs) have demonstrated immense utility across various industries. However, as LLMs advance, the risk of harmful outputs increases due to incorrect or malicious instruction prompts. While current methods effectively address jailbreak risks, they share common limitations: 1) Judging harmful responses from the prefill-level lacks utilization of the model's decoding outputs, leading to relatively lower effectiveness and robustness. 2) Rejecting potentially harmful responses based on a single evaluation can significantly impair the model's helpfulness.This paper examines the LLMs' capability to recognize harmful outputs, revealing and quantifying their proficiency in assessing the danger of previous tokens. Motivated by pilot experiment results, we design a robust defense mechanism at the decoding level. Our novel decoder-oriented, step-by-step defense architecture corrects harmful queries directly rather than rejecting them outright. We introduce speculative decoding to enhance usability and facilitate deployment to boost secure decoding speed. Extensive experiments demonstrate that our approach improves model security without compromising reasoning speed. Notably, our method leverages the model's ability to discern hazardous information, maintaining its helpfulness compared to existing methods.
📅 2025-02-06 | 💬 NoDaLiDa 2025, EcoNLP Workshop
In this study, we evaluate methods to determine the frequency of species via quantity estimation from historical survey text. To that end, we formulate classification tasks and finally show that this problem can be adequately framed as a regression task using Best-Worst Scaling (BWS) with Large Language Models (LLMs). We test Ministral-8B, DeepSeek-V3, and GPT-4, finding that the latter two have reasonable agreement with humans and each other. We conclude that this approach is more cost-effective and similarly robust compared to a fine-grained multi-class approach, allowing automated quantity estimation across species.
📅 2025-02-06 | 💬 Accepted by International Conference on Software Engineering (ICSE) 2025
Vehicle API testing verifies whether the interactions between a vehicle's internal systems and external applications meet expectations, ensuring that users can access and control various vehicle functions and data. However, this task is inherently complex, requiring the alignment and coordination of API systems, communication protocols, and even vehicle simulation systems to develop valid test cases. In practical industrial scenarios, inconsistencies, ambiguities, and interdependencies across various documents and system specifications pose significant challenges. This paper presents a system designed for the automated testing of in-vehicle APIs. By clearly defining and segmenting the testing process, we enable Large Language Models (LLMs) to focus on specific tasks, ensuring a stable and controlled testing workflow. Experiments conducted on over 100 APIs demonstrate that our system effectively automates vehicle API testing. The results also confirm that LLMs can efficiently handle mundane tasks requiring human judgment, making them suitable for complete automation in similar industrial contexts.
📅 2025-02-06 | 💬 Accepted by WWW 2025
Large language models (LLMs) have attracted significant attention in recommendation systems. Current work primarily applies supervised fine-tuning (SFT) to adapt the model for recommendation tasks. However, SFT on positive examples only limits the model's ability to align with user preference. To address this, researchers recently introduced Direct Preference Optimization (DPO), which explicitly aligns LLMs with user preferences using offline preference ranking data. However, we found that DPO inherently biases the model towards a few items, exacerbating the filter bubble issue and ultimately degrading user experience. In this paper, we propose SPRec, a novel self-play framework designed to mitigate over-recommendation and improve fairness without requiring additional data or manual intervention. In each self-play iteration, the model undergoes an SFT step followed by a DPO step, treating offline interaction data as positive samples and the predicted outputs from the previous iteration as negative samples. This effectively re-weights the DPO loss function using the model's logits, adaptively suppressing biased items. Extensive experiments on multiple real-world datasets demonstrate SPRec's effectiveness in enhancing recommendation accuracy and fairness. The implementation is available via https://github.com/RegionCh/SPRec
📅 2025-02-06 | 💬 Under review
Massive activations, which manifest in specific feature dimensions of hidden states, introduce a significant bias in large language models (LLMs), leading to an overemphasis on the corresponding token. In this paper, we identify that massive activations originate not from the hidden state but from the intermediate state of a feed-forward network module in an early layer. Expanding on the previous observation that massive activations occur only in specific feature dimensions, we dive deep into the weights that cause massive activations. Specifically, we define top-$k$ massive weights as the weights that contribute to the dimensions with the top-$k$ magnitudes in the intermediate state. When these massive weights are set to zero, the functionality of LLMs is entirely disrupted. However, when all weights except for massive weights are set to zero, it results in a relatively minor performance drop, even though a much larger number of weights are set to zero. This implies that during the pre-training process, learning is dominantly focused on massive weights. Building on this observation, we propose a simple plug-and-play method called MacDrop (massive weights curriculum dropout), to rely less on massive weights during parameter-efficient fine-tuning. This method applies dropout to the pre-trained massive weights, starting with a high dropout probability and gradually decreasing it as fine-tuning progresses. Through various experiments, including zero-shot downstream tasks, long-context tasks, and ablation studies, we demonstrate that \texttt{MacDrop} generally improves performance and strengthens robustness.
📅 2025-02-06
Relevance modeling between queries and items stands as a pivotal component in commercial search engines, directly affecting the user experience. Given the remarkable achievements of large language models (LLMs) in various natural language processing (NLP) tasks, LLM-based relevance modeling is gradually being adopted within industrial search systems. Nevertheless, foundational LLMs lack domain-specific knowledge and do not fully exploit the potential of in-context learning. Furthermore, structured item text remains underutilized, and there is a shortage in the supply of corresponding queries and background knowledge. We thereby propose CPRM (Continual Pre-training for Relevance Modeling), a framework designed for the continual pre-training of LLMs to address these issues. Our CPRM framework includes three modules: 1) employing both queries and multi-field item to jointly pre-train for enhancing domain knowledge, 2) applying in-context pre-training, a novel approach where LLMs are pre-trained on a sequence of related queries or items, and 3) conducting reading comprehension on items to produce associated domain knowledge and background information (e.g., generating summaries and corresponding queries) to further strengthen LLMs. Results on offline experiments and online A/B testing demonstrate that our model achieves convincing performance compared to strong baselines.
📅 2025-02-06 | 💬 8 pages, 4 figures
Despite living in the era of the internet, phone-based scams remain one of the most prevalent forms of scams. These scams aim to exploit victims for financial gain, causing both monetary losses and psychological distress. While governments, industries, and academia have actively introduced various countermeasures, scammers also continue to evolve their tactics, making phone scams a persistent threat. To combat these increasingly sophisticated scams, detection technologies must also advance. In this work, we propose a framework for modeling scam calls and introduce an LLM-based real-time detection approach, which assesses fraudulent intent in conversations, further providing immediate warnings to users to mitigate harm. Through experiments, we evaluate the method's performance and analyze key factors influencing its effectiveness. This analysis enables us to refine the method to improve precision while exploring the trade-off between recall and timeliness, paving the way for future directions in this critical area of research.
📅 2025-02-06 | 💬 NAACL 2025 Main (Long)
Generating high-quality charts with Large Language Models (LLMs) presents significant challenges due to limited data and the high cost of scaling through human curation. $\langle \text{instruction}, \text{data}, \text{code} \rangle$ triplets are scarce and expensive to manually curate as their creation demands technical expertise. To address this scalability challenge, we introduce a reference-free automatic feedback generator, which eliminates the need for costly human intervention. Our novel framework, C$^2$, consists of (1) an automatic feedback provider (ChartAF) and (2) a diverse, reference-free dataset (ChartUIE-8K). The results are compelling: in our first experiment, 74% of respondents strongly preferred, and 10% preferred, the results after feedback. The second post-feedback experiment demonstrates that ChartAF outperform nine baselines. Moreover, ChartUIE-8K significantly improves data diversity by increasing queries, datasets, and chart types by 5982%, 1936%, and 91%, respectively, over benchmarks. Finally, a study of LLM users revealed that 94% of participants preferred ChartUIE-8K's queries, with 93% deeming them aligned with real-world use cases. Core contributions are available as open-source at chartsquared.github.io, with ample qualitative examples.
📅 2025-02-06
Scaling Large Language Model (LLM) training relies on multi-dimensional parallelism, where High-Bandwidth Domains (HBDs) are critical for communication-intensive parallelism like Tensor Parallelism (TP) and Expert Parallelism (EP). However, existing HBD architectures face fundamental limitations in scalability, cost, and fault resiliency: switch-centric HBDs (e.g., NVL-72) incur prohibitive scaling costs, while GPU-centric HBDs (e.g., TPUv3/Dojo) suffer from severe fault propagation. Switch-GPU hybrid HBDs such as TPUv4 takes a middle-ground approach by leveraging Optical Circuit Switches, but the fault explosion radius remains large at the cube level (e.g., 64 TPUs). We propose InfinitePOD, a novel transceiver-centric HBD architecture that unifies connectivity and dynamic switching at the transceiver level using Optical Circuit Switching (OCS). By embedding OCS within each transceiver, InfinitePOD achieves reconfigurable point-to-multipoint connectivity, allowing the topology to adapt into variable-size rings. This design provides: i) datacenter-wide scalability without cost explosion; ii) fault resilience by isolating failures to a single node, and iii) full bandwidth utilization for fault-free GPUs. Key innovations include a Silicon Photonic (SiPh) based low-cost OCS transceiver (OCSTrx), a reconfigurable k-hop ring topology co-designed with intra-/inter-node communication, and an HBD-DCN orchestration algorithm maximizing GPU utilization while minimizing cross-ToR datacenter network traffic. The evaluation demonstrates that InfinitePOD achieves 31% of the cost of NVL-72, near-zero GPU waste ratio (over one order of magnitude lower than NVL-72 and TPUv4), near-zero cross-ToR traffic when node fault ratios under 7%, and improves Model FLOPs Utilization by 3.37x compared to NVIDIA DGX (8 GPUs per Node).
📅 2025-02-06
Large language models (LLMs) have demonstrated remarkable success across various tasks, accompanied by a continuous increase in their parameter size. Parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), address the challenges of fine-tuning LLMs by significantly reducing the number of trainable parameters. Recent studies have integrated LoRA with Mixture of Experts (MoE) architectures, leveraging multiple adapter experts and gating mechanisms to further improve fine-tuning performance. However, existing approaches primarily focus on adjusting the allocations of adapter experts per layer to optimize the introduced trainable parameter size, while neglecting a critical factor of adapters' rank. To this end, we propose a hierarchical scheme for expert allocation and rank configuration, HILO, which dynamically adjusts the number and rank of adapter experts across layers, matching the varying representational complexity of model layers in adapter-granularity. Extensive experiments on multiple benchmark tasks demonstrate that HILO outperforms existing methods in accuracy while introducing fewer trainable parameters, providing an efficient and practical solution for fine-tuning LLMs.
📅 2025-02-06 | 💬 Accepted by AAAI 2025
High-quality, large-scale instructions are crucial for aligning large language models (LLMs), however, there is a severe shortage of instruction in the field of natural language understanding (NLU). Previous works on constructing NLU instructions mainly focus on information extraction (IE), neglecting tasks such as machine reading comprehension, question answering, and text classification. Furthermore, the lack of diversity in the data has led to a decreased generalization ability of trained LLMs in other NLU tasks and a noticeable decline in the fundamental model's general capabilities. To address this issue, we propose Hum, a large-scale, high-quality synthetic instruction corpus for NLU tasks, designed to enhance the NLU capabilities of LLMs. Specifically, Hum includes IE (either close IE or open IE), machine reading comprehension, text classification, and instruction generalist tasks, thereby enriching task diversity. Additionally, we introduce a human-LLMs collaborative mechanism to synthesize instructions, which enriches instruction diversity by incorporating guidelines, preference rules, and format variants. We conduct extensive experiments on 5 NLU tasks and 28 general capability evaluation datasets for LLMs. Experimental results show that Hum enhances the NLU capabilities of six LLMs by an average of 3.1\%, with no significant decline observed in other general capabilities.
📅 2025-02-06 | 💬 the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL), Findings, Accepted
LLMs have boosted progress in many AI applications. Recently, there were attempts to distill the vast knowledge of LLMs into information retrieval systems. Those distillation methods mostly use output probabilities of LLMs which are unavailable in the latest black-box LLMs. We propose Syntriever, a training framework for retrievers using synthetic data from black-box LLMs. Syntriever consists of two stages. Firstly in the distillation stage, we synthesize relevant and plausibly irrelevant passages and augmented queries using chain-of-thoughts for the given queries. LLM is asked to self-verify the synthetic data for possible hallucinations, after which retrievers are trained with a loss designed to cluster the embeddings of relevant passages. Secondly in the alignment stage, we align the retriever with the preferences of LLMs. We propose a preference modeling called partial Plackett-Luce ranking to learn LLM preferences with regularization which prevents the model from deviating excessively from that trained in the distillation stage. Experiments show that Syntriever achieves state-of-the-art performances on benchmark datasets from various domains in nDCG@$K$. The code is available at \href{https://github.com/kmswin1/Syntriever}{https://github.com/kmswin1/Syntriever}.
📅 2025-02-06 | 💬 Accepted to NAACL 2025
Self-training approach for large language models (LLMs) improves reasoning abilities by training the models on their self-generated rationales. Previous approaches have labeled rationales that produce correct answers for a given question as appropriate for training. However, a single measure risks misjudging rationale quality, leading the models to learn flawed reasoning patterns. To address this issue, we propose CREST (Consistency-driven Rationale Evaluation for Self-Training), a self-training framework that further evaluates each rationale through follow-up questions and leverages this evaluation to guide its training. Specifically, we introduce two methods: (1) filtering out rationales that frequently result in incorrect answers on follow-up questions and (2) preference learning based on mixed preferences from rationale evaluation results of both original and follow-up questions. Experiments on three question-answering datasets using open LLMs show that CREST not only improves the logical robustness and correctness of rationales but also improves reasoning abilities compared to previous self-training approaches.
📅 2025-02-06
Synthetic data has become a pivotal resource in post-training tasks for large language models (LLMs) due to the scarcity of high-quality, specific data. While various methods have been developed to generate synthetic data, there remains a discernible gap between the practical effects of synthetic data and our theoretical comprehension. To address this challenge, we commence by presenting a detailed modeling of the prevalent synthetic data generation process. Building upon this modeling, we demonstrate that the generalization capability of the post-trained model is critically determined by the information gain derived from the generative model, as analyzed from a novel reverse-bottleneck perspective. Moreover, we introduce the concept of Generalization Gain via Mutual Information (GGMI) and elucidate the relationship between generalization gain and information gain. This analysis serves as a theoretical foundation for synthetic data generation and further highlights its connection with the generalization capability of post-trained models, offering an understanding about the design of synthetic data generation techniques and the optimization of the post-training process. We open-source our code at https://github.com/ZyGan1999/Towards-a-Theoretical-Understanding-of-Synthetic-Data-in-LLM-Post-Training.
📅 2025-02-06 | 💬 Social Media, Large Language Models, LLM-generated Text Detection, AI-assisted News Detection; Accepted by WWW2025
The rapid development of large language models (LLMs), like ChatGPT, has resulted in the widespread presence of LLM-generated content on social media platforms, raising concerns about misinformation, data biases, and privacy violations, which can undermine trust in online discourse. While detecting LLM-generated content is crucial for mitigating these risks, current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration. To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content. This approach introduces two novel tasks: LLM Role Recognition (LLM-RR), a multi-class classification task that identifies specific roles of LLM in content generation, and LLM Influence Measurement (LLM-IM), a regression task that quantifies the extent of LLM involvement in content creation. To support these tasks, we propose LLMDetect, a benchmark designed to evaluate detectors' performance on these new tasks. LLMDetect includes the Hybrid News Detection Corpus (HNDC) for training detectors, as well as DetectEval, a comprehensive evaluation suite that considers five distinct cross-context variations and two multi-intensity variations within the same LLM role. This allows for a thorough assessment of detectors' generalization and robustness across diverse contexts. Our empirical validation of 10 baseline detection methods demonstrates that fine-tuned PLM-based models consistently outperform others on both tasks, while advanced LLMs face challenges in accurately detecting their own generated content. Our experimental results and analysis offer insights for developing more effective detection models for LLM-generated content. This research enhances the understanding of LLM-generated content and establishes a foundation for more nuanced detection methodologies.
📅 2025-02-06 | 💬 32 pages, 16 figures
Large Language Models (LLMs) demonstrate promising capabilities in solving simple scientific problems but, even with domain-specific fine-tuning, often produce hallucinations for complex ones. While integrating LLMs with tools can mitigate this reliability issue, models finetuned on tool usage only often over-rely on them, incurring unnecessary costs from resource-intensive scientific tools even for simpler problems. Inspired by how human experts assess the complexity of the problem before choosing the solutions, we propose a novel two-component fine-tuning method, Adapting While Learning (AWL). In the first component, World Knowledge Learning (WKL), LLMs internalize scientific knowledge by learning from tools-generated solutions. In the second component, Tool Usage Adaptation (TUA), we classify questions as easy or hard based on the WKL-trained model's accuracy, and train it to maintain direct reasoning for simple problems while switching to tools for challenging ones. We validate our method on 6 scientific benchmark datasets in climate science, epidemiology, and mathematics. Compared to the base 8B model, our trained models achieve 28.27% higher answer accuracy and 13.76% better tool usage accuracy, even surpassing state-of-the-art models including GPT-4 and Claude-3.5 on 4 custom-created datasets.
📅 2025-02-06
The introduction of 8-bit floating-point (FP8) computation units in modern AI accelerators has generated significant interest in FP8-based large language model (LLM) inference. Unlike 16-bit floating-point formats, FP8 in deep learning requires a shared scaling factor. Additionally, while E4M3 and E5M2 are well-defined at the individual value level, their scaling and accumulation methods remain unspecified and vary across hardware and software implementations. As a result, FP8 behaves more like a quantization format than a standard numeric representation. In this work, we provide the first comprehensive analysis of FP8 computation and acceleration on two AI accelerators: the NVIDIA H100 and Intel Gaudi 2. Our findings highlight that the Gaudi 2, by leveraging FP8, achieves higher throughput-to-power efficiency during LLM inference, offering valuable insights into the practical implications of FP8 adoption for datacenter-scale LLM serving.
📅 2025-02-06 | 💬 11 pages, 6 figures
Credit assignment, the process of attributing credit or blame to individual agents for their contributions to a team's success or failure, remains a fundamental challenge in multi-agent reinforcement learning (MARL), particularly in environments with sparse rewards. Commonly-used approaches such as value decomposition often lead to suboptimal policies in these settings, and designing dense reward functions that align with human intuition can be complex and labor-intensive. In this work, we propose a novel framework where a large language model (LLM) generates dense, agent-specific rewards based on a natural language description of the task and the overall team goal. By learning a potential-based reward function over multiple queries, our method reduces the impact of ranking errors while allowing the LLM to evaluate each agent's contribution to the overall task. Through extensive experiments, we demonstrate that our approach achieves faster convergence and higher policy returns compared to state-of-the-art MARL baselines.
📅 2025-02-06
A trained Large Language Model (LLM) contains much of human knowledge. Yet, it is difficult to gauge the extent or accuracy of that knowledge, as LLMs do not always ``know what they know'' and may even be actively misleading. In this work, we give a general method for detecting semantic concepts in the internal activations of LLMs. Furthermore, we show that our methodology can be easily adapted to steer LLMs toward desirable outputs. Our innovations are the following: (1) we use a nonlinear feature learning method to identify important linear directions for predicting concepts from each layer; (2) we aggregate features across layers to build powerful concept detectors and steering mechanisms. We showcase the power of our approach by attaining state-of-the-art results for detecting hallucinations, harmfulness, toxicity, and untruthful content on seven benchmarks. We highlight the generality of our approach by steering LLMs towards new concepts that, to the best of our knowledge, have not been previously considered in the literature, including: semantic disambiguation, human languages, programming languages, hallucinated responses, science subjects, poetic/Shakespearean English, and even multiple concepts simultaneously. Moreover, our method can steer concepts with numerical attributes such as product reviews. We provide our code (including a simple API for our methods) at https://github.com/dmbeaglehole/neural_controllers .
📅 2025-02-06 | 💬 26 pages
Large Language Models (LLMs) have revolutionized artificial intelligence with capabilities in reasoning, coding, and communication, driving innovation across industries. Their true potential depends on effective alignment to ensure correct, trustworthy and ethical behavior, addressing challenges like misinformation, hallucinations, bias and misuse. While existing Reinforcement Learning (RL)-based alignment methods are notoriously complex, direct optimization approaches offer a simpler alternative. In this work, we introduce a novel direct optimization approach for LLM alignment by drawing on established Information Retrieval (IR) principles. We present a systematic framework that bridges LLM alignment and IR methodologies, mapping LLM generation and reward models to IR's retriever-reranker paradigm. Building on this foundation, we propose LLM Alignment as Retriever Preference Optimization (LarPO), a new alignment method that enhances overall alignment quality. Extensive experiments validate LarPO's effectiveness with 38.9 % and 13.7 % averaged improvement on AlpacaEval2 and MixEval-Hard respectively. Our work opens new avenues for advancing LLM alignment by integrating IR foundations, offering a promising direction for future research.
📅 2025-02-06 | 💬 21 pages, 5 figures, 6 tables
Recently, DeepSeek has been the focus of attention in and beyond the AI community. An interesting problem is how DeepSeek compares to other large language models (LLMs). There are many tasks an LLM can do, and in this paper, we use the task of predicting an outcome using a short text for comparison. We consider two settings, an authorship classification setting and a citation classification setting. In the first one, the goal is to determine whether a short text is written by human or AI. In the second one, the goal is to classify a citation to one of four types using the textual content. For each experiment, we compare DeepSeek with $4$ popular LLMs: Claude, Gemini, GPT, and Llama. We find that, in terms of classification accuracy, DeepSeek outperforms Gemini, GPT, and Llama in most cases, but underperforms Claude. We also find that DeepSeek is comparably slower than others but with a low cost to use, while Claude is much more expensive than all the others. Finally, we find that in terms of similarity, the output of DeepSeek is most similar to those of Gemini and Claude (and among all $5$ LLMs, Claude and Gemini have the most similar outputs). In this paper, we also present a fully-labeled dataset collected by ourselves, and propose a recipe where we can use the LLMs and a recent data set, MADStat, to generate new data sets. The datasets in our paper can be used as benchmarks for future study on LLMs.
📅 2025-02-06
Chain-of-Thought (CoT) prompting enhances mathematical reasoning in large language models (LLMs) by enabling detailed step-by-step solutions. However, due to the verbosity of LLMs, the resulting reasoning chains can be long, making it harder to verify the reasoning steps and trace issues resulting from dependencies between the steps that may be farther away in the sequence of steps. Importantly, mathematical reasoning allows each step to be derived from a small set of premises, which are a subset of the preceding steps in the reasoning chain. In this paper, we present a framework that identifies the premises for each step, to improve the evaluation of reasoning. We restructure conventional linear reasoning chains into Premise Augmented Reasoning Chains (PARC) by introducing premise links, resulting in a directed acyclic graph where the nodes are the steps and the edges are the premise links. Through experiments with a PARC-based dataset that we built, namely PERL (Premises and ERrors identification in LLMs), we demonstrate that LLMs can reliably identify premises within complex reasoning chains. In particular, even open-source LLMs achieve 90% recall in premise identification. We also show that PARC helps to identify errors in reasoning chains more reliably. The accuracy of error identification improves by 6% to 16% absolute when step-by-step verification is carried out in PARC under the premises. Our findings highlight the utility of premise-centric representations in addressing complex problem-solving tasks and open new avenues for improving the reliability of LLM-based reasoning evaluations.
📅 2025-02-06 | 💬 v6: add new citations; 36 pages, 5 figures
Assessment and evaluation have long been critical challenges in artificial intelligence (AI) and natural language processing (NLP). However, traditional methods, whether matching-based or embedding-based, often fall short of judging subtle attributes and delivering satisfactory results. Recent advancements in Large Language Models (LLMs) inspire the "LLM-as-a-judge" paradigm, where LLMs are leveraged to perform scoring, ranking, or selection across various tasks and applications. This paper provides a comprehensive survey of LLM-based judgment and assessment, offering an in-depth overview to advance this emerging field. We begin by giving detailed definitions from both input and output perspectives. Then we introduce a comprehensive taxonomy to explore LLM-as-a-judge from three dimensions: what to judge, how to judge and where to judge. Finally, we compile benchmarks for evaluating LLM-as-a-judge and highlight key challenges and promising directions, aiming to provide valuable insights and inspire future research in this promising research area. Paper list and more resources about LLM-as-a-judge can be found at https://github.com/llm-as-a-judge/Awesome-LLM-as-a-judge and https://llm-as-a-judge.github.io.
📅 2025-02-06
Controlled text generation allows for enforcing user-defined constraints on large language model outputs, an increasingly important field as LLMs become more prevalent in everyday life. One common approach uses energy-based decoding, which defines a target distribution through an energy function that combines multiple constraints into a weighted average. However, these methods often struggle to balance fluency with constraint satisfaction, even with extensive tuning of the energy function's coefficients. In this paper, we identify that this suboptimal balance arises from sampling in continuous space rather than the natural discrete space of text tokens. To address this, we propose Discrete Auto-regressive Biasing, a controlled decoding algorithm that leverages gradients while operating entirely in the discrete text domain. Specifically, we introduce a new formulation for controlled text generation by defining a joint distribution over the generated sequence and an auxiliary bias sequence. To efficiently sample from this joint distribution, we propose a Langevin-within-Gibbs sampling algorithm using gradient-based discrete MCMC. Our method significantly improves constraint satisfaction while maintaining comparable or better fluency, all with even lower computational costs. We demonstrate the advantages of our controlled decoding method on sentiment control, language detoxification, and keyword-guided generation.
📅 2025-02-06 | 💬 Accepted to NAACL 2025
We examine the representation of African American English (AAE) in large language models (LLMs), exploring (a) the perceptions Black Americans have of how effective these technologies are at producing authentic AAE, and (b) in what contexts Black Americans find this desirable. Through both a survey of Black Americans ($n=$ 104) and annotation of LLM-produced AAE by Black Americans ($n=$ 228), we find that Black Americans favor choice and autonomy in determining when AAE is appropriate in LLM output. They tend to prefer that LLMs default to communicating in Mainstream U.S. English in formal settings, with greater interest in AAE production in less formal settings. When LLMs were appropriately prompted and provided in context examples, our participants found their outputs to have a level of AAE authenticity on par with transcripts of Black American speech. Select code and data for our project can be found here: https://github.com/smelliecat/AAEMime.git
📅 2025-02-06
Emerging AI accelerators increasingly adopt wafer-scale manufacturing technologies, integrating hundreds of thousands of AI cores in a mesh-based architecture with large distributed on-chip memory (tens of GB in total) and ultra-high on-chip memory bandwidth (tens of PB/s). However, current LLM inference systems, optimized for shared memory architectures like GPUs, fail to fully exploit these accelerators. We introduce WaferLLM, the first wafer-scale LLM inference system. WaferLLM is guided by a novel PLMR device model that captures the unique hardware characteristics of wafer-scale architectures. Leveraging this model, WaferLLM pioneers wafer-scale LLM parallelism, optimizing the utilization of hundreds of thousands of on-chip cores. It also introduces MeshGEMM and MeshGEMV, the first GEMM and GEMV implementations designed to scale effectively on wafer-scale accelerators. Evaluations show that WaferLLM achieves 200$\times$ better wafer-scale accelerator utilization than state-of-the-art systems. On a commodity wafer-scale accelerator, WaferLLM delivers 606$\times$ faster and 22$\times$ more energy-efficient GEMV compared to an advanced GPU. For LLMs, WaferLLM enables 39$\times$ faster decoding with 1.7$\times$ better energy efficiency. We anticipate these numbers will grow significantly as wafer-scale AI models, software, and hardware continue to mature.
📅 2025-02-06
Large language models (LLMs) are known to struggle with consistently generating truthful responses. While various representation intervention techniques have been proposed, these methods typically apply a universal representation correction vector to all input queries, limiting their effectiveness against diverse queries in practice. In this study, we introduce TruthFlow, a novel method that leverages the Flow Matching technique for query-specific truthful representation correction. Specifically, TruthFlow first uses a flow model to learn query-specific correction vectors that transition representations from hallucinated to truthful states. Then, during inference, the trained flow model generates these correction vectors to enhance the truthfulness of LLM outputs. Experimental results demonstrate that TruthFlow significantly improves performance on open-ended generation tasks across various advanced LLMs evaluated on TruthfulQA. Moreover, the trained TruthFlow model exhibits strong transferability, performing effectively on other unseen hallucination benchmarks.
📅 2025-02-06 | 💬 NAACL 2025
Interestingly, LLMs yet struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the word "strawberry". There are several popular conjectures (e.g., tokenization, architecture and training data) regarding the reason for deficiency of LLMs in simple word-based counting problems, sharing the similar belief that such failure stems from model pretraining hence probably inevitable during deployment. In this paper, we carefully design multiple evaluation settings to investigate validity of prevalent conjectures. Meanwhile, we measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks. Although specialized LLMs suffer from counting problems as well, we find conjectures about inherent deficiency of LLMs invalid and further seek opportunities to elicit knowledge and capabilities from LLMs that are beneficial to counting tasks. Compared with strategies such as finetuning and in-context learning that are commonly adopted to enhance performance on new or challenging tasks, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks with more accurate responses. We hope our conjecture validation design could provide insights into the study of future critical failure modes of LLMs. Based on challenges in transferring advanced capabilities to much simpler tasks, we call for more attention to model capability acquisition and evaluation. We also highlight the importance of cultivating consciousness of "reasoning before responding" during model pretraining.
📅 2025-02-06
Large Language Models (LLMs) have shown remarkable capabilities across various natural language processing tasks but often struggle to excel uniformly in diverse or complex domains. We propose a novel ensemble method - Diverse Fingerprint Ensemble (DFPE), which leverages the complementary strengths of multiple LLMs to achieve more robust performance. Our approach involves: (1) clustering models based on response "fingerprints" patterns, (2) applying a quantile-based filtering mechanism to remove underperforming models at a per-subject level, and (3) assigning adaptive weights to remaining models based on their subject-wise validation accuracy. In experiments on the Massive Multitask Language Understanding (MMLU) benchmark, DFPE outperforms the best single model by 3% overall accuracy and 5% in discipline-level accuracy. This method increases the robustness and generalization of LLMs and underscores how model selection, diversity preservation, and performance-driven weighting can effectively address challenging, multi-faceted language understanding tasks.
📅 2025-02-06
We propose Heterogeneous Swarms, an algorithm to design multi-LLM systems by jointly optimizing model roles and weights. We represent multi-LLM systems as directed acyclic graphs (DAGs) of LLMs with topological message passing for collaborative generation. Given a pool of LLM experts and a utility function, Heterogeneous Swarms employs two iterative steps: role-step and weight-step. For role-step, we interpret model roles as learning a DAG that specifies the flow of inputs and outputs between LLMs. Starting from a swarm of random continuous adjacency matrices, we decode them into discrete DAGs, call the LLMs in topological order, evaluate on the utility function (e.g. accuracy on a task), and optimize the adjacency matrices with particle swarm optimization based on the utility score. For weight-step, we assess the contribution of individual LLMs in the multi-LLM systems and optimize model weights with swarm intelligence. We propose JFK-score to quantify the individual contribution of each LLM in the best-found DAG of the role-step, then optimize model weights with particle swarm optimization based on the JFK-score. Experiments demonstrate that Heterogeneous Swarms outperforms 15 role- and/or weight-based baselines by 18.5% on average across 12 tasks. Further analysis reveals that Heterogeneous Swarms discovers multi-LLM systems with heterogeneous model roles and substantial collaborative gains, and benefits from the diversity of language models.
📅 2025-02-06
This position paper argues that in many realistic (i.e., complex, contextualized, subjective) scenarios, one LLM is not enough to produce a reliable output. We challenge the status quo of relying solely on a single general-purpose LLM and argue for multi-LLM collaboration to better represent the extensive diversity of data, skills, and people. We first posit that a single LLM underrepresents real-world data distributions, heterogeneous skills, and pluralistic populations, and that such representation gaps cannot be trivially patched by further training a single LLM. We then organize existing multi-LLM collaboration methods into a hierarchy, based on the level of access and information exchange, ranging from API-level, text-level, logit-level, to weight-level collaboration. Based on these methods, we highlight how multi-LLM collaboration addresses challenges that a single LLM struggles with, such as reliability, democratization, and pluralism. Finally, we identify the limitations of existing multi-LLM methods and motivate future work. We envision multi-LLM collaboration as an essential path toward compositional intelligence and collaborative AI development.
📅 2025-02-06
Autoregressive (AR) Large Language Models (LLMs) have demonstrated significant success across numerous tasks. However, the AR modeling paradigm presents certain limitations; for instance, contemporary autoregressive LLMs are trained to generate one token at a time, which can result in noticeable latency. Recent advances have indicated that search and repeated sampling can enhance performance in various applications, such as theorem proving, code generation, and alignment, by utilizing greater computational resources during inference. In this study, we demonstrate that diffusion language models are capable of generating at least 32 tokens simultaneously, while exceeding the performance of AR models in text quality and on the LAMBADA natural language understanding benchmark. This outcome is achieved through a novel distillation method for discrete diffusion models, which reduces the number of inference steps by a factor of 32-64. Practically, at the 1.3B parameters scale, diffusion models, even without caching, can generate tokens at a rate that is up to 8 times faster than AR models employing KV-caching, and we anticipate further improvements with the inclusion of caching. Moreover, we demonstrate the efficacy of our approach for diffusion language models with up to 860M parameters.
📅 2025-02-06
Despite the impressive performance of large language models (LLMs) across various benchmarks, their ability to address ambiguously specified problems--frequent in real-world interactions--remains underexplored. To address this gap, we introduce a formal definition of task ambiguity and frame the problem of task disambiguation through the lens of Bayesian Experimental Design. By posing clarifying questions, LLM agents can acquire additional task specifications, progressively narrowing the space of viable solutions and reducing the risk of generating unsatisfactory outputs. Yet, generating effective clarifying questions requires LLM agents to engage in a form of meta-cognitive reasoning, an ability LLMs may presently lack. Our proposed approach of active task disambiguation enables LLM agents to generate targeted questions maximizing the information gain. Effectively, this approach shifts the load from implicit to explicit reasoning about the space of viable solutions. Empirical results demonstrate that this form of question selection leads to more effective task disambiguation in comparison to approaches relying on reasoning solely within the space of questions.
📅 2025-02-06
Large language models (LLMs) are increasingly deployed and democratized on edge devices. To improve the efficiency of on-device deployment, small language models (SLMs) are often adopted due to their efficient decoding latency and reduced energy consumption. However, these SLMs often generate inaccurate responses when handling complex queries. One promising solution is uncertainty-based SLM routing, offloading high-stakes queries to stronger LLMs when resulting in low-confidence responses on SLM. This follows the principle of "If you lack confidence, seek stronger support" to enhance reliability. Relying on more powerful LLMs is yet effective but increases invocation costs. Therefore, striking a routing balance between efficiency and efficacy remains a critical challenge. Additionally, efficiently generalizing the routing strategy to new datasets remains under-explored. In this paper, we conduct a comprehensive investigation into benchmarking and generalization of uncertainty-driven routing strategies from SLMs to LLMs over 1500+ settings. Our findings highlight: First, uncertainty-correctness alignment in different uncertainty quantification (UQ) methods significantly impacts routing performance. Second, uncertainty distributions depend more on both the specific SLM and the chosen UQ method, rather than downstream data. Building on the insight, we propose a calibration data construction instruction pipeline and open-source a constructed hold-out set to enhance routing generalization on new downstream scenarios. The experimental results indicate calibration data effectively bootstraps routing performance without any new data.
📅 2025-02-05 | 💬 8 pages
Despite the fact that large language models (LLMs) show exceptional skill in instruction following tasks, this strength can turn into a vulnerability when the models are required to disregard certain instructions. Instruction-following tasks typically involve a clear task description and input text containing the target data to be processed. However, when the input itself resembles an instruction, confusion may arise, even if there is explicit prompting to distinguish between the task instruction and the input. We refer to this phenomenon as instructional distraction. In this paper, we introduce a novel benchmark, named DIM-Bench, specifically designed to assess LLMs' performance under instructional distraction. The benchmark categorizes real-world instances of instructional distraction and evaluates LLMs across four instruction tasks: rewriting, proofreading, translation, and style transfer -- alongside five input tasks: reasoning, code generation, mathematical reasoning, bias detection, and question answering. Our experimental results reveal that even the most advanced LLMs are susceptible to instructional distraction, often failing to accurately follow user intent in such cases.
📅 2025-02-05
Jailbreak attacks exploit specific prompts to bypass LLM safeguards, causing the LLM to generate harmful, inappropriate, and misaligned content. Current jailbreaking methods rely heavily on carefully designed system prompts and numerous queries to achieve a single successful attack, which is costly and impractical for large-scale red-teaming. To address this challenge, we propose to distill the knowledge of an ensemble of SOTA attackers into a single open-source model, called Knowledge-Distilled Attacker (KDA), which is finetuned to automatically generate coherent and diverse attack prompts without the need for meticulous system prompt engineering. Compared to existing attackers, KDA achieves higher attack success rates and greater cost-time efficiency when targeting multiple SOTA open-source and commercial black-box LLMs. Furthermore, we conducted a quantitative diversity analysis of prompts generated by baseline methods and KDA, identifying diverse and ensemble attacks as key factors behind KDA's effectiveness and efficiency.
📅 2025-02-05
Scene graphs have emerged as a structured and serializable environment representation for grounded spatial reasoning with Large Language Models (LLMs). In this work, we propose SG-RwR, a Schema-Guided Retrieve-while-Reason framework for reasoning and planning with scene graphs. Our approach employs two cooperative, code-writing LLM agents: a (1) Reasoner for task planning and information queries generation, and a (2) Retriever for extracting corresponding graph information following the queries. Two agents collaborate iteratively, enabling sequential reasoning and adaptive attention to graph information. Unlike prior works, both agents are prompted only with the scene graph schema rather than the full graph data, which reduces the hallucination by limiting input tokens, and drives the Reasoner to generate reasoning trace abstractly.Following the trace, the Retriever programmatically query the scene graph data based on the schema understanding, allowing dynamic and global attention on the graph that enhances alignment between reasoning and retrieval. Through experiments in multiple simulation environments, we show that our framework surpasses existing LLM-based approaches in numerical Q\&A and planning tasks, and can benefit from task-level few-shot examples, even in the absence of agent-level demonstrations. Project code will be released.
📅 2025-02-05 | 💬 iui2025
One of the key challenges faced by autistic children is understanding social affordances in complex environments, which further impacts their ability to respond appropriately to social signals. In traffic scenarios, this impairment can even lead to safety concerns. In this paper, we introduce an LLM-simulated immersive projection environment designed to improve this ability in autistic children while ensuring their safety. We first propose 17 design considerations across four major categories, derived from a comprehensive review of previous research. Next, we developed a system called AIroad, which leverages LLMs to simulate drivers with varying social intents, expressed through explicit multimodal social signals. AIroad helps autistic children bridge the gap in recognizing the intentions behind behaviors and learning appropriate responses through various stimuli. A user study involving 14 participants demonstrated that this technology effectively engages autistic children and leads to significant improvements in their comprehension of social affordances in traffic scenarios. Additionally, parents reported high perceived usability of the system. These findings highlight the potential of combining LLM technology with immersive environments for the functional rehabilitation of autistic children in the future.
📅 2025-02-05
Recent advancements in large language models (LLMs) have spurred growing interest in automatic theorem proving using Lean4, where effective tree search methods are crucial for navigating proof search spaces. While the existing approaches primarily rely on value functions and Monte Carlo Tree Search (MCTS), the potential of simpler methods like Best-First Search (BFS) remains underexplored. This paper investigates whether BFS can achieve competitive performance in large-scale theorem proving tasks. We present \texttt{BFS-Prover}, a scalable expert iteration framework, featuring three key innovations. First, we implement strategic data filtering at each expert iteration round, excluding problems solvable via beam search node expansion to focus on harder cases. Second, we improve the sample efficiency of BFS through Direct Preference Optimization (DPO) applied to state-tactic pairs automatically annotated with compiler error feedback, refining the LLM's policy to prioritize productive expansions. Third, we employ length normalization in BFS to encourage exploration of deeper proof paths. \texttt{BFS-Prover} achieves a score of $71.31$ on the MiniF2F test set and therefore challenges the perceived necessity of complex tree search methods, demonstrating that BFS can achieve competitive performance when properly scaled.
📅 2025-02-05
We increase overhead for applications that rely on reasoning LLMs-we force models to spend an amplified number of reasoning tokens, i.e., "overthink", to respond to the user query while providing contextually correct answers. The adversary performs an OVERTHINK attack by injecting decoy reasoning problems into the public content that is used by the reasoning LLM (e.g., for RAG applications) during inference time. Due to the nature of our decoy problems (e.g., a Markov Decision Process), modified texts do not violate safety guardrails. We evaluated our attack across closed-(OpenAI o1, o1-mini, o3-mini) and open-(DeepSeek R1) weights reasoning models on the FreshQA and SQuAD datasets. Our results show up to 18x slowdown on FreshQA dataset and 46x slowdown on SQuAD dataset. The attack also shows high transferability across models. To protect applications, we discuss and implement defenses leveraging LLM-based and system design approaches. Finally, we discuss societal, financial, and energy impacts of OVERTHINK attack which could amplify the costs for third-party applications operating reasoning models.
📅 2025-02-05 | 💬 Preprint, under review
Scaling inference compute enhances reasoning in large language models (LLMs), with long chains-of-thought (CoTs) enabling strategies like backtracking and error correction. Reinforcement learning (RL) has emerged as a crucial method for developing these capabilities, yet the conditions under which long CoTs emerge remain unclear, and RL training requires careful design choices. In this study, we systematically investigate the mechanics of long CoT reasoning, identifying the key factors that enable models to generate long CoT trajectories. Through extensive supervised fine-tuning (SFT) and RL experiments, we present four main findings: (1) While SFT is not strictly necessary, it simplifies training and improves efficiency; (2) Reasoning capabilities tend to emerge with increased training compute, but their development is not guaranteed, making reward shaping crucial for stabilizing CoT length growth; (3) Scaling verifiable reward signals is critical for RL. We find that leveraging noisy, web-extracted solutions with filtering mechanisms shows strong potential, particularly for out-of-distribution (OOD) tasks such as STEM reasoning; and (4) Core abilities like error correction are inherently present in base models, but incentivizing these skills effectively for complex tasks via RL demands significant compute, and measuring their emergence requires a nuanced approach. These insights provide practical guidance for optimizing training strategies to enhance long CoT reasoning in LLMs. Our code is available at: https://github.com/eddycmu/demystify-long-cot.
📅 2025-02-05 | 💬 19 pages, 12 figures, 3 tables
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
📅 2025-02-05
Large language models (LLMs) excel across various tasks, but standard first-order (FO) fine-tuning demands considerable memory, significantly limiting real-world deployment. Recently, zeroth-order (ZO) optimization stood out as a promising memory-efficient training paradigm, avoiding backward passes and relying solely on forward passes for gradient estimation, making it attractive for resource-constrained scenarios. However, ZO method lags far behind FO method in both convergence speed and accuracy. To bridge the gap, we introduce a novel layer-wise divergence analysis that uncovers the distinct update pattern of FO and ZO optimization. Aiming to resemble the learning capacity of FO method from the findings, we propose \textbf{Di}vergence-driven \textbf{Z}eroth-\textbf{O}rder (\textbf{DiZO}) optimization. DiZO conducts divergence-driven layer adaptation by incorporating projections to ZO updates, generating diverse-magnitude updates precisely scaled to layer-wise individual optimization needs. Our results demonstrate that DiZO significantly reduces the needed iterations for convergence without sacrificing throughput, cutting training GPU hours by up to 48\% on various datasets. Moreover, DiZO consistently outperforms the representative ZO baselines in fine-tuning RoBERTa-large, OPT-series, and Llama-series on downstream tasks and, in some cases, even surpasses memory-intensive FO fine-tuning.
📅 2025-02-05
The "LLM-as-a-judge" paradigm employs Large Language Models (LLMs) as annotators and evaluators in tasks traditionally performed by humans. LLM annotations are widely used, not only in NLP research but also in fields like medicine, psychology, and social science. Despite their role in shaping study results and insights, there is no standard or rigorous procedure to determine whether LLMs can replace human annotators. In this paper, we propose a novel statistical procedure -- the Alternative Annotator Test (alt-test) -- that requires only a modest subset of annotated examples to justify using LLM annotations. Additionally, we introduce a versatile and interpretable measure for comparing LLM judges. To demonstrate our procedure, we curated a diverse collection of ten datasets, consisting of language and vision-language tasks, and conducted experiments with six LLMs and four prompting techniques. Our results show that LLMs can sometimes replace humans with closed-source LLMs (such as GPT-4o), outperforming open-source LLMs, and that prompting techniques yield judges of varying quality. We hope this study encourages more rigorous and reliable practices.
📅 2025-02-05 | 💬 32 pages, 7 figures, 24 tables
Neural Networks can be effectively compressed through pruning, significantly reducing storage and compute demands while maintaining predictive performance. Simple yet effective methods like magnitude pruning remove less important parameters and typically require a costly retraining procedure to restore performance. However, with the rise of LLMs, full retraining has become infeasible due to memory and compute constraints. This study challenges the practice of retraining all parameters by showing that updating a small subset of highly expressive parameters can suffice to recover or even enhance performance after pruning. Surprisingly, retraining just 0.01%-0.05% of the parameters in GPT-architectures can match the performance of full retraining across various sparsity levels, significantly reducing compute and memory requirements, and enabling retraining of models with up to 30 billion parameters on a single GPU in minutes. To bridge the gap to full retraining in the high sparsity regime, we introduce two novel LoRA variants that, unlike standard LoRA, allow merging adapters back without compromising sparsity. Going a step further, we show that these methods can be applied for memory-efficient layer-wise reconstruction, significantly enhancing state-of-the-art retraining-free methods like Wanda (Sun et al., 2023) and SparseGPT (Frantar & Alistarh, 2023). Our findings present a promising alternative to avoiding retraining.
📅 2025-02-05
While large language models (LLMs) have shown remarkable potential in automating various tasks in digital chip design, the field of Photonic Integrated Circuits (PICs)-a promising solution to advanced chip designs-remains relatively unexplored in this context. The design of PICs is time-consuming and prone to errors due to the extensive and repetitive nature of code involved in photonic chip design. In this paper, we introduce PICBench, the first benchmarking and evaluation framework specifically designed to automate PIC design generation using LLMs, where the generated output takes the form of a netlist. Our benchmark consists of dozens of meticulously crafted PIC design problems, spanning from fundamental device designs to more complex circuit-level designs. It automatically evaluates both the syntax and functionality of generated PIC designs by comparing simulation outputs with expert-written solutions, leveraging an open-source simulator. We evaluate a range of existing LLMs, while also conducting comparative tests on various prompt engineering techniques to enhance LLM performance in automated PIC design. The results reveal the challenges and potential of LLMs in the PIC design domain, offering insights into the key areas that require further research and development to optimize automation in this field. Our benchmark and evaluation code is available at https://github.com/PICDA/PICBench.
📅 2025-02-05 | 💬 Accepted as Oral at KnowFM @ AAAI 2025
While Large Language Models (LLMs) demonstrate impressive reasoning capabilities, understanding and validating their knowledge utilization remains challenging. Chain-of-thought (CoT) prompting partially addresses this by revealing intermediate reasoning steps, but the knowledge flow and application remain implicit. We introduce IAO (Input-Action-Output) prompting, a structured template-based method that explicitly models how LLMs access and apply their knowledge during complex reasoning tasks. IAO decomposes problems into sequential steps, each clearly identifying the input knowledge being used, the action being performed, and the resulting output. This structured decomposition enables us to trace knowledge flow, verify factual consistency, and identify potential knowledge gaps or misapplications. Through experiments across diverse reasoning tasks, we demonstrate that IAO not only improves zero-shot performance but also provides transparency in how LLMs leverage their stored knowledge. Human evaluation confirms that this structured approach enhances our ability to verify knowledge utilization and detect potential hallucinations or reasoning errors. Our findings provide insights into both knowledge representation within LLMs and methods for more reliable knowledge application.
📅 2025-02-05 | 💬 Accepted by USENIX Security Symposium 2025. Please cite the conference version of this paper, i.e., "Xunguang Wang, Daoyuan Wu, Zhenlan Ji, Zongjie Li, Pingchuan Ma, Shuai Wang, Yingjiu Li, Yang Liu, Ning Liu, and Juergen Rahmel. SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner. In Proc. USENIX Security, 2025."
Jailbreaking is an emerging adversarial attack that bypasses the safety alignment deployed in off-the-shelf large language models (LLMs) and has evolved into multiple categories: human-based, optimization-based, generation-based, and the recent indirect and multilingual jailbreaks. However, delivering a practical jailbreak defense is challenging because it needs to not only handle all the above jailbreak attacks but also incur negligible delays to user prompts, as well as be compatible with both open-source and closed-source LLMs. Inspired by how the traditional security concept of shadow stacks defends against memory overflow attacks, this paper introduces a generic LLM jailbreak defense framework called SelfDefend, which establishes a shadow LLM as a defense instance (in detection state) to concurrently protect the target LLM instance (in normal answering state) in the normal stack and collaborate with it for checkpoint-based access control. The effectiveness of SelfDefend builds upon our observation that existing LLMs can identify harmful prompts or intentions in user queries, which we empirically validate using mainstream GPT-3.5/4 models against major jailbreak attacks. To further improve the defense's robustness and minimize costs, we employ a data distillation approach to tune dedicated open-source defense models. When deployed to protect GPT-3.5/4, Claude, Llama-2-7b/13b, and Mistral, these models outperform seven state-of-the-art defenses and match the performance of GPT-4-based SelfDefend, with significantly lower extra delays. Further experiments show that the tuned models are robust to adaptive jailbreaks and prompt injections.
📅 2025-02-05 | 💬 accepted at WWW'25 (Industrial Track), extended version
The rapid advancement of large language models (LLMs) has opened new possibilities for their adoption as evaluative judges. This paper introduces Themis, a fine-tuned LLM judge that delivers sophisticated context-aware evaluations. We provide a comprehensive overview of the development pipeline for Themis, highlighting its scenario-dependent evaluation prompts and two novel methods for controlled instruction generation. These designs enable Themis to effectively distill evaluative skills from teacher models, while retaining flexibility for continuous development. We introduce two human-labeled benchmarks for meta-evaluation, demonstrating that Themis can achieve high alignment with human preferences in an economical manner. Additionally, we explore insights into the LLM-as-a-judge paradigm, revealing nuances in performance and the varied effects of reference answers. Notably, we observe that pure knowledge distillation from strong LLMs, though common, does not guarantee performance improvement through scaling. We propose a mitigation strategy based on instruction-following difficulty. Furthermore, we provide practical guidelines covering data balancing, prompt customization, multi-objective training, and metric aggregation. We aim for our method and findings, along with the fine-tuning data, benchmarks, and model checkpoints, to support future research and development in this area.
📅 2025-02-05 | 💬 Accepted to NAACL2025 main conference
Recently, sharing key-value (KV) cache across layers has been found effective in efficient inference of large language models (LLMs). To systematically investigate different techniques of cross-layer KV sharing, we propose a unified framework that covers several recent methods and their novel variants. We conduct comprehensive experiments on all the configurations of the framework, evaluating their generation throughput and performance in language modeling and downstream tasks. We find that when reducing the size of the KV cache by 2$\times$, most configurations can achieve higher throughput than standard transformers while maintaining competitive performance. When further reducing the size of the KV cache, however, pairing queries of all layers with KVs of upper layers performs better, at the expense of additional training cost and prefilling latency. We hope that this work will help users make more informed choices of cross-layer KV sharing approaches and facilitate future research on efficient LLM inference.
📅 2025-02-05 | 💬 Long Paper, 9 pages, accepted at NAACL 2025 Findings
The proliferation of large language models (LLMs) in generating content raises concerns about text copyright. Watermarking methods, particularly logit-based approaches, embed imperceptible identifiers into text to address these challenges. However, the widespread usage of watermarking across diverse LLMs has led to an inevitable issue known as watermark collision during common tasks, such as paraphrasing or translation. In this paper, we introduce watermark collision as a novel and general philosophy for watermark attacks, aimed at enhancing attack performance on top of any other attacking methods. We also provide a comprehensive demonstration that watermark collision poses a threat to all logit-based watermark algorithms, impacting not only specific attack scenarios but also downstream applications.
📅 2025-02-05 | 💬 16 pages
Large-scale language models (LLMs) excel in language processing tasks but face deployment challenges due to high memory and computational demands. While low-bit quantization, such as 4-bit techniques, offers a potential solution, these methods often suffer from significant accuracy loss or require considerable effort for implementation such as reordering, rotation, etc. To address these challenges, we propose QRazor, a simple yet effective quantization scheme that enables 4-bit quantization of weights, activations, and KV cache in transformer-based LLMs. QRazor operates in two stages: first, quantizing data using 8 or 16-bit integers as a basis with absolute max scaling to preserve accuracy close to full-precision models, and second, compressing the quantized data to 4-bit using our significant data razoring (SDR) technique, which retains only the four most salient bits. Without any additional requirment of fine-tuning or additional training, QRazor achieves performance similar or better compared to state-of-the-art in 4-bit quantization method, surpassing Smoothquant and QLLM by over 12 points and Quarot(RTN) by more than 2.9 points in zero-shot reasoning task accuracy on the LLaMA2-7B model. Additionally, we introduce an integer-based arithmetic unit optimized for QRazor, allowing direct low-precision operations on SDR data without decompression.
📅 2025-02-05
We propose FACTER, a fairness-aware framework for LLM-based recommendation systems that integrates conformal prediction with dynamic prompt engineering. By introducing an adaptive semantic variance threshold and a violation-triggered mechanism, FACTER automatically tightens fairness constraints whenever biased patterns emerge. We further develop an adversarial prompt generator that leverages historical violations to reduce repeated demographic biases without retraining the LLM. Empirical results on MovieLens and Amazon show that FACTER substantially reduces fairness violations (up to 95.5%) while maintaining strong recommendation accuracy, revealing semantic variance as a potent proxy of bias.
📅 2025-02-05
Existing automated essay scoring (AES) has solely relied on essay text without using explanatory rationales for the scores, thereby forgoing an opportunity to capture the specific aspects evaluated by rubric indicators in a fine-grained manner. This paper introduces Rationale-based Multiple Trait Scoring (RMTS), a novel approach for multi-trait essay scoring that integrates prompt-engineering-based large language models (LLMs) with a fine-tuning-based essay scoring model using a smaller large language model (S-LLM). RMTS uses an LLM-based trait-wise rationale generation system where a separate LLM agent generates trait-specific rationales based on rubric guidelines, which the scoring model uses to accurately predict multi-trait scores. Extensive experiments on benchmark datasets, including ASAP, ASAP++, and Feedback Prize, show that RMTS significantly outperforms state-of-the-art models and vanilla S-LLMs in trait-specific scoring. By assisting quantitative assessment with fine-grained qualitative rationales, RMTS enhances the trait-wise reliability, providing partial explanations about essays. The code is available at https://github.com/BBeeChu/RMTS.git.
📅 2025-02-05 | 💬 Accepted to WWW 2025 Research Track
Hierarchical text classification aims to categorize each document into a set of classes in a label taxonomy, which is a fundamental web text mining task with broad applications such as web content analysis and semantic indexing. Most earlier works focus on fully or semi-supervised methods that require a large amount of human annotated data which is costly and time-consuming to acquire. To alleviate human efforts, in this paper, we work on hierarchical text classification with a minimal amount of supervision: using the sole class name of each node as the only supervision. Recently, large language models (LLM) have shown competitive performance on various tasks through zero-shot prompting, but this method performs poorly in the hierarchical setting because it is ineffective to include the large and structured label space in a prompt. On the other hand, previous weakly-supervised hierarchical text classification methods only utilize the raw taxonomy skeleton and ignore the rich information hidden in the text corpus that can serve as additional class-indicative features. To tackle the above challenges, we propose TELEClass, Taxonomy Enrichment and LLM-Enhanced weakly-supervised hierarchical text Classification, which combines the general knowledge of LLMs and task-specific features mined from an unlabeled corpus. TELEClass automatically enriches the raw taxonomy with class-indicative features for better label space understanding and utilizes novel LLM-based data annotation and generation methods specifically tailored for the hierarchical setting. Experiments show that TELEClass can significantly outperform previous baselines while achieving comparable performance to zero-shot prompting of LLMs with drastically less inference cost.
📅 2025-02-05 | 💬 Accepted by COLING 2025
Utilizing Large Language Models (LLMs) as evaluators to assess the performance of LLMs has garnered attention. However, this kind of evaluation approach is affected by potential biases within LLMs, raising concerns about the accuracy and reliability of the evaluation results of LLMs. To address this problem, we propose and study two many-shot In-Context Learning (ICL) prompt templates to help LLM evaluators mitigate potential biases: Many-Shot with Reference (MSwR) and Many-Shot without Reference (MSoR). Specifically, the former utilizes in-context examples with model-generated evaluation rationales as references, while the latter does not include these references. Using these prompt designs, we investigate the impact of increasing the number of in-context examples on the consistency and quality of the evaluation results. Experimental results show that advanced LLMs, such as GPT-4o, perform better in the many-shot regime than in the zero-shot and few-shot regimes. Furthermore, when using GPT-4o as an evaluator in the many-shot regime, adopting MSwR as the prompt template performs better than MSoR.
📅 2025-02-05
We propose SPARC, a lightweight continual learning framework for large language models (LLMs) that enables efficient task adaptation through prompt tuning in a lower-dimensional space. By leveraging principal component analysis (PCA), we identify a compact subspace of the training data. Optimizing prompts in this lower-dimensional space enhances training efficiency, as it focuses updates on the most relevant features while reducing computational overhead. Furthermore, since the model's internal structure remains unaltered, the extensive knowledge gained from pretraining is fully preserved, ensuring that previously learned information is not compromised during adaptation. Our method achieves high knowledge retention in both task-incremental and domain-incremental continual learning setups while fine-tuning only 0.04% of the model's parameters. Additionally, by integrating LoRA, we enhance adaptability to computational constraints, allowing for a tradeoff between accuracy and training cost. Experiments on the SuperGLUE benchmark demonstrate that our PCA-based prompt tuning combined with LoRA maintains full knowledge retention while improving accuracy, utilizing only 1% of the model's parameters. These results establish our approach as a scalable and resource-efficient solution for continual learning in LLMs.
📅 2025-02-05 | 💬 6 pages, 2 tables, to appear in Reham Alharbi, Jacopo de Berardinis, Paul Groth, Albert Mero\~no-Pe\~nuela, Elena Simperl, Valentina Tamma (eds.), ISWC 2024 Special Session on Harmonising Generative AI and Semantic Web Technologies. CEUR-WS.org (forthcoming), for associated code and data see https://github.com/bradleypallen/trex-metalinguistic-disagreement
Evaluating large language models (LLMs) for tasks like fact extraction in support of knowledge graph construction frequently involves computing accuracy metrics using a ground truth benchmark based on a knowledge graph (KG). These evaluations assume that errors represent factual disagreements. However, human discourse frequently features metalinguistic disagreement, where agents differ not on facts but on the meaning of the language used to express them. Given the complexity of natural language processing and generation using LLMs, we ask: do metalinguistic disagreements occur between LLMs and KGs? Based on an investigation using the T-REx knowledge alignment dataset, we hypothesize that metalinguistic disagreement does in fact occur between LLMs and KGs, with potential relevance for the practice of knowledge graph engineering. We propose a benchmark for evaluating the detection of factual and metalinguistic disagreements between LLMs and KGs. An initial proof of concept of such a benchmark is available on Github.
📅 2025-02-05 | 💬 Accepted to 2025 11th International Conference on Computing and Artificial Intelligence (ICCAI 2025)
With the internet's evolution, consumers increasingly rely on online reviews for service or product choices, necessitating that businesses analyze extensive customer feedback to enhance their offerings. While machine learning-based sentiment classification shows promise in this realm, its technical complexity often bars small businesses and individuals from leveraging such advancements, which may end up making the competitive gap between small and large businesses even bigger in terms of improving customer satisfaction. This paper introduces an approach that integrates large language models (LLMs), specifically Generative Pre-trained Transformer (GPT) and Bidirectional Encoder Representations from Transformers (BERT)-based models, making it accessible to a wider audience. Our experiments across various datasets confirm that our approach retains high classification accuracy without the need for manual labeling, expert knowledge in tuning and data annotation, or substantial computational power. By significantly lowering the barriers to applying sentiment classification techniques, our methodology enhances competitiveness and paves the way for making machine learning technology accessible to a broader audience.
📅 2025-02-05
Scaling laws for large language models (LLMs) predict model performance based on parameters like size and training data. However, differences in training configurations and data processing across model families lead to significant variations in benchmark performance, making it difficult for a single scaling law to generalize across all LLMs. On the other hand, training family-specific scaling laws requires training models of varying sizes for every family. In this work, we propose Skills Scaling Laws (SSLaws, pronounced as Sloth), a novel scaling law that leverages publicly available benchmark data and assumes LLM performance is driven by low-dimensional latent skills, such as reasoning and instruction following. These latent skills are influenced by computational resources like model size and training tokens but with varying efficiencies across model families. Sloth exploits correlations across benchmarks to provide more accurate and interpretable predictions while alleviating the need to train multiple LLMs per family. We present both theoretical results on parameter identification and empirical evaluations on 12 prominent benchmarks, from Open LLM Leaderboard v1/v2, demonstrating that Sloth predicts LLM performance efficiently and offers insights into scaling behaviors for complex downstream tasks and increased test-time compute.
📅 2025-02-05 | 💬 Accepted at 17th ACM Web Science Conference 2025 (WebSci'25)
Nowadays, social media is pivotal in shaping public discourse, especially on polarizing issues like vaccination, where diverse moral perspectives influence individual opinions. In NLP, data scarcity and complexity of psycholinguistic tasks, such as identifying morality frames, make relying solely on human annotators costly, time-consuming, and prone to inconsistency due to cognitive load. To address these issues, we leverage large language models (LLMs), which are adept at adapting new tasks through few-shot learning, utilizing a handful of in-context examples coupled with explanations that connect examples to task principles. Our research explores LLMs' potential to assist human annotators in identifying morality frames within vaccination debates on social media. We employ a two-step process: generating concepts and explanations with LLMs, followed by human evaluation using a "think-aloud" tool. Our study shows that integrating LLMs into the annotation process enhances accuracy, reduces task difficulty, lowers cognitive load, suggesting a promising avenue for human-AI collaboration in complex psycholinguistic tasks.
📅 2025-02-05
Serving large language models (LLMs) often demands specialized hardware, dedicated frameworks, and substantial development efforts, which restrict their accessibility, especially for edge devices and organizations with limited technical resources. We propose a novel compiler that translates LLM inference graphs into SQL queries, enabling relational databases, one of the most widely used and mature software systems globally, to serve as the runtime. By mapping neural operators such as matrix multiplication and attention into relational primitives like joins and aggregations, our approach leverages database capabilities, including disk-based data management and native caching. Supporting key transformer components, such as attention mechanisms and key-value caching, our system generates SQL pipelines for end-to-end LLM inference. Using the Llama3 family as a case study, we demonstrate up to 30x speedup in token generation for memory-constrained scenarios comparable to competitive CPU-based frameworks. Our work offers an accessible, portable, and efficient solution, facilitating the serving of LLMs across diverse deployment environments.
📅 2025-02-05
Recent advances in Large Language Models (LLMs) have motivated the development of general LLMs for molecular tasks. While several studies have demonstrated that fine-tuned LLMs can achieve impressive benchmark performances, they are far from genuine generalist molecular LLMs due to a lack of fundamental understanding of molecular structure. Specifically, when given molecular task instructions, LLMs trained with naive next-token prediction training assign similar likelihood scores to both original and negatively corrupted molecules, revealing their lack of molecular structure understanding that is crucial for reliable and general molecular LLMs. To overcome this limitation and obtain a true generalist molecular LLM, we introduce a novel multi-modal training method based on a thorough multi-modal instruction tuning as well as a molecular structure preference optimization between chosen and rejected graphs. On various molecular benchmarks, the proposed generalist molecular LLM, called Mol-LLM, achieves state-of-the-art performances among generalist LLMs on most tasks, at the same time, surpassing or comparable to state-of-the-art specialist LLMs. Moreover, Mol-LLM also shows superior generalization performances in reaction prediction tasks, demonstrating the effect of the molecular structure understanding for generalization perspective.
📅 2025-02-05 | 💬 8 pages and 7 figures, accepted to LLM4Code 2025
Code documentation can, if written precisely, help developers better understand the code they accompany. However, unlike code, code documentation cannot be automatically verified via execution, potentially leading to inconsistencies between documentation and the actual behavior. While such inconsistencies can be harmful for the developer's understanding of the code, checking and finding them remains a costly task due to the involvement of human engineers. This paper proposes METAMON, which uses an existing search-based test generation technique to capture the current program behavior in the form of test cases, and subsequently uses LLM-based code reasoning to identify the generated regression test oracles that are not consistent with the program specifications in the documentation. METAMON is supported in this task by metamorphic testing and self-consistency. An empirical evaluation against 9,482 pairs of code documentation and code snippets, generated using five open-source projects from Defects4J v2.0.1, shows that METAMON can classify the code-and-documentation inconsistencies with a precision of 0.72 and a recall of 0.48.
📅 2025-02-05
Large Language Models demonstrate remarkable capabilities at the cost of high compute requirements. While recent research has shown that intermediate layers can be removed or have their order shuffled without impacting performance significantly, these findings have not been employed to reduce the computational cost of inference. We investigate several potential ways to reduce the depth of pre-trained LLMs without significantly affecting performance. Leveraging our insights, we present a novel approach that exploits this decoupling between layers by grouping some of them into pairs that can be evaluated in parallel. This modification of the computational graph -- through better parallelism -- results in an average improvement of around 1.20x on the number of tokens generated per second, without re-training nor fine-tuning, while retaining 95%-99% of the original accuracy. Empirical evaluation demonstrates that this approach significantly improves serving efficiency while maintaining model performance, offering a practical improvement for large-scale LLM deployment.
📅 2025-02-05
Post-training of pre-trained LLMs, which typically consists of the supervised fine-tuning (SFT) stage and the preference learning (RLHF or DPO) stage, is crucial to effective and safe LLM applications. The widely adopted approach in post-training popular open-source LLMs is to sequentially perform SFT and RLHF/DPO. However, sequential training is sub-optimal in terms of SFT and RLHF/DPO trade-off: the LLM gradually forgets about the first stage's training when undergoing the second stage's training. We theoretically prove the sub-optimality of sequential post-training. Furthermore, we propose a practical joint post-training framework with theoretical convergence guarantees and empirically outperforms sequential post-training framework, while having similar computational cost. Our code is available at https://github.com/heshandevaka/XRIGHT.
📅 2025-02-05
Recent work has demonstrated that language models can be trained to identify the author of much shorter literary passages than has been thought feasible for traditional stylometry. We replicate these results for authorship and extend them to a new dataset measuring novel genre. We find that LLMs are able to distinguish authorship and genre, but they do so in different ways. Some models seem to rely more on memorization, while others benefit more from training to learn author/genre characteristics. We then use three methods to probe one high-performing LLM for features that define style. These include direct syntactic ablations to input text as well as two methods that look at model internals. We find that authorial style is easier to define than genre-level style and is more impacted by minor syntactic decisions and contextual word usage. However, some traits like pronoun usage and word order prove significant for defining both kinds of literary style.
📅 2025-02-05 | 💬 COLING 2025
Chain-of-Thought (CoT) has been a widely adopted prompting method, eliciting impressive reasoning abilities of Large Language Models (LLMs). Inspired by the sequential thought structure of CoT, a number of Chain-of-X (CoX) methods have been developed to address various challenges across diverse domains and tasks involving LLMs. In this paper, we provide a comprehensive survey of Chain-of-X methods for LLMs in different contexts. Specifically, we categorize them by taxonomies of nodes, i.e., the X in CoX, and application tasks. We also discuss the findings and implications of existing CoX methods, as well as potential future directions. Our survey aims to serve as a detailed and up-to-date resource for researchers seeking to apply the idea of CoT to broader scenarios.
📅 2025-02-05
In cybersecurity, security analysts face the challenge of mitigating newly discovered vulnerabilities in real-time, with over 300,000 Common Vulnerabilities and Exposures (CVEs) identified since 1999. The sheer volume of known vulnerabilities complicates the detection of patterns for unknown threats. While LLMs can assist, they often hallucinate and lack alignment with recent threats. Over 25,000 vulnerabilities have been identified so far in 2024, which are introduced after popular LLMs' (e.g., GPT-4) training data cutoff. This raises a major challenge of leveraging LLMs in cybersecurity, where accuracy and up-to-date information are paramount. In this work, we aim to improve the adaptation of LLMs in vulnerability analysis by mimicking how analysts perform such tasks. We propose ProveRAG, an LLM-powered system designed to assist in rapidly analyzing CVEs with automated retrieval augmentation of web data while self-evaluating its responses with verifiable evidence. ProveRAG incorporates a self-critique mechanism to help alleviate omission and hallucination common in the output of LLMs applied in cybersecurity applications. The system cross-references data from verifiable sources (NVD and CWE), giving analysts confidence in the actionable insights provided. Our results indicate that ProveRAG excels in delivering verifiable evidence to the user with over 99% and 97% accuracy in exploitation and mitigation strategies, respectively. This system outperforms direct prompting and chunking retrieval in vulnerability analysis by overcoming temporal and context-window limitations. ProveRAG guides analysts to secure their systems more effectively while documenting the process for future audits.
📅 2025-02-05
Fine-tuning pre-trained Large Language Models (LLMs) for downstream tasks using First-Order (FO) optimizers presents significant computational challenges. Parameter-Efficient Fine-Tuning(PEFT) methods have been proposed to address these challenges by freezing most model parameters and training only a small subset. While PEFT is efficient, it may not outperform full fine-tuning when high task-specific performance is required. Zeroth-Order (ZO) methods offer an alternative for fine-tuning the entire pre-trained model by approximating gradients using only the forward pass, thus eliminating the computational burden of back-propagation in first-order methods. However, when implementing ZO methods, a hard prompt is crucial, and relying on simple, fixed hard prompts may not be optimal. In this paper, we propose a bilevel optimization framework that complements ZO methods with PEFT to mitigate sensitivity to hard prompts while efficiently and effectively fine-tuning LLMs. Our Bilevel ZOFO (Zeroth-Order-First-Order) method employs a double-loop optimization strategy, where only the gradient of the PEFT model and the forward pass of the base model are required. We provide convergence guarantees for Bilevel ZOFO. Empirically, we demonstrate that Bilevel ZOFO outperforms both PEFT and ZO methods in single-task settings while maintaining similar memory efficiency. Additionally, we show its strong potential for multitask learning. Compared to current first-order meta-training algorithms for multitask learning, our method has significantly lower computational demands while maintaining or improving performance.
📅 2025-02-05
Disaggregated Large Language Model (LLM) inference has gained popularity as it separates the computation-intensive prefill stage from the memory-intensive decode stage, avoiding the prefill-decode interference and improving resource utilization. However, transmitting Key-Value (KV) data between the two stages can be a bottleneck, especially for long prompts. Additionally, the computation time overhead for prefill and decode is key for optimizing Job Completion Time (JCT), and KV data size can become prohibitive for long prompts and sequences. Existing KV quantization methods can alleviate the transmission bottleneck and reduce memory requirements, but they introduce significant dequantization overhead, exacerbating the computation time. We propose Homomorphic Acceleration via Compression of the KV cache (HACK) for disaggregated LLM inference. HACK eliminates the heavy KV dequantization step, and directly performs computations on quantized KV data to approximate and reduce the cost of the expensive matrix-multiplication step. Extensive trace-driven experiments show that HACK reduces JCT by up to 70.9% compared to disaggregated LLM inference baseline and by up to 52.3% compared to state-of-the-art KV quantization methods.
📅 2025-02-05
The integration of Large Language Models (LLMs) into healthcare settings has gained significant attention, particularly for question-answering tasks. Given the high-stakes nature of healthcare, it is essential to ensure that LLM-generated content is accurate and reliable to prevent adverse outcomes. However, the development of robust evaluation metrics and methodologies remains a matter of much debate. We examine the performance of publicly available LLM-based chatbots for menopause-related queries, using a mixed-methods approach to evaluate safety, consensus, objectivity, reproducibility, and explainability. Our findings highlight the promise and limitations of traditional evaluation metrics for sensitive health topics. We propose the need for customized and ethically grounded evaluation frameworks to assess LLMs to advance safe and effective use in healthcare.
📅 2025-02-05
Despite remarkable capabilities, large language models (LLMs) struggle to continually update their knowledge without catastrophic forgetting. In contrast, humans effortlessly integrate new information, detect conflicts with existing beliefs, and selectively update their mental models. This paper introduces a cognitive-inspired investigation paradigm to study continual knowledge updating in LLMs. We implement two key components inspired by human cognition: (1) Dissonance and Familiarity Awareness, analyzing model behavior to classify information as novel, familiar, or dissonant; and (2) Targeted Network Updates, which track neural activity to identify frequently used (stubborn) and rarely used (plastic) neurons. Through carefully designed experiments in controlled settings, we uncover a number of empirical findings demonstrating the potential of this approach. First, dissonance detection is feasible using simple activation and gradient features, suggesting potential for cognitive-inspired training. Second, we find that non-dissonant updates largely preserve prior knowledge regardless of targeting strategy, revealing inherent robustness in LLM knowledge integration. Most critically, we discover that dissonant updates prove catastrophically destructive to the model's knowledge base, indiscriminately affecting even information unrelated to the current updates. This suggests fundamental limitations in how neural networks handle contradictions and motivates the need for new approaches to knowledge updating that better mirror human cognitive mechanisms.
📅 2025-02-05 | 💬 Preprint
Federated learning (FL) has enabled the training of multilingual large language models (LLMs) on diverse and decentralized multilingual data, especially on low-resource languages. To improve client-specific performance, personalization via the use of parameter-efficient fine-tuning (PEFT) modules such as LoRA is common. This involves a personalization strategy (PS), such as the design of the PEFT adapter structures (e.g., in which layers to add LoRAs and what ranks) and choice of hyperparameters (e.g., learning rates) for fine-tuning. Instead of manual PS configuration, we propose FedP$^2$EFT, a federated learning-to-personalize method for multilingual LLMs in cross-device FL settings. Unlike most existing PEFT structure selection methods, which are prone to overfitting low-data regimes, FedP$^2$EFT collaboratively learns the optimal personalized PEFT structure for each client via Bayesian sparse rank selection. Evaluations on both simulated and real-world multilingual FL benchmarks demonstrate that FedP$^2$EFT largely outperforms existing personalized fine-tuning methods, while complementing a range of existing FL methods.
📅 2025-02-05 | 💬 26 pages, 15 figures, 11 tables
Fine-tuning large language models (LLMs) using diverse datasets is crucial for enhancing their overall performance across various domains. In practical scenarios, existing methods based on modeling the mixture proportions of data composition often struggle with data whose domain labels are missing, imprecise or non-normalized, while methods based on data selection usually encounter difficulties in balancing multi-domain performance. To address these challenges, in this paper, we study the role of data diversity in enhancing the overall abilities of LLMs by empirically constructing contrastive data pools and theoretically deriving explanations for both inter- and intra-diversity. Building upon the insights gained, we propose a new method that gives the LLM a dual identity: an output model to cognitively probe and select data based on diversity reward, as well as an input model to be tuned with the selected data. Extensive experiments show that the proposed method notably boosts performance across domain-undetermined data and a series of foundational downstream tasks when applied to various advanced LLMs. We release our code and hope this study can shed light on the understanding of data diversity and advance feedback-driven data-model co-development for LLMs.
📅 2025-02-05
In contemporary workplaces, meetings are essential for exchanging ideas and ensuring team alignment but often face challenges such as time consumption, scheduling conflicts, and inefficient participation. Recent advancements in Large Language Models (LLMs) have demonstrated their strong capabilities in natural language generation and reasoning, prompting the question: can LLMs effectively delegate participants in meetings? To explore this, we develop a prototype LLM-powered meeting delegate system and create a comprehensive benchmark using real meeting transcripts. Our evaluation reveals that GPT-4/4o maintain balanced performance between active and cautious engagement strategies. In contrast, Gemini 1.5 Pro tends to be more cautious, while Gemini 1.5 Flash and Llama3-8B/70B display more active tendencies. Overall, about 60\% of responses address at least one key point from the ground-truth. However, improvements are needed to reduce irrelevant or repetitive content and enhance tolerance for transcription errors commonly found in real-world settings. Additionally, we implement the system in practical settings and collect real-world feedback from demos. Our findings underscore the potential and challenges of utilizing LLMs as meeting delegates, offering valuable insights into their practical application for alleviating the burden of meetings.
📅 2025-02-04
Large language models (LLMs) have demonstrated exceptional capabilities across a wide range of tasks but also pose significant risks due to their potential to generate harmful content. Although existing safety mechanisms can improve model safety, they often lead to overly cautious behavior and fail to fully utilize LLMs' internal cognitive processes. Drawing inspiration from cognitive science, where humans rely on reflective reasoning (System 2 thinking) to regulate language and behavior, we empirically demonstrate that LLMs also possess a similar capacity for internal assessment and regulation, which can be actively detected. Building on this insight, we introduce SafeSwitch, a framework that dynamically regulates unsafe outputs by monitoring and utilizing the model's internal states. Our empirical results show that SafeSwitch reduces harmful outputs by over 80% on safety benchmarks while maintaining strong utility. Compared to traditional safety alignment methods, SafeSwitch delivers more informative and context-aware refusals, demonstrates resilience to unseen queries, and achieves these benefits while only tuning less than 6% of the original parameters. These features make SafeSwitch a promising approach for implementing nuanced safety controls in LLMs.
📅 2025-02-04
This study attempts to advancing content analysis methodology from consensus-oriented to coordination-oriented practices, thereby embracing diverse coding outputs and exploring the dynamics among differential perspectives. As an exploratory investigation of this approach, we evaluate six GPT-4o configurations to analyze sentiment in Fox News and MSNBC transcripts on Biden and Trump during the 2020 U.S. presidential campaign, examining patterns across these models. By assessing each model's alignment with ideological perspectives, we explore how partisan selective processing could be identified in LLM-Assisted Content Analysis (LACA). Findings reveal that partisan persona LLMs exhibit stronger ideological biases when processing politically congruent content. Additionally, intercoder reliability is higher among same-partisan personas compared to cross-partisan pairs. This approach enhances the nuanced understanding of LLM outputs and advances the integrity of AI-driven social science research, enabling simulations of real-world implications.
📅 2025-02-04
Recent advancements in Reinforcement Learning with Human Feedback (RLHF) have significantly impacted the alignment of Large Language Models (LLMs). The sensitivity of reinforcement learning algorithms such as Proximal Policy Optimization (PPO) has led to new line work on Direct Policy Optimization (DPO), which treats RLHF in a supervised learning framework. The increased practical use of these RLHF methods warrants an analysis of their vulnerabilities. In this work, we investigate the vulnerabilities of DPO to poisoning attacks under different scenarios and compare the effectiveness of preference poisoning, a first of its kind. We comprehensively analyze DPO's vulnerabilities under different types of attacks, i.e., backdoor and non-backdoor attacks, and different poisoning methods across a wide array of language models, i.e., LLama 7B, Mistral 7B, and Gemma 7B. We find that unlike PPO-based methods, which, when it comes to backdoor attacks, require at least 4\% of the data to be poisoned to elicit harmful behavior, we exploit the true vulnerabilities of DPO more simply so we can poison the model with only as much as 0.5\% of the data. We further investigate the potential reasons behind the vulnerability and how well this vulnerability translates into backdoor vs non-backdoor attacks.
📅 2025-02-04
Large language models (LLMs) have achieved significant performance gains via scaling up model sizes and/or data. However, recent evidence suggests diminishing returns from such approaches, motivating scaling the computation spent at inference time. Existing inference-time scaling methods, usually with reward models, cast the task as a search problem, which tends to be vulnerable to reward hacking as a consequence of approximation errors in reward models. In this paper, we instead cast inference-time scaling as a probabilistic inference task and leverage sampling-based techniques to explore the typical set of the state distribution of a state-space model with an approximate likelihood, rather than optimize for its mode directly. We propose a novel inference-time scaling approach by adapting particle-based Monte Carlo methods to this task. Our empirical evaluation demonstrates that our methods have a 4-16x better scaling rate over our deterministic search counterparts on various challenging mathematical reasoning tasks. Using our approach, we show that Qwen2.5-Math-1.5B-Instruct can surpass GPT-4o accuracy in only 4 rollouts, while Qwen2.5-Math-7B-Instruct scales to o1 level accuracy in only 32 rollouts. Our work not only presents an effective method to inference-time scaling, but also connects the rich literature in probabilistic inference with inference-time scaling of LLMs to develop more robust algorithms in future work. Code and further information is available at https://probabilistic-inference-scaling.github.io.
📅 2025-02-04 | 💬 8 pages, 15 figures
The majority of research around Large Language Models (LLM) application to software development has been on the subject of code generation. There is little literature on LLMs' impact on requirements engineering (RE), which deals with the process of developing and verifying the system requirements. Within RE, there is a subdiscipline of requirements elicitation, which is the practice of discovering and documenting requirements for a system from users, customers, and other stakeholders. In this analysis, we compare LLM's ability to elicit requirements of a software system, as compared to that of a human expert in a time-boxed and prompt-boxed study. We found LLM-generated requirements were evaluated as more aligned (+1.12) than human-generated requirements with a trend of being more complete (+10.2%). Conversely, we found users tended to believe that solutions they perceived as more aligned had been generated by human experts. Furthermore, while LLM-generated documents scored higher and performed at 720x the speed, their cost was, on average, only 0.06% that of a human expert. Overall, these findings indicate that LLMs will play an increasingly important role in requirements engineering by improving requirements definitions, enabling more efficient resource allocation, and reducing overall project timelines.
📅 2025-02-04
Large language models (LLMs) are used in software development to assist in various tasks, e.g., code generation and code completion, but empirical evaluations of the quality of the results produced by these models focus on correctness and ignore other relevant aspects, such as their performance and energy efficiency. Studying the performance of LLM-produced programs is essential to understand how well LLMs can support the construction of performance- and energy-critical software, such as operating systems, servers, and mobile applications. This paper presents the first study analyzing the energy efficiency and performance of LLM-generated code for three programming languages Python, Java, and C++, on two platforms, a Mac and a PC, leveraging three frontier LLMs, Github Copilot, GPT-4o, and the recently-released OpenAI o1-mini, and targeting ``hard'' programming problems from LeetCode. Our results show that the models are much more successful in generating Python and Java than C++ code.
📅 2025-02-04 | 💬 4 pages, 2nd IEEE/ACM International Workshop on Methodological Issues with Empirical Studies in Software Engineering (WSESE 2025)
In the short period since the release of ChatGPT, large language models (LLMs) have changed the software engineering research landscape. While there are numerous opportunities to use LLMs for supporting research or software engineering tasks, solid science needs rigorous empirical evaluations. However, so far, there are no specific guidelines for conducting and assessing studies involving LLMs in software engineering research. Our focus is on empirical studies that either use LLMs as part of the research process or studies that evaluate existing or new tools that are based on LLMs. This paper contributes the first set of holistic guidelines for such studies. Our goal is to start a discussion in the software engineering research community to reach a common understanding of our standards for high-quality empirical studies involving LLMs.
📅 2025-02-04
Large Language Models (LLMs) have gained attention for addressing coding problems, but their effectiveness in fixing code maintainability remains unclear. This study evaluates LLMs capability to resolve 127 maintainability issues from 10 GitHub repositories. We use zero-shot prompting for Copilot Chat and Llama 3.1, and few-shot prompting with Llama only. The LLM-generated solutions are assessed for compilation errors, test failures, and new maintainability problems. Llama with few-shot prompting successfully fixed 44.9% of the methods, while Copilot Chat and Llama zero-shot fixed 32.29% and 30%, respectively. However, most solutions introduced errors or new maintainability issues. We also conducted a human study with 45 participants to evaluate the readability of 51 LLM-generated solutions. The human study showed that 68.63% of participants observed improved readability. Overall, while LLMs show potential for fixing maintainability issues, their introduction of errors highlights their current limitations.
📅 2025-02-04
Chain-of-Thought (CoT) prompting enhances mathematical reasoning in large language models (LLMs) by enabling detailed step-by-step solutions. However, due to the verbosity of LLMs, the resulting reasoning chains can be long, making it harder to verify the reasoning steps and trace issues resulting from dependencies between the steps that may be farther away in the sequence of steps. Importantly, mathematical reasoning allows each step to be derived from a small set of premises, which are a subset of the preceding steps in the reasoning chain. In this paper, we present a framework that identifies the premises for each step, to improve the evaluation of reasoning. We restructure conventional linear reasoning chains into Premise Augmented Reasoning Chains (PARC) by introducing premise links, resulting in a directed acyclic graph where the nodes are the steps and the edges are the premise links. Through experiments with a PARC-based dataset that we built, namely PERL (Premises and ERrors identification in LLMs), we demonstrate that LLMs can reliably identify premises within complex reasoning chains. In particular, even open-source LLMs achieve 90% recall in premise identification. We also show that PARC helps to identify errors in reasoning chains more reliably. The accuracy of error identification improves by 6% to 16% absolute when step-by-step verification is carried out in PARC under the premises. Our findings highlight the utility of premise-centric representations in addressing complex problem-solving tasks and open new avenues for improving the reliability of LLM-based reasoning evaluations.
📅 2025-02-04
Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response to user requests. While IDAs powered by instruction-tuned large language models (LLMs) can react to feedback from interface invocations in multi-step exchanges, they have not been trained in their respective digital environments. Prior methods accomplish less than half of tasks in sophisticated benchmarks such as AppWorld. We present a reinforcement learning (RL) approach that trains IDAs directly in their target environments. We formalize this training as a partially observable Markov decision process and derive LOOP, a data- and memory-efficient variant of proximal policy optimization. LOOP uses no value network and maintains exactly one copy of the underlying LLM in memory, making its implementation straightforward and as memory-efficient as fine-tuning a single LLM. A 32-billion-parameter agent trained with LOOP in the AppWorld environment outperforms the much larger OpenAI o1 agent by 9 percentage points (15% relative). To our knowledge, this is the first reported application of RL to IDAs that interact with a stateful, multi-domain, multi-app environment via direct API calls. Our analysis sheds light on the effectiveness of RL in this area, showing that the agent learns to consult the API documentation, avoid unwarranted assumptions, minimize confabulation, and recover from setbacks.
📅 2025-02-04
Advanced persistent threats (APTs) are sophisticated cyber attacks that can remain undetected for extended periods, making their mitigation particularly challenging. Given their persistence, significant effort is required to detect them and respond effectively. Existing provenance-based attack detection methods often lack interpretability and suffer from high false positive rates, while investigation approaches are either supervised or limited to known attacks. To address these challenges, we introduce SHIELD, a novel approach that combines statistical anomaly detection and graph-based analysis with the contextual analysis capabilities of large language models (LLMs). SHIELD leverages the implicit knowledge of LLMs to uncover hidden attack patterns in provenance data, while reducing false positives and providing clear, interpretable attack descriptions. This reduces analysts' alert fatigue and makes it easier for them to understand the threat landscape. Our extensive evaluation demonstrates SHIELD's effectiveness and computational efficiency in real-world scenarios. SHIELD was shown to outperform state-of-the-art methods, achieving higher precision and recall. SHIELD's integration of anomaly detection, LLM-driven contextual analysis, and advanced graph-based correlation establishes a new benchmark for APT detection.
📅 2025-02-04
The growing frequency of cyberattacks has heightened the demand for accurate and efficient threat detection systems. SIEM platforms are important for analyzing log data and detecting adversarial activities through rule-based queries, also known as SIEM rules. The efficiency of the threat analysis process relies heavily on mapping these SIEM rules to the relevant attack techniques in the MITRE ATT&CK framework. Inaccurate annotation of SIEM rules can result in the misinterpretation of attacks, increasing the likelihood that threats will be overlooked. Existing solutions for annotating SIEM rules with MITRE ATT&CK technique labels have notable limitations: manual annotation of SIEM rules is both time-consuming and prone to errors, and ML-based approaches mainly focus on annotating unstructured free text sources rather than structured data like SIEM rules. Structured data often contains limited information, further complicating the annotation process and making it a challenging task. To address these challenges, we propose Rule-ATT&CK Mapper (RAM), a novel framework that leverages LLMs to automate the mapping of structured SIEM rules to MITRE ATT&CK techniques. RAM's multi-stage pipeline, which was inspired by the prompt chaining technique, enhances mapping accuracy without requiring LLM pre-training or fine-tuning. Using the Splunk Security Content dataset, we evaluate RAM's performance using several LLMs, including GPT-4-Turbo, Qwen, IBM Granite, and Mistral. Our evaluation highlights GPT-4-Turbo's superior performance, which derives from its enriched knowledge base, and an ablation study emphasizes the importance of external contextual knowledge in overcoming the limitations of LLMs' implicit knowledge for domain-specific tasks. These findings demonstrate RAM's potential in automating cybersecurity workflows and provide valuable insights for future advancements in this field.
📅 2025-02-04
Financial metrics like the Sharpe ratio are pivotal in evaluating investment performance by balancing risk and return. However, traditional metrics often struggle with robustness and generalization, particularly in dynamic and volatile market conditions. This paper introduces AlphaSharpe, a novel framework leveraging large language models (LLMs) to iteratively evolve and optimize financial metrics to discover enhanced risk-return metrics that outperform traditional approaches in robustness and correlation with future performance metrics by employing iterative crossover, mutation, and evaluation. Key contributions of this work include: (1) a novel use of LLMs to generate and refine financial metrics with implicit domain-specific knowledge, (2) a scoring mechanism to ensure that evolved metrics generalize effectively to unseen data, and (3) an empirical demonstration of 3x predictive power for future risk-returns, and 2x portfolio performance. Experimental results in a real-world dataset highlight the superiority of discovered metrics, making them highly relevant to portfolio managers and financial decision-makers. This framework not only addresses the limitations of existing metrics but also showcases the potential of LLMs in advancing financial analytics, paving the way for informed and robust investment strategies.
📅 2025-02-04
Creating data reports is time-consuming, as it requires iterative exploration and understanding of data, followed by summarizing the insights. While large language models (LLMs) are powerful tools for data processing and text generation, they often struggle to produce complete data reports that fully meet user expectations. One significant challenge is effectively communicating the entire analysis logic to LLMs. Moreover, determining a comprehensive analysis logic can be mentally taxing for users. To address these challenges, we propose ReSpark, an LLM-based method that leverages existing data reports as references for creating new ones. Given a data table, ReSpark searches for similar-topic reports, parses them into interdependent segments corresponding to analytical objectives, and executes them with new data. It identifies inconsistencies and customizes the objectives, data transformations, and textual descriptions. ReSpark allows users to review real-time outputs, insert new objectives, and modify report content. Its effectiveness was evaluated through comparative and user studies.
📅 2025-02-04
Local search preprocessing makes Conflict-Driven Clause Learning (CDCL) solvers faster by providing high-quality starting points and modern SAT solvers have incorporated this technique into their preprocessing steps. However, these tools rely on basic strategies that miss the structural patterns in problems. We present a method that applies Large Language Models (LLMs) to analyze Python-based encoding code. This reveals hidden structural patterns in how problems convert into SAT. Our method automatically generates specialized local search algorithms that find these patterns and use them to create strong initial assignments. This works for any problem instance from the same encoding type. Our tests show encouraging results, achieving faster solving times compared to baseline preprocessing systems.
📅 2025-02-04 | 💬 64 pages (30 in main text), 22 figures (19 in main text)
In our daily lives, we can naturally convey instructions for the spatial manipulation of objects using words and gestures. Transposing this form of interaction into virtual reality (VR) object manipulation can be beneficial. We propose VR Mover, an LLM-empowered solution that can understand and interpret the user's vocal instruction to support object manipulation. By simply pointing and speaking, the LLM can manipulate objects without structured input. Our user study demonstrates that VR Mover enhances user usability, overall experience and performance on multi-object manipulation, while also reducing workload and arm fatigue. Users prefer the proposed natural interface for broad movements and may complementarily switch to gizmos or virtual hands for finer adjustments. These findings are believed to contribute to design implications for future LLM-based object manipulation interfaces, highlighting the potential for more intuitive and efficient user interactions in VR environments.
📅 2025-02-04
Large language models (LLMs) have shown remarkable success in language modelling due to scaling laws found in model size and the hidden dimension of the model's text representation. Yet, we demonstrate that compressed representations of text can yield better performance in LLM-based regression tasks. In this paper, we compare the relative performance of embedding compression in three different signal-to-noise contexts: financial return prediction, writing quality assessment and review scoring. Our results show that compressing embeddings, in a minimally supervised manner using an autoencoder's hidden representation, can mitigate overfitting and improve performance on noisy tasks, such as financial return prediction; but that compression reduces performance on tasks that have high causal dependencies between the input and target data. Our results suggest that the success of interpretable compressed representations such as sentiment may be due to a regularising effect.
📅 2025-02-04
Fingerprinting refers to the process of identifying underlying Machine Learning (ML) models of AI Systemts, such as Large Language Models (LLMs), by analyzing their unique characteristics or patterns, much like a human fingerprint. The fingerprinting of Large Language Models (LLMs) has become essential for ensuring the security and transparency of AI-integrated applications. While existing methods primarily rely on access to direct interactions with the application to infer model identity, they often fail in real-world scenarios involving multi-agent systems, frequent model updates, and restricted access to model internals. In this paper, we introduce a novel fingerprinting framework designed to address these challenges by integrating static and dynamic fingerprinting techniques. Our approach identifies architectural features and behavioral traits, enabling accurate and robust fingerprinting of LLMs in dynamic environments. We also highlight new threat scenarios where traditional fingerprinting methods are ineffective, bridging the gap between theoretical techniques and practical application. To validate our framework, we present an extensive evaluation setup that simulates real-world conditions and demonstrate the effectiveness of our methods in identifying and monitoring LLMs in Gen-AI applications. Our results highlight the framework's adaptability to diverse and evolving deployment contexts.
📅 2025-02-04
Existing automated essay scoring (AES) has solely relied on essay text without using explanatory rationales for the scores, thereby forgoing an opportunity to capture the specific aspects evaluated by rubric indicators in a fine-grained manner. This paper introduces Rationale-based Multiple Trait Scoring (RMTS), a novel approach for multi-trait essay scoring that integrates prompt-engineering-based large language models (LLMs) with a fine-tuning-based essay scoring model using a smaller large language model (S-LLM). RMTS uses an LLM-based trait-wise rationale generation system where a separate LLM agent generates trait-specific rationales based on rubric guidelines, which the scoring model uses to accurately predict multi-trait scores. Extensive experiments on benchmark datasets, including ASAP, ASAP++, and Feedback Prize, show that RMTS significantly outperforms state-of-the-art models and vanilla S-LLMs in trait-specific scoring. By assisting quantitative assessment with fine-grained qualitative rationales, RMTS enhances the trait-wise reliability, providing partial explanations about essays. The code is available at https://github.com/BBeeChu/RMTS.git.
📅 2025-02-04
Evaluating Large Language Models (LLMs) often requires costly human annotations. To address this, LLM-based judges have been proposed, which compare the outputs of two LLMs enabling the ranking of models without human intervention. While several approaches have been proposed, many confounding factors are present between different papers. For instance the model, the prompt and other hyperparameters are typically changed at the same time making apple-to-apple comparisons challenging. In this paper, we propose to systematically analyze and tune hyperparameter of LLM judges. To alleviate the high cost of evaluating a judge, we propose to leverage multi-objective multi-fidelity which allows to find judges that trades accuracy for cost and also reduce significantly the cost of the search. Our method identifies judges that not only outperform existing benchmarks in accuracy and cost-efficiency but also utilize open-weight models, ensuring greater accessibility and reproducibility.
📅 2025-02-04
Recent advancements in NLP systems, particularly with the introduction of LLMs, have led to widespread adoption of these systems by a broad spectrum of users across various domains, impacting decision-making, the job market, society, and scientific research. This surge in usage has led to an explosion in NLP model interpretability and analysis research, accompanied by numerous technical surveys. Yet, these surveys often overlook the needs and perspectives of explanation stakeholders. In this paper, we address three fundamental questions: Why do we need interpretability, what are we interpreting, and how? By exploring these questions, we examine existing interpretability paradigms, their properties, and their relevance to different stakeholders. We further explore the practical implications of these paradigms by analyzing trends from the past decade across multiple research fields. To this end, we retrieved thousands of papers and employed an LLM to characterize them. Our analysis reveals significant disparities between NLP developers and non-developer users, as well as between research fields, underscoring the diverse needs of stakeholders. For example, explanations of internal model components are rarely used outside the NLP field. We hope this paper informs the future design, development, and application of methods that align with the objectives and requirements of various stakeholders.
📅 2025-02-04
Large Language models (LLMs) have brought about substantial advancements in the field of Question Answering (QA) systems. These models do remarkably well in addressing intricate inquiries in a variety of disciplines. However, because of domain-specific vocabulary, complex technological concepts, and the requirement for exact responses applying LLMs to specialized sectors like telecommunications presents additional obstacles. GPT-3.5 has been used in recent work, to obtain noteworthy accuracy for telecom-related questions in a Retrieval Augmented Generation (RAG) framework. Notwithstanding these developments, the practical use of models such as GPT-3.5 is restricted by their proprietary nature and high computing demands. This paper introduces QMOS, an innovative approach which uses a Question-Masked loss and Option Shuffling trick to enhance the performance of LLMs in answering Multiple-Choice Questions in the telecommunications domain. Our focus was on using opensource, smaller language models (Phi-2 and Falcon-7B) within an enhanced RAG framework. Our multi-faceted approach involves several enhancements to the whole LLM-RAG pipeline of finetuning, retrieval, prompt engineering and inference. Our approaches significantly outperform existing results, achieving accuracy improvements from baselines of 24.70% to 49.30% with Falcon-7B and from 42.07% to 84.65% with Phi-2.
📅 2025-02-04 | 💬 Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
Embodied agents assisting humans are often asked to complete a new task in a new scenario. An agent preparing a particular dish in the kitchen based on a known recipe may be asked to prepare a new dish or to perform cleaning tasks in the storeroom. There may not be sufficient resources, e.g., time or labeled examples, to train the agent for these new situations. Large Language Models (LLMs) trained on considerable knowledge across many domains are able to predict a sequence of abstract actions for such new tasks and scenarios, although it may not be possible for the agent to execute this action sequence due to task-, agent-, or domain-specific constraints. Our framework addresses these challenges by leveraging the generic predictions provided by LLM and the prior domain-specific knowledge encoded in a Knowledge Graph (KG), enabling an agent to quickly adapt to new tasks and scenarios. The robot also solicits and uses human input as needed to refine its existing knowledge. Based on experimental evaluation over cooking and cleaning tasks in simulation domains, we demonstrate that the interplay between LLM, KG, and human input leads to substantial performance gains compared with just using the LLM output.