Skip to the content.

llm - 2025_02

Home / Papers / llm

Papers

📅 2025-02-19 | 💬 40 pages, 7 figures, 6 tables
This paper presents DataSciBench, a comprehensive benchmark for evaluating Large Language Model (LLM) capabilities in data science. Recent related benchmarks have primarily focused on single tasks, easily obtainable ground truth, and straightforward evaluation metrics, which limits the scope of tasks that can be evaluated. In contrast, DataSciBench is constructed based on a more comprehensive and curated collection of natural and challenging prompts for uncertain ground truth and evaluation metrics. We develop a semi-automated pipeline for generating ground truth (GT) and validating evaluation metrics. This pipeline utilizes and implements an LLM-based self-consistency and human verification strategy to produce accurate GT by leveraging collected prompts, predefined task types, and aggregate functions (metrics). Furthermore, we propose an innovative Task - Function - Code (TFC) framework to assess each code execution outcome based on precisely defined metrics and programmatic rules. Our experimental framework involves testing 6 API-based models, 8 open-source general models, and 9 open-source code generation models using the diverse set of prompts we have gathered. This approach aims to provide a more comprehensive and rigorous evaluation of LLMs in data science, revealing their strengths and weaknesses. Experimental results demonstrate that API-based models outperform open-sourced models on all metrics and Deepseek-Coder-33B-Instruct achieves the highest score among open-sourced models. We release all code and data at https://github.com/THUDM/DataSciBench.
📅 2025-02-19
Large language models (LLMs) have revolutionized machine learning due to their ability to capture complex interactions between input features. Popular post-hoc explanation methods like SHAP provide marginal feature attributions, while their extensions to interaction importances only scale to small input lengths ($\approx 20$). We propose Spectral Explainer (SPEX), a model-agnostic interaction attribution algorithm that efficiently scales to large input lengths ($\approx 1000)$. SPEX exploits underlying natural sparsity among interactions -- common in real-world data -- and applies a sparse Fourier transform using a channel decoding algorithm to efficiently identify important interactions. We perform experiments across three difficult long-context datasets that require LLMs to utilize interactions between inputs to complete the task. For large inputs, SPEX outperforms marginal attribution methods by up to 20% in terms of faithfully reconstructing LLM outputs. Further, SPEX successfully identifies key features and interactions that strongly influence model output. For one of our datasets, HotpotQA, SPEX provides interactions that align with human annotations. Finally, we use our model-agnostic approach to generate explanations to demonstrate abstract reasoning in closed-source LLMs (GPT-4o mini) and compositional reasoning in vision-language models.
📅 2025-02-19 | 💬 7 pages, under review
Current recommendation systems powered by large language models (LLMs) often underutilize their reasoning capabilities due to a lack of explicit logical structuring. To address this limitation, we introduce CoT-Rec, a framework that integrates Chain-of-Thought (CoT) reasoning into LLM-driven recommendations by incorporating two crucial processes: user preference analysis and item perception evaluation. CoT-Rec operates in two key phases: (1) personalized data extraction, where user preferences and item perceptions are identified, and (2) personalized data application, where this information is leveraged to refine recommendations. Our experimental analysis demonstrates that CoT-Rec improves recommendation accuracy by making better use of LLMs' reasoning potential. The implementation is publicly available at https://anonymous.4open.science/r/CoT-Rec.
📅 2025-02-19 | 💬 6 pages, under review
Large Language Model (LLM)-based user agents have emerged as a powerful tool for improving recommender systems by simulating user interactions. However, existing methods struggle with cross-domain scenarios due to inefficient memory structures, leading to irrelevant information retention and failure to account for social influence factors such as popularity. To address these limitations, we introduce AgentCF++, a novel framework featuring a dual-layer memory architecture and a two-step fusion mechanism to filter domain-specific preferences effectively. Additionally, we propose interest groups with shared memory, allowing the model to capture the impact of popularity trends on users with similar interests. Through extensive experiments on multiple cross-domain datasets, AgentCF++ demonstrates superior performance over baseline models, highlighting its effectiveness in refining user behavior simulation for recommender systems. Our code is available at https://anonymous.4open.science/r/AgentCF-plus.
📅 2025-02-19 | 💬 Published as a conference paper at ICLR 2025. Code is available at https://github.com/Lizn-zn/NeqLIPS/
Large language models (LLMs) can prove mathematical theorems formally by generating proof steps (\textit{a.k.a.} tactics) within a proof system. However, the space of possible tactics is vast and complex, while the available training data for formal proofs is limited, posing a significant challenge to LLM-based tactic generation. To address this, we introduce a neuro-symbolic tactic generator that synergizes the mathematical intuition learned by LLMs with domain-specific insights encoded by symbolic methods. The key aspect of this integration is identifying which parts of mathematical reasoning are best suited to LLMs and which to symbolic methods. While the high-level idea of neuro-symbolic integration is broadly applicable to various mathematical problems, in this paper, we focus specifically on Olympiad inequalities (Figure~1). We analyze how humans solve these problems and distill the techniques into two types of tactics: (1) scaling, handled by symbolic methods, and (2) rewriting, handled by LLMs. In addition, we combine symbolic tools with LLMs to prune and rank the proof goals for efficient proof search. We evaluate our framework on 161 challenging inequalities from multiple mathematics competitions, achieving state-of-the-art performance and significantly outperforming existing LLM and symbolic approaches without requiring additional training data.
📅 2025-02-19
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive. Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones. However, existing depth scaling-up methods rely on empirical heuristic rules for layer duplication, which result in poorer initialization and slower convergence during continual pre-training. We propose \textbf{LESA}, a novel learnable method for depth scaling-up. By concatenating parameters from each layer and applying Singular Value Decomposition, we uncover latent patterns between layers, suggesting that inter-layer parameters can be learned. LESA uses a neural network to predict the parameters inserted between adjacent layers, enabling better initialization and faster training. Experiments show that LESA outperforms existing baselines, achieving superior performance with less than half the computational cost during continual pre-training. Extensive analyses demonstrate its effectiveness across different model sizes and tasks.
📅 2025-02-19
Large Language Models (LLMs) are increasingly used in working environments for a wide range of tasks, excelling at solving individual problems in isolation. However, are they also able to effectively collaborate over long-term interactions? To investigate this, we introduce MemoryCode, a synthetic multi-session dataset designed to test LLMs' ability to track and execute simple coding instructions amid irrelevant information, simulating a realistic setting. While all the models we tested handle isolated instructions well, even the performance of state-of-the-art models like GPT-4o deteriorates when instructions are spread across sessions. Our analysis suggests this is due to their failure to retrieve and integrate information over long instruction chains. Our results highlight a fundamental limitation of current LLMs, restricting their ability to collaborate effectively in long interactions.
📅 2025-02-19 | 💬 This paper has been accepted for the tutorial track at WWW 2025
In the era of information overload, recommendation systems play a pivotal role in filtering data and delivering personalized content. Recent advancements in feature interaction and user behavior modeling have significantly enhanced the recall and ranking processes of these systems. With the rise of large language models (LLMs), new opportunities have emerged to further improve recommendation systems. This tutorial explores two primary approaches for integrating LLMs: LLMs-enhanced recommendations, which leverage the reasoning capabilities of general LLMs, and generative large recommendation models, which focus on scaling and sophistication. While the former has been extensively covered in existing literature, the latter remains underexplored. This tutorial aims to fill this gap by providing a comprehensive overview of generative large recommendation models, including their recent advancements, challenges, and potential research directions. Key topics include data quality, scaling laws, user behavior mining, and efficiency in training and inference. By engaging with this tutorial, participants will gain insights into the latest developments and future opportunities in the field, aiding both academic research and practical applications. The timely nature of this exploration supports the rapid evolution of recommendation systems, offering valuable guidance for researchers and practitioners alike.
📅 2025-02-19
As large language models (LLMs) converge towards similar capabilities, the key to advancing their performance lies in identifying and incorporating valuable new information sources. However, evaluating which text collections are worth the substantial investment required for digitization, preprocessing, and integration into LLM systems remains a significant challenge. We present a novel approach to this challenge: an automated pipeline that evaluates the potential information gain from text collections without requiring model training or fine-tuning. Our method generates multiple choice questions (MCQs) from texts and measures an LLM's performance both with and without access to the source material. The performance gap between these conditions serves as a proxy for the collection's information potential. We validate our approach using three strategically selected datasets: EPFL PhD manuscripts (likely containing novel specialized knowledge), Wikipedia articles (presumably part of training data), and a synthetic baseline dataset. Our results demonstrate that this method effectively identifies collections containing valuable novel information, providing a practical tool for prioritizing data acquisition and integration efforts.
📅 2025-02-19
Environment configuration is a critical yet time-consuming step in software development, especially when dealing with unfamiliar code repositories. While Large Language Models (LLMs) demonstrate the potential to accomplish software engineering tasks, existing methods for environment configuration often rely on manual efforts or fragile scripts, leading to inefficiencies and unreliable outcomes. We introduce Repo2Run, the first LLM-based agent designed to fully automate environment configuration and generate executable Dockerfiles for arbitrary Python repositories. We address two major challenges: (1) enabling the LLM agent to configure environments within isolated Docker containers, and (2) ensuring the successful configuration process is recorded and accurately transferred to a Dockerfile without error. To achieve this, we propose atomic configuration synthesis, featuring a dual-environment architecture (internal and external environment) with a rollback mechanism to prevent environment "pollution" from failed commands, guaranteeing atomic execution (execute fully or not at all) and a Dockerfile generator to transfer successful configuration steps into runnable Dockerfiles. We evaluate Repo2Run~on our proposed benchmark of 420 recent Python repositories with unit tests, where it achieves an 86.0% success rate, outperforming the best baseline by 63.9%.
📅 2025-02-19
Aligned LLMs are secure, capable of recognizing and refusing to answer malicious questions. However, the role of internal parameters in maintaining such security is not well understood yet, further these models can be vulnerable to security degradation when subjected to fine-tuning attacks. To address these challenges, our work uncovers the mechanism behind security in aligned LLMs at the parameter level, identifying a small set of contiguous layers in the middle of the model that are crucial for distinguishing malicious queries from normal ones, referred to as ``safety layers". We first confirm the existence of these safety layers by analyzing variations in input vectors within the model's internal layers. Additionally, we leverage the over-rejection phenomenon and parameters scaling analysis to precisely locate the safety layers. Building on these findings, we propose a novel fine-tuning approach, Safely Partial-Parameter Fine-Tuning (SPPFT), that fixes the gradient of the safety layers during fine-tuning to address the security degradation. Our experiments demonstrate that the proposed approach can significantly preserve LLM security while maintaining performance and reducing computational resources compared to full fine-tuning.
📅 2025-02-19 | 💬 under-review
Large Language Models (LLMs) enhance their problem-solving capability by leveraging both parametric and external knowledge. Beyond leveraging external knowledge to improve response accuracy, they require key capabilities for reliable knowledge-handling: resolving conflicts between knowledge sources, avoiding distraction from uninformative external knowledge, and abstaining when sufficient knowledge is unavailable. Prior studies have examined these scenarios in isolation or with limited scope. To systematically evaluate these capabilities, we introduce a comprehensive framework for analyzing knowledge-handling based on two key dimensions: the presence of parametric knowledge and the informativeness of external knowledge. Through analysis, we identify biases in knowledge utilization and examine how the ability to handle one scenario impacts performance in others. Furthermore, we demonstrate that training on data constructed based on the knowledge-handling scenarios improves LLMs' reliability in integrating and utilizing knowledge.
📅 2025-02-19
Large language models (LLMs) are known to have the potential to generate harmful content, posing risks to users. While significant progress has been made in developing taxonomies for LLM risks and safety evaluation prompts, most studies have focused on monolingual contexts, primarily in English. However, language- and region-specific risks in bilingual contexts are often overlooked, and core findings can diverge from those in monolingual settings. In this paper, we introduce Qorgau, a novel dataset specifically designed for safety evaluation in Kazakh and Russian, reflecting the unique bilingual context in Kazakhstan, where both Kazakh (a low-resource language) and Russian (a high-resource language) are spoken. Experiments with both multilingual and language-specific LLMs reveal notable differences in safety performance, emphasizing the need for tailored, region-specific datasets to ensure the responsible and safe deployment of LLMs in countries like Kazakhstan. Warning: this paper contains example data that may be offensive, harmful, or biased.
📅 2025-02-19
The opaque nature of Large Language Models (LLMs) has led to significant research efforts aimed at enhancing their interpretability, primarily through post-hoc methods. More recent in-hoc approaches, such as Concept Bottleneck Models (CBMs), offer both interpretability and intervenability by incorporating explicit concept representations. However, these methods suffer from key limitations, including reliance on labeled concept datasets and significant architectural modifications that challenges re-integration into existing system pipelines. In this work, we introduce a new methodology for incorporating interpretability and intervenability into an existing model by integrating Concept Layers (CLs) into its architecture. Our approach projects the model's internal vector representations into a conceptual, explainable vector space before reconstructing and feeding them back into the model. Furthermore, we eliminate the need for a human-selected concept set by algorithmically searching an ontology for a set of concepts that can be either task-specific or task-agnostic. We evaluate CLs across multiple tasks, demonstrating that they maintain the original model's performance and agreement while enabling meaningful interventions. Additionally, we present a proof of concept showcasing an intervenability interface, allowing users to adjust model behavior dynamically, such as mitigating biases during inference.
📅 2025-02-19
Last few years have seen unprecedented advances in capabilities of Large Language Models (LLMs). These advancements promise to benefit a vast array of application domains. However, due to their immense size, performing inference with LLMs is both costly and slow. Consequently, a plethora of recent work has proposed strategies to enhance inference efficiency, e.g., quantization, pruning, and caching. These acceleration strategies reduce the inference cost and latency, often by several factors, while maintaining much of the predictive performance measured via common benchmarks. In this work, we explore another critical aspect of LLM performance: demographic bias in model generations due to inference acceleration optimizations. Using a wide range of metrics, we probe bias in model outputs from a number of angles. Analysis of outputs before and after inference acceleration shows significant change in bias. Worryingly, these bias effects are complex and unpredictable. A combination of an acceleration strategy and bias type may show little bias change in one model but may lead to a large effect in another. Our results highlight a need for in-depth and case-by-case evaluation of model bias after it has been modified to accelerate inference.
📅 2025-02-19 | 💬 33 pages
Understanding the property of neural populations (or voxels) in the human brain can advance our comprehension of human perceptual and cognitive processing capabilities and contribute to developing brain-inspired computer models. Recent encoding models using deep neural networks (DNNs) have successfully predicted voxel-wise activity. However, interpreting the properties that explain voxel responses remains challenging because of the black-box nature of DNNs. As a solution, we propose LLM-assisted Visual Cortex Captioning (LaVCa), a data-driven approach that uses large language models (LLMs) to generate natural-language captions for images to which voxels are selective. By applying LaVCa for image-evoked brain activity, we demonstrate that LaVCa generates captions that describe voxel selectivity more accurately than the previously proposed method. Furthermore, the captions generated by LaVCa quantitatively capture more detailed properties than the existing method at both the inter-voxel and intra-voxel levels. Furthermore, a more detailed analysis of the voxel-specific properties generated by LaVCa reveals fine-grained functional differentiation within regions of interest (ROIs) in the visual cortex and voxels that simultaneously represent multiple distinct concepts. These findings offer profound insights into human visual representations by assigning detailed captions throughout the visual cortex while highlighting the potential of LLM-based methods in understanding brain representations. Please check out our webpage at https://sites.google.com/view/lavca-llm/
📅 2025-02-19
Direct Preference Optimization (DPO) is an efficient alignment technique that steers LLMs towards preferable outputs by training on preference data, bypassing the need for explicit reward models. Its simplicity enables easy adaptation to various domains and safety requirements. This paper examines DPO's effectiveness in model safety against jailbreaking attacks while minimizing data requirements and training costs. We introduce Egida, a dataset expanded from multiple sources, which includes 27 different safety topics and 18 different attack styles, complemented with synthetic and human labels. This data is used to boost the safety of state-of-the-art LLMs (Llama-3.1-8B/70B-Instruct, Qwen-2.5-7B/72B-Instruct) across topics and attack styles. In addition to safety evaluations, we assess their post-alignment performance degradation in general purpose tasks, and their tendency to over refusal. Following the proposed methodology, trained models reduce their Attack Success Rate by 10%-30%, using small training efforts (2,000 samples) with low computational cost (3\$ for 8B models, 20\$ for 72B models). Safety aligned models generalize to unseen topics and attack styles, with the most successful attack style reaching a success rate around 5%. Size and family are found to strongly influence model malleability towards safety, pointing at the importance of pre-training choices. To validate our findings, a large independent assessment of human preference agreement with Llama-Guard-3-8B is conducted by the authors and the associated dataset Egida-HSafe is released. Overall, this study illustrates how affordable and accessible it is to enhance LLM safety using DPO while outlining its current limitations. All datasets and models are released to enable reproducibility and further research.
📅 2025-02-19
However, real-world data often exhibit complex local structures that can be challenging for single-model approaches with a smooth global manifold in the embedding space to unravel. In this work, we conjecture that in the latent space of these large language models, the embeddings live in a local manifold structure with different dimensions depending on the perplexities and domains of the input data, commonly referred to as a Stratified Manifold structure, which in combination form a structured space known as a Stratified Space. To investigate the validity of this structural claim, we propose an analysis framework based on a Mixture-of-Experts (MoE) model where each expert is implemented with a simple dictionary learning algorithm at varying sparsity levels. By incorporating an attention-based soft-gating network, we verify that our model learns specialized sub-manifolds for an ensemble of input data sources, reflecting the semantic stratification in LLM embedding space. We further analyze the intrinsic dimensions of these stratified sub-manifolds and present extensive statistics on expert assignments, gating entropy, and inter-expert distances. Our experimental results demonstrate that our method not only validates the claim of a stratified manifold structure in the LLM embedding space, but also provides interpretable clusters that align with the intrinsic semantic variations of the input data.
📅 2025-02-19
Recent advances in large language models (LLMs) have showcased exceptional performance in long-context tasks, while facing significant inference efficiency challenges with limited GPU memory. Existing solutions first proposed the sliding-window approach to accumulate a set of historical \textbf{key-value} (KV) pairs for reuse, then further improvements selectively retain its subsets at each step. However, due to the sparse attention distribution across a long context, it is hard to identify and recall relevant KV pairs, as the attention is distracted by massive candidate pairs. Additionally, we found it promising to select representative tokens as probe-Query in each sliding window to effectively represent the entire context, which is an approach overlooked by existing methods. Thus, we propose \textbf{ActQKV}, a training-free, \textbf{Act}ivation-aware approach that dynamically determines probe-\textbf{Q}uery and leverages it to retrieve the relevant \textbf{KV} pairs for inference. Specifically, ActQKV monitors a token-level indicator, Activation Bias, within each context window, enabling the proper construction of probe-Query for retrieval at pre-filling stage. To accurately recall the relevant KV pairs and minimize the irrelevant ones, we design a dynamic KV cut-off mechanism guided by information density across layers at the decoding stage. Experiments on the Long-Bench and $\infty$ Benchmarks demonstrate its state-of-the-art performance with competitive inference quality and resource efficiency.
📅 2025-02-19
Recent methodologies utilizing synthetic datasets have aimed to address inconsistent hallucinations in large language models (LLMs); however,these approaches are primarily tailored to specific tasks, limiting their generalizability. Inspired by the strong performance of code-trained models in logic-intensive domains, we propose a novel framework that leverages event-based text to generate corresponding code and employs cyclic training to transfer the logical consistency of code to natural language effectively. Our method significantly reduces inconsistent hallucinations across three leading LLMs and two categories of natural language tasks while maintaining overall performance. This framework effectively alleviates hallucinations without necessitating adaptation to downstream tasks, demonstrating generality and providing new perspectives to tackle the challenge of inconsistent hallucinations.
📅 2025-02-19 | 💬 15 pages, 1 figure, 12 tables
We show that Large Language Model from Power Law Decoder Representations (PLDR-LLM) is a foundational model whose deductive outputs are invariant tensors up to a small perturbation. PLDR-LLM learns a singularity condition for the deductive outputs that enable the once-inferred energy-curvature tensor $\mathbf{G}_{LM}$ to replace the deep neural network of power law graph attention (PLGA) generating the deductive outputs at inference. We demonstrate that a cache for $\mathbf{G}_{LM}$ (G-cache) and KV-cache can be implemented in a straightforward manner to improve the inference time. The invariance and generalizable nature of deductive outputs is at a very high fidelity where deductive outputs have same RMSE and determinant values up to 15 decimal places after caching, and zero-shot benchmark scores remain unchanged. Ablation studies show that learned deductive outputs have distinct loss and accuracy characteristics from models pretrained with transferred, randomly initialized or identity tensors as a constant tensor operator and an LLM with scaled-dot product attention (SDPA) is a special case of PLDR-LLM where $\mathbf{G}_{LM}$ is predefined as identity. The observed invariance characteristic introduces a novel asymmetry between training and inference phases with caching. We outline observed common characteristics of the deductive outputs for the learned singularity condition. We provide an implementation of a training and inference framework for PLDR-LLM with KV-cache and G-cache.
📅 2025-02-19 | 💬 ICLR 2025 camera version (10 pages, 9 figures, 9 tables)
Advanced large language models (LLMs) can generate text almost indistinguishable from human-written text, highlighting the importance of LLM-generated text detection. However, current zero-shot techniques face challenges as white-box methods are restricted to use weaker open-source LLMs, and black-box methods are limited by partial observation from stronger proprietary LLMs. It seems impossible to enable white-box methods to use proprietary models because API-level access to the models neither provides full predictive distributions nor inner embeddings. To traverse the divide, we propose **Glimpse**, a probability distribution estimation approach, predicting the full distributions from partial observations. Despite the simplicity of Glimpse, we successfully extend white-box methods like Entropy, Rank, Log-Rank, and Fast-DetectGPT to latest proprietary models. Experiments show that Glimpse with Fast-DetectGPT and GPT-3.5 achieves an average AUROC of about 0.95 in five latest source models, improving the score by 51% relative to the remaining space of the open source baseline. It demonstrates that the latest LLMs can effectively detect their own outputs, suggesting that advanced LLMs may be the best shield against themselves. We release our code and data at https://github.com/baoguangsheng/glimpse.
📅 2025-02-19 | 💬 15 pages
Recent work has highlighted the risks of LLM-generated content for a wide range of harmful behaviors, including incorrect and harmful code. In this work, we extend this by studying whether LLM-generated web design contains dark patterns. This work evaluated designs of ecommerce web components generated by four popular LLMs: Claude, GPT, Gemini, and Llama. We tested 13 commonly used ecommerce components (e.g., search, product reviews) and used them as prompts to generate a total of 312 components across all models. Over one-third of generated components contain at least one dark pattern. The majority of dark pattern strategies involve hiding crucial information, limiting users' actions, and manipulating them into making decisions through a sense of urgency. Dark patterns are also more frequently produced in components that are related to company interests. These findings highlight the need for interventions to prevent dark patterns during front-end code generation with LLMs and emphasize the importance of expanding ethical design education to a broader audience.
📅 2025-02-19
Generative large language models (LLMs) have been demonstrated to have gaps in diverse, cultural knowledge across the globe. We investigate the effect of retrieval augmented generation and search-grounding techniques on the ability of LLMs to display familiarity with a diverse range of national cultures. Specifically, we compare the performance of standard LLMs, LLMs augmented with retrievals from a bespoke knowledge base (i.e., KB grounding), and LLMs augmented with retrievals from a web search (i.e., search grounding) on a series of cultural familiarity benchmarks. We find that search grounding significantly improves the LLM performance on multiple-choice benchmarks that test propositional knowledge (e.g., the norms, artifacts, and institutions of national cultures), while KB grounding's effectiveness is limited by inadequate knowledge base coverage and a suboptimal retriever. However, search grounding also increases the risk of stereotypical judgments by language models, while failing to improve evaluators' judgments of cultural familiarity in a human evaluation with adequate statistical power. These results highlight the distinction between propositional knowledge about a culture and open-ended cultural fluency when it comes to evaluating the cultural familiarity of generative LLMs.
📅 2025-02-18
In LLM evaluations, reasoning is often distinguished from recall/memorization by performing numerical variations to math-oriented questions. Here we introduce a general variation method for multiple-choice questions that completely dissociates the correct answer from previously seen tokens or concepts, requiring LLMs to understand and reason (rather than memorizing) in order to answer correctly. Using this method, we evaluate state-of-the-art proprietary and open-source LLMs on two datasets available in English and Spanish: the public MMLU benchmark and the private UNED-Access 2024 dataset. Results show that all models experience remarkable accuracy drops under our proposed variation, with an average loss of 57% on MMLU and 50% on UNED-Access 2024, ranging from 10% to 93% across models. Notably, the most accurate model in our experimentation (OpenAI-o3-mini) is not the most robust (DeepSeek-R1-70B), suggesting that the best models in standard evaluations may not be the ones with better reasoning capabilities. Also, we see larger accuracy drops in public (vs private) datasets and questions posed in their original language (vs a manual translation), which are signs of contamination and also point to a relevant role of recall/memorization in current LLMs' answers.
📅 2025-02-18
We discuss how desirable it is that Large Language Models (LLMs) be able to adapt or align their language behavior with users who may be diverse in their language use. User diversity may come about among others due to i) age differences; ii) gender characteristics, and/or iii) multilingual experience, and associated differences in language processing and use. We consider potential consequences for usability, communication, and LLM development.
📅 2025-02-18
Fine-tuning large language models (LLMs) with classic first-order optimizers entails prohibitive GPU memory due to the backpropagation process. Recent works have turned to zeroth-order optimizers for fine-tuning, which save substantial memory by using two forward passes. However, these optimizers are plagued by the heterogeneity of parameter curvatures across different dimensions. In this work, we propose HiZOO, a diagonal Hessian informed zeroth-order optimizer which is the first work to leverage the diagonal Hessian to enhance zeroth-order optimizer for fine-tuning LLMs. What's more, HiZOO avoids the expensive memory cost and only increases one forward pass per step. Extensive experiments on various models (350M~66B parameters) indicate that HiZOO improves model convergence, significantly reducing training steps and effectively enhancing model accuracy. Moreover, we visualize the optimization trajectories of HiZOO on test functions, illustrating its effectiveness in handling heterogeneous curvatures. Lastly, we provide theoretical proofs of convergence for HiZOO. Code is publicly available at https://anonymous.4open.science/r/HiZOO27F8.
📅 2025-02-18
Recent studies have demonstrated the effectiveness of LLM test-time scaling. However, existing approaches to incentivize LLMs' deep thinking abilities generally require large-scale data or significant training efforts. Meanwhile, it remains unclear how to improve the thinking abilities of less powerful base models. In this work, we introduce S$^2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference. Specifically, we first initialize LLMs with iterative self-verification and self-correction behaviors through supervised fine-tuning on carefully curated data. The self-verification and self-correction skills are then further strengthened by both outcome-level and process-level reinforcement learning, with minimized resource requirements, enabling the model to adaptively refine its reasoning process during inference. Our results demonstrate that, with only 3.1k self-verifying and self-correcting behavior initialization samples, Qwen2.5-math-7B achieves an accuracy improvement from 51.0\% to 81.6\%, outperforming models trained on an equivalent amount of long-CoT distilled data. Extensive experiments and analysis based on three base models across both in-domain and out-of-domain benchmarks validate the effectiveness of S$^2$R. Our code and data are available at https://github.com/NineAbyss/S2R.
📅 2025-02-18 | 💬 This work has been submitted to the IJAIED for possible publication
Effective feedback is essential for fostering students' success in scientific inquiry. With advancements in artificial intelligence, large language models (LLMs) offer new possibilities for delivering instant and adaptive feedback. However, this feedback often lacks the pedagogical validation provided by real-world practitioners. To address this limitation, our study evaluates and compares the feedback quality of LLM agents with that of human teachers and science education experts on student-written experimentation protocols. Four blinded raters, all professionals in scientific inquiry and science education, evaluated the feedback texts generated by 1) the LLM agent, 2) the teachers and 3) the science education experts using a five-point Likert scale based on six criteria of effective feedback: Feed Up, Feed Back, Feed Forward, Constructive Tone, Linguistic Clarity, and Technical Terminology. Our results indicate that LLM-generated feedback shows no significant difference to that of teachers and experts in overall quality. However, the LLM agent's performance lags in the Feed Back dimension, which involves identifying and explaining errors within the student's work context. Qualitative analysis highlighted the LLM agent's limitations in contextual understanding and in the clear communication of specific errors. Our findings suggest that combining LLM-generated feedback with human expertise can enhance educational practices by leveraging the efficiency of LLMs and the nuanced understanding of educators.
📅 2025-02-18
Large language models (LLMs) are revolutionizing healthcare by improving diagnosis, patient care, and decision support through interactive communication. More recently, they have been applied to analyzing physiological time-series like wearable data for health insight extraction. Existing methods embed raw numerical sequences directly into prompts, which exceeds token limits and increases computational costs. Additionally, some studies integrated features extracted from time-series in textual prompts or applied multimodal approaches. However, these methods often produce generic and unreliable outputs due to LLMs' limited analytical rigor and inefficiency in interpreting continuous waveforms. In this paper, we develop an LLM-powered agent for physiological time-series analysis aimed to bridge the gap in integrating LLMs with well-established analytical tools. Built on the OpenCHA, an open-source LLM-powered framework, our agent features an orchestrator that integrates user interaction, data sources, and analytical tools to generate accurate health insights. To evaluate its effectiveness, we implement a case study on heart rate (HR) estimation from Photoplethysmogram (PPG) signals using a dataset of PPG and Electrocardiogram (ECG) recordings in a remote health monitoring study. The agent's performance is benchmarked against OpenAI GPT-4o-mini and GPT-4o, with ECG serving as the gold standard for HR estimation. Results demonstrate that our agent significantly outperforms benchmark models by achieving lower error rates and more reliable HR estimations. The agent implementation is publicly available on GitHub.
📅 2025-02-18
Penetration testing, an essential component of software security testing, allows organizations to identify and remediate vulnerabilities in their systems, thus bolstering their defense mechanisms against cyberattacks. One recent advancement in the realm of penetration testing is the utilization of Language Models (LLMs). We explore the intersection of LLMs and penetration testing to gain insight into their capabilities and challenges in the context of privilege escalation. We introduce a fully automated privilege-escalation tool designed for evaluating the efficacy of LLMs for (ethical) hacking, executing benchmarks using multiple LLMs, and investigating their respective results. Our results show that GPT-4-turbo is well suited to exploit vulnerabilities (33-83% of vulnerabilities). GPT-3.5-turbo can abuse 16-50% of vulnerabilities, while local models, such as Llama3, can only exploit between 0 and 33% of the vulnerabilities. We analyze the impact of different context sizes, in-context learning, optional high-level guidance mechanisms, and memory management techniques. We discuss challenging areas for LLMs, including maintaining focus during testing, coping with errors, and finally comparing LLMs with human hackers. The current version of the LLM-guided privilege-escalation prototype can be found at https://github.com/ipa-labs/hackingBuddyGPT.
📅 2025-02-18 | 💬 Under review
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving, yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods. We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness in LLM-based MAS through LLM training. Optima employs an iterative generate, rank, select, and train paradigm with a reward function balancing task performance, token efficiency, and communication readability. We explore various RL algorithms, including Supervised Fine-Tuning, Direct Preference Optimization, and their hybrid approaches, providing insights into their effectiveness-efficiency trade-offs. We integrate Monte Carlo Tree Search-inspired techniques for DPO data generation, treating conversation turns as tree nodes to explore diverse interaction paths. Evaluated on common multi-agent tasks, including information-asymmetric question answering and complex reasoning, Optima shows consistent and substantial improvements over single-agent baselines and vanilla MAS based on Llama 3 8B, achieving up to 2.8x performance gain with less than 10\% tokens on tasks requiring heavy information exchange. Moreover, Optima's efficiency gains open new possibilities for leveraging inference-compute more effectively, leading to improved inference-time scaling laws. By addressing fundamental challenges in LLM-based MAS, Optima shows the potential towards scalable, efficient, and effective MAS (https://chenweize1998.github.io/optima-project-page).
📅 2025-02-18
Large Language Models (LLMs) are being deployed across various domains today. However, their capacity to solve Capture the Flag (CTF) challenges in cybersecurity has not been thoroughly evaluated. To address this, we develop a novel method to assess LLMs in solving CTF challenges by creating a scalable, open-source benchmark database specifically designed for these applications. This database includes metadata for LLM testing and adaptive learning, compiling a diverse range of CTF challenges from popular competitions. Utilizing the advanced function calling capabilities of LLMs, we build a fully automated system with an enhanced workflow and support for external tool calls. Our benchmark dataset and automated framework allow us to evaluate the performance of five LLMs, encompassing both black-box and open-source models. This work lays the foundation for future research into improving the efficiency of LLMs in interactive cybersecurity tasks and automated task planning. By providing a specialized benchmark, our project offers an ideal platform for developing, testing, and refining LLM-based approaches to vulnerability detection and resolution. Evaluating LLMs on these challenges and comparing with human performance yields insights into their potential for AI-driven cybersecurity solutions to perform real-world threat management. We make our benchmark dataset open source to public https://github.com/NYU-LLM-CTF/NYU_CTF_Bench along with our playground automated framework https://github.com/NYU-LLM-CTF/llm_ctf_automation.
📅 2025-02-18
Emerging AI accelerators increasingly adopt wafer-scale manufacturing technologies, integrating hundreds of thousands of AI cores in a mesh-based architecture with large distributed on-chip memory (tens of GB in total) and ultra-high on-chip memory bandwidth (tens of PB/s). However, current LLM inference systems, optimized for shared memory architectures like GPUs, fail to fully exploit these accelerators. We introduce WaferLLM, the first wafer-scale LLM inference system. WaferLLM is guided by a novel PLMR model (pronounced as "Plummer") that captures the unique hardware characteristics of wafer-scale architectures. Leveraging this model, WaferLLM pioneers wafer-scale LLM parallelism, optimizing the utilization of hundreds of thousands of on-chip cores. It also introduces MeshGEMM and MeshGEMV, the first GEMM and GEMV implementations designed to scale effectively on wafer-scale accelerators. Evaluations show that WaferLLM achieves 200$\times$ better wafer-scale accelerator utilization than state-of-the-art systems. On a commodity wafer-scale accelerator, WaferLLM delivers 606$\times$ faster and 22$\times$ more energy-efficient GEMV compared to an advanced GPU. For LLMs, based on 16-bit data type, WaferLLM achieves 2700 toks/sec/req decode speed on Llama3-8B model and 840 toks/sec/req decode speed on Qwen2-72B model, which enables 39$\times$ faster decoding with 1.7$\times$ better energy efficiency. We anticipate these numbers will grow significantly as wafer-scale AI models, software, and hardware continue to mature.
📅 2025-02-18 | 💬 Add repair model ablation, update related work
Large language models (LLMs) deployed as agents solve user-specified tasks over multiple steps while keeping the required manual engagement to a minimum. Crucially, such LLMs need to ground their generations in any feedback obtained to reliably achieve the desired outcomes. We propose an end-to-end reinforcement learning method for teaching models to leverage execution feedback in the realm of code synthesis, where state-of-the-art LLMs struggle to improve code iteratively compared to independent sampling. We benchmark on competitive programming tasks, where we achieve new state-of-the art results with both small (8B parameters) and large (70B) models while reducing the amount of samples required by an order of magnitude. Our analysis of inference-time behavior demonstrates that our method produces LLMs that effectively leverage automatic feedback over multiple steps.
📅 2025-02-18
Large language models (LLMs) have significantly advanced human language understanding and generation, with pretraining data quality and organization being crucial to their performance. Multi-stage pretraining is a promising approach, but existing methods often lack quantitative criteria for data partitioning and instead rely on intuitive heuristics. In this paper, we propose the novel Four-quadRAnt Multi-stage prEtraining strategy (FRAME), guided by the established principle of organizing the pretraining process into four stages to achieve significant loss reductions four times. This principle is grounded in two key findings: first, training on high Perplexity (PPL) data followed by low PPL data, and second, training on low PPL difference (PD) data followed by high PD data, both causing the loss to drop significantly twice and performance enhancements. By partitioning data into four quadrants and strategically organizing them, FRAME achieves a remarkable 16.8% average improvement over random across MMLU and CMMLU for the 3B model, effectively boosting LLM performance.
📅 2025-02-18 | 💬 Under Review
In the age of misinformation, hallucination -- the tendency of Large Language Models (LLMs) to generate non-factual or unfaithful responses -- represents the main risk for their global utility. Despite LLMs becoming increasingly multilingual, the vast majority of research on detecting and quantifying LLM hallucination are (a) English-centric and (b) focus on machine translation (MT) and summarization, tasks that are less common ``in the wild'' than open information seeking. In contrast, we aim to quantify the extent of LLM hallucination across languages in knowledge-intensive long-form question answering. To this end, we train a multilingual hallucination detection model and conduct a large-scale study across 30 languages and 6 open-source LLM families. We start from an English hallucination detection dataset and rely on MT to generate (noisy) training data in other languages. We also manually annotate gold data for five high-resource languages; we then demonstrate, for these languages, that the estimates of hallucination rates are similar between silver (LLM-generated) and gold test sets, validating the use of silver data for estimating hallucination rates for other languages. For the final rates estimation, we build a knowledge-intensive QA dataset for 30 languages with LLM-generated prompts and Wikipedia articles as references. We find that, while LLMs generate longer responses with more hallucinated tokens for higher-resource languages, there is no correlation between length-normalized hallucination rates of languages and their digital representation. Further, we find that smaller LLMs exhibit larger hallucination rates than larger models.
📅 2025-02-18 | 💬 Under review
Large language models (LLMs) have demonstrated impressive capabilities in generating human-like texts, but the potential misuse of such LLM-generated texts raises the need to distinguish between human-generated and LLM-generated content. This paper explores the detection and explanation capabilities of LLM-based detectors of LLM-generated texts, in the context of a binary classification task (human-generated texts vs LLM-generated texts) and a ternary classification task (human-generated texts, LLM-generated texts, and undecided). By evaluating on six close/open-source LLMs with different sizes, our findings reveal that while self-detection consistently outperforms cross-detection, i.e., LLMs can detect texts generated by themselves more accurately than those generated by other LLMs, the performance of self-detection is still far from ideal, indicating that further improvements are needed. We also show that extending the binary to the ternary classification task with a new class "Undecided" can enhance both detection accuracy and explanation quality, with improvements being statistically significant and consistent across all LLMs. We finally conducted comprehensive qualitative and quantitative analyses on the explanation errors, which are categorized into three types: reliance on inaccurate features (the most frequent error), hallucinations, and incorrect reasoning. These findings with our human-annotated dataset emphasize the need for further research into improving both self-detection and self-explanation, particularly to address overfitting issues that may hinder generalization.
📅 2025-02-18
Trust plays a pivotal role in Lecturer-Student-Collaboration, encompassing teaching and research aspects. The advent of Large Language Models (LLMs) in platforms like Open AI's ChatGPT, coupled with their cost-effectiveness and high-quality results, has led to their rapid adoption among university students. However, discerning genuine student input from LLM-generated output poses a challenge for lecturers. This dilemma jeopardizes the trust relationship between lecturers and students, potentially impacting university downstream activities, particularly collaborative research initiatives. Despite attempts to establish guidelines for student LLM use, a clear framework mutually beneficial for lecturers and students in higher education remains elusive. This study addresses the research question: How does the use of LLMs by students impact Informational and Procedural Justice, influencing Team Trust and Expected Team Performance? Methodically, we applied a quantitative construct-based survey, evaluated using techniques of Structural Equation Modelling (PLS- SEM) to examine potential relationships among these constructs. Our findings based on 23 valid respondents from Ndejje University indicate that lecturers are less concerned about the fairness of LLM use per se but are more focused on the transparency of student utilization, which significantly influences Team Trust positively. This research contributes to the global discourse on integrating and regulating LLMs and subsequent models in education. We propose that guidelines should support LLM use while enforcing transparency in Lecturer-Student- Collaboration to foster Team Trust and Performance. The study contributes valuable insights for shaping policies enabling ethical and transparent LLMs usage in education to ensure effectiveness of collaborative learning environments.
📅 2025-02-18
Significant advancements have been made by Large Language Models (LLMs) in the domains of natural language understanding and automated content creation. However, they still face persistent problems, including substantial computational costs and inadequate availability of training data. The combination of Federated Learning (FL) and LLMs (federated LLMs) offers a solution by leveraging distributed data while protecting privacy, which positions it as an ideal choice for sensitive domains. However, Federated LLMs still suffer from robustness challenges, including data heterogeneity, malicious clients, and adversarial attacks, which greatly hinder their applications. We first introduce the robustness problems in federated LLMs, to address these challenges, we propose FedEAT (Federated Embedding space Adversarial Training), a novel framework that applies adversarial training in the embedding space of client LLM and employs a robust aggregation approach, specifically geometric median aggregation, to enhance the robustness of Federated LLMs. Our experiments demonstrate that FedEAT effectively improves the robustness of Federated LLMs with minimal performance loss.
📅 2025-02-18 | 💬 Accepted at NAACL 2025
Large Language Models (LLMs) have demonstrated impressive performance on a wide range of natural language processing (NLP) tasks, primarily through in-context learning (ICL). In ICL, the LLM is provided with examples that represent a given task such that it learns to generate answers for test inputs. However, access to these in-context examples is not guaranteed especially for low-resource or massively multilingual tasks. In this work, we propose an unsupervised approach to mine in-context examples for machine translation (MT), enabling unsupervised MT (UMT) across different languages. Our approach begins with word-level mining to acquire word translations that are then used to perform sentence-level mining. As the quality of mined parallel pairs may not be optimal due to noise or mistakes, we introduce a filtering criterion to select the optimal in-context examples from a pool of unsupervised parallel sentences. We evaluate our approach using two multilingual LLMs on 288 directions from the FLORES-200 dataset and analyze the impact of various linguistic features on performance. Our findings demonstrate the effectiveness of our unsupervised approach in mining in-context examples for MT, leading to better or comparable translation performance as translation with regular in-context samples (extracted from human-annotated data), while also outperforming the other state-of-the-art UMT methods by an average of $7$ BLEU points.
📅 2025-02-18 | 💬 Ongoning Work
Despite powerful text generation capabilities, large language models (LLMs) still need to learn how to utilize external tools to solve complex tasks, a process known as tool learning. Existing methods primarily rely on supervised fine-tuning to enhance tool-use capabilities, treating tool learning as a text-generation task while overlooking the decision-making complexities inherent in multi-step contexts. In this work, we propose modeling tool learning as a dynamic decision-making task and introduce StepTool, a novel step-grained reinforcement learning framework that enhances the multi-step tool use capabilities of LLMs. StepTool consists of two main components: Step-grained Reward Shaping, which assigns rewards at each tool interaction based on the success of tool invocation and its contribution to the task; and Step-grained Optimization, which uses policy gradient methods to optimize the model in a multi-step manner. Experimental results demonstrate that StepTool significantly outperforms existing methods in multi-step, tool-based tasks, offering a robust solution for tool learning.
📅 2025-02-18 | 💬 Our dataset can be found at \url{https://huggingface.co/datasets/fazliimam/temporal-vqa}
Multimodal Large Language Models (MLLMs) have achieved significant advancements in tasks like Visual Question Answering (VQA) by leveraging foundational Large Language Models (LLMs). However, their abilities in specific areas such as visual temporal understanding, which is crucial for comprehending real-world dynamics, remain underexplored. To address this, we propose a challenging evaluation benchmark named TemporalVQA, consisting of two parts: 1) Temporal Order Understanding and 2) Time-lapse Estimation. The first part requires MLLMs to determine the sequence of events by analyzing temporally consecutive video frames. The second part presents image pairs with varying time differences, framed as multiple-choice questions, asking MLLMs to estimate the time-lapse between images with options ranging from seconds to years. Our evaluations of advanced MLLMs, including models like GPT-4o and Gemini-1.5-Pro, reveal significant challenges: GPT-4o achieved only 49.1% average consistent accuracy in temporal order task and 70% in time-lapse estimation, with open-source models performing even poorly. These findings underscore the limitations of current MLLMs in visual temporal understanding and reasoning, highlighting the need for further improvements for their temporal capability. Our dataset can be found at https://huggingface.co/datasets/fazliimam/temporal-vqa.
📅 2025-02-18 | 💬 13 pages, 9 figures
Large Language Models (LLMs) pose significant privacy risks, potentially leaking training data due to implicit memorization. Existing privacy attacks primarily focus on membership inference attacks (MIAs) or data extraction attacks, but reconstructing specific personally identifiable information (PII) in LLM's training data remains challenging. In this paper, we propose R.R. (Recollect and Rank), a novel two-step privacy stealing attack that enables attackers to reconstruct PII entities from scrubbed training data where the PII entities have been masked. In the first stage, we introduce a prompt paradigm named recollection, which instructs the LLM to repeat a masked text but fill in masks. Then we can use PII identifiers to extract recollected PII candidates. In the second stage, we design a new criterion to score each PII candidate and rank them. Motivated by membership inference, we leverage the reference model as a calibration to our criterion. Experiments across three popular PII datasets demonstrate that the R.R. achieves better PII identical performance compared to baselines. These results highlight the vulnerability of LLMs to PII leakage even when training data has been scrubbed. We release the replicate package of R.R. at a link.
📅 2025-02-18 | 💬 NAACL 2025
Relevance modeling between queries and items stands as a pivotal component in commercial search engines, directly affecting the user experience. Given the remarkable achievements of large language models (LLMs) in various natural language processing (NLP) tasks, LLM-based relevance modeling is gradually being adopted within industrial search systems. Nevertheless, foundational LLMs lack domain-specific knowledge and do not fully exploit the potential of in-context learning. Furthermore, structured item text remains underutilized, and there is a shortage in the supply of corresponding queries and background knowledge. We thereby propose CPRM (Continual Pre-training for Relevance Modeling), a framework designed for the continual pre-training of LLMs to address these issues. Our CPRM framework includes three modules: 1) employing both queries and multi-field item to jointly pre-train for enhancing domain knowledge, 2) applying in-context pre-training, a novel approach where LLMs are pre-trained on a sequence of related queries or items, and 3) conducting reading comprehension on items to produce associated domain knowledge and background information (e.g., generating summaries and corresponding queries) to further strengthen LLMs. Results on offline experiments and online A/B testing demonstrate that our model achieves convincing performance compared to strong baselines.
📅 2025-02-18
This paper presents a systematic analysis of biases in open-source Large Language Models (LLMs), across gender, religion, and race. Our study evaluates bias in smaller-scale Llama and Gemma models using the SALT ($\textbf{S}$ocial $\textbf{A}$ppropriateness in $\textbf{L}$LM-Generated $\textbf{T}$ext) dataset, which incorporates five distinct bias triggers: General Debate, Positioned Debate, Career Advice, Problem Solving, and CV Generation. To quantify bias, we measure win rates in General Debate and the assignment of negative roles in Positioned Debate. For real-world use cases, such as Career Advice, Problem Solving, and CV Generation, we anonymize the outputs to remove explicit demographic identifiers and use DeepSeek-R1 as an automated evaluator. We also address inherent biases in LLM-based evaluation, including evaluation bias, positional bias, and length bias, and validate our results through human evaluations. Our findings reveal consistent polarization across models, with certain demographic groups receiving systematically favorable or unfavorable treatment. By introducing SALT, we provide a comprehensive benchmark for bias analysis and underscore the need for robust bias mitigation strategies in the development of equitable AI systems.
📅 2025-02-18 | 💬 22 pages, 7 figures
Deep iterative chain-of-thought (CoT) reasoning enables LLMs to tackle complex tasks by progressively activating relevant pre-trained knowledge. However, it faces challenges in ensuring continual improvement and determining a stopping criterion. In this paper, we investigate whether the relevant knowledge that contributes directly to solving the given question can be activated from the initial reasoning path, thus circumventing the need for iterative refinement. Our experiments reveal that increasing the diversity of initial reasoning paths can achieve comparable or superior performance, a concept we term \textit{breadth reasoning}. However, existing breadth reasoning approaches, such as self-consistency, offer limited diversity. To address this limitation, we propose a simple yet effective method that enhances reasoning breadth by integrating contextual exploration with reduced sampling randomness. Extensive experiments demonstrate that our approach significantly outperforms deep iterative reasoning. Our code is provided in https://github.com/zongqianwu/breadth.
📅 2025-02-18
Adapting large language models (LLMs) to new and diverse knowledge is essential for their lasting effectiveness in real-world applications. This survey provides an overview of state-of-the-art methods for expanding the knowledge of LLMs, focusing on integrating various knowledge types, including factual information, domain expertise, language proficiency, and user preferences. We explore techniques, such as continual learning, model editing, and retrieval-based explicit adaptation, while discussing challenges like knowledge consistency and scalability. Designed as a guide for researchers and practitioners, this survey sheds light on opportunities for advancing LLMs as adaptable and robust knowledge systems.
📅 2025-02-18 | 💬 Accepted for publication in NAACL 2025. The official version will be available in the ACL Anthology
Large Language Models (LLMs) have achieved significant success in open-domain question answering. However, they continue to face challenges such as hallucinations and knowledge cutoffs. These issues can be mitigated through in-context learning by providing LLMs with relevant context before generating answers. Recent literature proposes Knowledge Graph Prompting (KGP) which integrates knowledge graphs with an LLM-based traversal agent to substantially enhance document retrieval quality. However, KGP requires costly fine-tuning with large datasets and remains prone to hallucination. In this paper, we propose CuriousLLM, an enhancement that integrates a curiosity-driven reasoning mechanism into an LLM agent. This mechanism enables the agent to generate relevant follow-up questions, thereby guiding the information retrieval process more efficiently. Central to our approach is the development of the new Follow-upQA dataset, which includes questions and supporting evidence as input, with follow-up questions serving as ground truths. These follow-up questions either inquire about what is still missing to fully answer the user's query or use special tokens to signify that the retrieved evidence is sufficient. Our experiments show that CuriousLLM significantly boosts LLM performance in multi-document question answering (MD-QA), circumventing the substantial computational costs and latency from the original KGP framework.
📅 2025-02-18
Despite the growing development of long-context large language models (LLMs), data-centric approaches relying on synthetic data have been hindered by issues related to faithfulness, which limit their effectiveness in enhancing model performance on tasks such as long-context reasoning and question answering (QA). These challenges are often exacerbated by misinformation caused by lack of verification, reasoning without attribution, and potential knowledge conflicts. We propose LongFaith, a novel pipeline for synthesizing faithful long-context reasoning instruction datasets. By integrating ground truth and citation-based reasoning prompts, we eliminate distractions and improve the accuracy of reasoning chains, thus mitigating the need for costly verification processes. We open-source two synthesized datasets, LongFaith-SFT and LongFaith-PO, which systematically address multiple dimensions of faithfulness, including verified reasoning, attribution, and contextual grounding. Extensive experiments on multi-hop reasoning datasets and LongBench demonstrate that models fine-tuned on these datasets significantly improve performance. Our ablation studies highlight the scalability and adaptability of the LongFaith pipeline, showcasing its broad applicability in developing long-context LLMs.
📅 2025-02-18
As LLM-based agents become increasingly prevalent, backdoors can be implanted into agents through user queries or environment feedback, raising critical concerns regarding safety vulnerabilities. However, backdoor attacks are typically detectable by safety audits that analyze the reasoning process of agents. To this end, we propose a novel backdoor implantation strategy called \textbf{Dynamically Encrypted Multi-Backdoor Implantation Attack}. Specifically, we introduce dynamic encryption, which maps the backdoor into benign content, effectively circumventing safety audits. To enhance stealthiness, we further decompose the backdoor into multiple sub-backdoor fragments. Based on these advancements, backdoors are allowed to bypass safety audits significantly. Additionally, we present AgentBackdoorEval, a dataset designed for the comprehensive evaluation of agent backdoor attacks. Experimental results across multiple datasets demonstrate that our method achieves an attack success rate nearing 100\% while maintaining a detection rate of 0\%, illustrating its effectiveness in evading safety audits. Our findings highlight the limitations of existing safety mechanisms in detecting advanced attacks, underscoring the urgent need for more robust defenses against backdoor threats. Code and data are available at https://github.com/whfeLingYu/DemonAgent.
📅 2025-02-18
Transformer-based large language models (LLMs) demonstrate impressive performance in long context generation. Extending the context length has disproportionately shifted the memory footprint of LLMs during inference to the key-value cache (KV cache). In this paper, we propose HEADINFER, which offloads the KV cache to CPU RAM while avoiding the need to fully store the KV cache for any transformer layer on the GPU. HEADINFER employs a fine-grained, head-wise offloading strategy, maintaining only selective attention heads KV cache on the GPU while computing attention output dynamically. Through roofline analysis, we demonstrate that HEADINFER maintains computational efficiency while significantly reducing memory footprint. We evaluate HEADINFER on the Llama-3-8B model with a 1-million-token sequence, reducing the GPU memory footprint of the KV cache from 128 GB to 1 GB and the total GPU memory usage from 207 GB to 17 GB, achieving a 92% reduction compared to BF16 baseline inference. Notably, HEADINFER enables 4-million-token inference with an 8B model on a single consumer GPU with 24GB memory (e.g., NVIDIA RTX 4090) without approximation methods.
📅 2025-02-18
Natural Language Processing (NLP) and Voice Recognition agents are rapidly evolving healthcare by enabling efficient, accessible, and professional patient support while automating grunt work. This report serves as my self project wherein models finetuned on medical call recordings are analysed through a two-stage system: Automatic Speech Recognition (ASR) for speech transcription and a Large Language Model (LLM) for context-aware, professional responses. ASR, finetuned on phone call recordings provides generalised transcription of diverse patient speech over call, while the LLM matches transcribed text to medical diagnosis. A novel audio preprocessing strategy, is deployed to provide invariance to incoming recording/call data, laden with sufficient augmentation with noise/clipping to make the pipeline robust to the type of microphone and ambient conditions the patient might have while calling/recording.
📅 2025-02-18
In this paper, we address the challenge of enforcing strict schema adherence in large language model (LLM) generation by leveraging LLM reasoning capabilities. Building on the DeepSeek R1 reinforcement learning framework, our approach trains structured reasoning skills of a 1.5B parameter model through a novel pipeline that combines synthetic reasoning dataset construction with custom reward functions under Group Relative Policy Optimization (GRPO). Specifically, we first perform R1 reinforcement learning on a 20K sample unstructured-to-structured dataset, mirroring the original DeepSeek R1 methods, to establish core reasoning abilities. Subsequently, we performed supervised fine-tuning on a separate 10K reasoning sample dataset, focusing on refining schema adherence for downstream tasks. Despite the relatively modest training scope, requiring approximately 20 hours on an 8xH100 GPU cluster for GRPO training and 3 hours on 1xA100 for SFT, our model demonstrates robust performance in enforcing schema consistency. We compare our ThinkJSON approach against the original DeepSeek R1 (671B), distilled versions of DeepSeek R1 (Qwen-1.5B and Qwen-7B), and Gemini 2.0 Flash (70B), showcasing its effectiveness in real-world applications. Our results underscore the practical utility of a resource-efficient framework for schema-constrained text generation.
📅 2025-02-18 | 💬 Code: https://github.com/HKUDS/AutoAgent
Large Language Model (LLM) Agents have demonstrated remarkable capabilities in task automation and intelligent decision-making, driving the widespread adoption of agent development frameworks such as LangChain and AutoGen. However, these frameworks predominantly serve developers with extensive technical expertise - a significant limitation considering that only 0.03 % of the global population possesses the necessary programming skills. This stark accessibility gap raises a fundamental question: Can we enable everyone, regardless of technical background, to build their own LLM agents using natural language alone? To address this challenge, we introduce AutoAgent-a Fully-Automated and highly Self-Developing framework that enables users to create and deploy LLM agents through Natural Language Alone. Operating as an autonomous Agent Operating System, AutoAgent comprises four key components: i) Agentic System Utilities, ii) LLM-powered Actionable Engine, iii) Self-Managing File System, and iv) Self-Play Agent Customization module. This lightweight yet powerful system enables efficient and dynamic creation and modification of tools, agents, and workflows without coding requirements or manual intervention. Beyond its code-free agent development capabilities, AutoAgent also serves as a versatile multi-agent system for General AI Assistants. Comprehensive evaluations on the GAIA benchmark demonstrate AutoAgent's effectiveness in generalist multi-agent tasks, surpassing existing state-of-the-art methods. Furthermore, AutoAgent's Retrieval-Augmented Generation (RAG)-related capabilities have shown consistently superior performance compared to many alternative LLM-based solutions.
📅 2025-02-18 | 💬 22 pages, 8 figures, 11 tables
Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks yet still are vulnerable to external threats, particularly LLM Denial-of-Service (LLM-DoS) attacks. Specifically, LLM-DoS attacks aim to exhaust computational resources and block services. However, existing studies predominantly focus on white-box attacks, leaving black-box scenarios underexplored. In this paper, we introduce Auto-Generation for LLM-DoS (AutoDoS) attack, an automated algorithm designed for black-box LLMs. AutoDoS constructs the DoS Attack Tree and expands the node coverage to achieve effectiveness under black-box conditions. By transferability-driven iterative optimization, AutoDoS could work across different models in one prompt. Furthermore, we reveal that embedding the Length Trojan allows AutoDoS to bypass existing defenses more effectively. Experimental results show that AutoDoS significantly amplifies service response latency by over 250$\times\uparrow$, leading to severe resource consumption in terms of GPU utilization and memory usage. Our work provides a new perspective on LLM-DoS attacks and security defenses. Our code is available at https://github.com/shuita2333/AutoDoS.
📅 2025-02-18
With the different roles that AI is expected to play in human life, imbuing large language models (LLMs) with different personalities has attracted increasing research interests. While the "personification" enhances human experiences of interactivity and adaptability of LLMs, it gives rise to critical concerns about content safety, particularly regarding bias, sentiment and toxicity of LLM generation. This study explores how assigning different personality traits to LLMs affects the toxicity and biases of their outputs. Leveraging the widely accepted HEXACO personality framework developed in social psychology, we design experimentally sound prompts to test three LLMs' performance on three toxic and bias benchmarks. The findings demonstrate the sensitivity of all three models to HEXACO personality traits and, more importantly, a consistent variation in the biases, negative sentiment and toxicity of their output. In particular, adjusting the levels of several personality traits can effectively reduce bias and toxicity in model performance, similar to humans' correlations between personality traits and toxic behaviors. The findings highlight the additional need to examine content safety besides the efficiency of training or fine-tuning methods for LLM personification. They also suggest a potential for the adjustment of personalities to be a simple and low-cost method to conduct controlled text generation.
📅 2025-02-18
Usability testing is a fundamental yet challenging (e.g., inflexible to iterate the study design flaws and hard to recruit study participants) research method for user experience (UX) researchers to evaluate a web design. Recent advances in Large Language Model-simulated Agent (LLM-Agent) research inspired us to design UXAgent to support UX researchers in evaluating and reiterating their usability testing study design before they conduct the real human subject study. Our system features an LLM-Agent module and a universal browser connector module so that UX researchers can automatically generate thousands of simulated users to test the target website. The results are shown in qualitative (e.g., interviewing how an agent thinks ), quantitative (e.g., # of actions), and video recording formats for UX researchers to analyze. Through a heuristic user evaluation with five UX researchers, participants praised the innovation of our system but also expressed concerns about the future of LLM Agent-assisted UX study.
📅 2025-02-18
Large language models (LLMs) have achieved remarkable success across various artificial intelligence tasks. However, their enormous sizes and computational demands pose significant challenges for the deployment on edge devices. To address this issue, we present a distributed on-device LLM inference framework based on tensor parallelism, which partitions neural network tensors (e.g., weight matrices) of LLMs among multiple edge devices for collaborative inference. Nevertheless, tensor parallelism involves frequent all-reduce operations to aggregate intermediate layer outputs across participating devices during inference, resulting in substantial communication overhead. To mitigate this bottleneck, we propose an over-the-air computation method that leverages the analog superposition property of wireless multiple-access channels to facilitate fast all-reduce operations. To minimize the average transmission mean-squared error, we investigate joint model assignment and transceiver optimization, which can be formulated as a mixed-timescale stochastic non-convex optimization problem. Then, we develop a mixed-timescale algorithm leveraging semidefinite relaxation and stochastic successive convex approximation methods. Comprehensive simulation results will show that the proposed approach significantly reduces inference latency while improving accuracy. This makes distributed on-device LLM inference practical for resource-constrained edge devices.
📅 2025-02-18
Large language models (LLMs) are widely adapted for downstream applications through fine-tuning, a process named customization. However, recent studies have identified a vulnerability during this process, where malicious samples can compromise the robustness of LLMs and amplify harmful behaviors-an attack commonly referred to as jailbreaking. To address this challenge, we propose an adaptive data curation approach allowing any text to be curated to enhance its effectiveness in counteracting harmful samples during customization. To avoid the need for additional defensive modules, we further introduce a comprehensive mitigation framework spanning the lifecycle of the customization process: before customization to immunize LLMs against future jailbreak attempts, during customization to neutralize risks, and after customization to restore compromised models. Experimental results demonstrate a significant reduction in jailbreaking effects, achieving up to a 100% success rate in generating safe responses. By combining adaptive data curation with lifecycle-based mitigation strategies, this work represents a solid step forward in mitigating jailbreaking risks and ensuring the secure adaptation of LLMs.
📅 2025-02-18
This paper analyzes the safety of Large Language Models (LLMs) in interactions with children below age of 18 years. Despite the transformative applications of LLMs in various aspects of children's lives such as education and therapy, there remains a significant gap in understanding and mitigating potential content harms specific to this demographic. The study acknowledges the diverse nature of children often overlooked by standard safety evaluations and proposes a comprehensive approach to evaluating LLM safety specifically for children. We list down potential risks that children may encounter when using LLM powered applications. Additionally we develop Child User Models that reflect the varied personalities and interests of children informed by literature in child care and psychology. These user models aim to bridge the existing gap in child safety literature across various fields. We utilize Child User Models to evaluate the safety of six state of the art LLMs. Our observations reveal significant safety gaps in LLMs particularly in categories harmful to children but not adults
📅 2025-02-18
Large reasoning models (LRMs) tackle complex reasoning problems by following long chain-of-thoughts (Long CoT) that incorporate reflection, backtracking, and self-validation. However, the training techniques and data requirements to elicit Long CoT remain poorly understood. In this work, we find that a Large Language model (LLM) can effectively learn Long CoT reasoning through data-efficient supervised fine-tuning (SFT) and parameter-efficient low-rank adaptation (LoRA). With just 17k long CoT training samples, the Qwen2.5-32B-Instruct model achieves significant improvements on a wide range of math and coding benchmarks, including 56.7% (+40.0%) on AIME 2024 and 57.0% (+8.1%) on LiveCodeBench, competitive to the proprietary o1-preview model's score of 44.6% and 59.1%. More importantly, we find that the structure of Long CoT is critical to the learning process, whereas the content of individual reasoning steps has minimal impact. Perturbations affecting content, such as training on incorrect samples or removing reasoning keywords, have little impact on performance. In contrast, structural modifications that disrupt logical consistency in the Long CoT, such as shuffling or deleting reasoning steps, significantly degrade accuracy. For example, a model trained on Long CoT samples with incorrect answers still achieves only 3.2% lower accuracy compared to training with fully correct samples. These insights deepen our understanding of how to elicit reasoning capabilities in LLMs and highlight key considerations for efficiently training the next generation of reasoning models. This is the academic paper of our previous released Sky-T1-32B-Preview model. Codes are available at https://github.com/NovaSky-AI/SkyThought.
📅 2025-02-18 | 💬 16 pages
As large language models (LLMs) have been deployed in various real-world settings, concerns about the harm they may propagate have grown. Various jailbreaking techniques have been developed to expose the vulnerabilities of these models and improve their safety. This work reveals that many state-of-the-art LLMs are vulnerable to malicious requests hidden behind scientific language. Specifically, our experiments with GPT4o, GPT4o-mini, GPT-4, LLama3-405B-Instruct, Llama3-70B-Instruct, Cohere, Gemini models demonstrate that, the models' biases and toxicity substantially increase when prompted with requests that deliberately misinterpret social science and psychological studies as evidence supporting the benefits of stereotypical biases. Alarmingly, these models can also be manipulated to generate fabricated scientific arguments claiming that biases are beneficial, which can be used by ill-intended actors to systematically jailbreak these strong LLMs. Our analysis studies various factors that contribute to the models' vulnerabilities to malicious requests in academic language. Mentioning author names and venues enhances the persuasiveness of models, and the bias scores increase as dialogues progress. Our findings call for a more careful investigation on the use of scientific data for training LLMs.
📅 2025-02-18 | 💬 8 pages
The integration of Large Language Models (LLMs) into robotic control, including drones, has the potential to revolutionize autonomous systems. Research studies have demonstrated that LLMs can be leveraged to support robotic operations. However, when facing tasks with complex reasoning, concerns and challenges are raised about the reliability of solutions produced by LLMs. In this paper, we propose a prompt framework with enhanced reasoning to enable reliable LLM-driven control for drones. Our framework consists of novel technical components designed using Guidelines, Skill APIs, Constraints, and Examples, namely GSCE. GSCE is featured by its reliable and constraint-compliant code generation. We performed thorough experiments using GSCE for the control of drones with a wide level of task complexities. Our experiment results demonstrate that GSCE can significantly improve task success rates and completeness compared to baseline approaches, highlighting its potential for reliable LLM-driven autonomous drone systems.
📅 2025-02-18
As humans increasingly share environments with diverse agents powered by RL, LLMs, and beyond, the ability to explain their policies in natural language will be vital for reliable coexistence. In this paper, we build a model-agnostic explanation generator based on an LLM. The technical novelty is that the rewards for training this LLM are generated by a generative flow matching model. This model has a specially designed structure with a hidden layer merged with an LLM to harness the linguistic cues of explanations into generating appropriate rewards. Experiments on both RL and LLM tasks demonstrate that our method can generate dense and effective rewards while saving on expensive human feedback; it thus enables effective explanations and even improves the accuracy of the decisions in original tasks.
📅 2025-02-18
We examine the reasoning and planning capabilities of large language models (LLMs) in solving complex tasks. Recent advances in inference-time techniques demonstrate the potential to enhance LLM reasoning without additional training by exploring intermediate steps during inference. Notably, OpenAI's o1 model shows promising performance through its novel use of multi-step reasoning and verification. Here, we explore how scaling inference-time techniques can improve reasoning and planning, focusing on understanding the tradeoff between computational cost and performance. To this end, we construct a comprehensive benchmark, known as Sys2Bench, and perform extensive experiments evaluating existing inference-time techniques on eleven diverse tasks across five categories, including arithmetic reasoning, logical reasoning, common sense reasoning, algorithmic reasoning, and planning. Our findings indicate that simply scaling inference-time computation has limitations, as no single inference-time technique consistently performs well across all reasoning and planning tasks.
📅 2025-02-18
Customizable role-playing in large language models (LLMs), also known as character generalization, is gaining increasing attention for its versatility and cost-efficiency in developing and deploying role-playing dialogue agents. This study explores a large-scale data synthesis approach to equip LLMs with character generalization capabilities. We begin by synthesizing large-scale character profiles using personas from Persona Hub and then explore two strategies: response rewriting and response generation, to create character-aligned instructional responses. To validate the effectiveness of our synthetic instruction tuning data for character generalization, we perform supervised fine-tuning (SFT) using the LLaMA-3 8B model. Our best-performing model strengthens the original LLaMA-3 8B Instruct model and achieves performance comparable to GPT-4o models on role-playing dialogue. We release our synthetic characters and instruction-tuning dialogues to support public research.
📅 2025-02-18
Frame-semantic parsing is a critical task in natural language understanding, yet the ability of large language models (LLMs) to extract frame-semantic arguments remains underexplored. This paper presents a comprehensive evaluation of LLMs on frame-semantic argument identification, analyzing the impact of input representation formats, model architectures, and generalization to unseen and out-of-domain samples. Our experiments, spanning models from 0.5B to 78B parameters, reveal that JSON-based representations significantly enhance performance, and while larger models generally perform better, smaller models can achieve competitive results through fine-tuning. We also introduce a novel approach to frame identification leveraging predicted frame elements, achieving state-of-the-art performance on ambiguous targets. Despite strong generalization capabilities, our analysis finds that LLMs still struggle with out-of-domain data.
📅 2025-02-18
Human prosocial cooperation is essential for our collective health, education, and welfare. However, designing social systems to maintain or incentivize prosocial behavior is challenging because people can act selfishly to maximize personal gain. This complex and unpredictable aspect of human behavior makes it difficult for policymakers to foresee the implications of their designs. Recently, multi-agent LLM systems have shown remarkable capabilities in simulating human-like behavior, and replicating some human lab experiments. This paper studies how well multi-agent systems can simulate prosocial human behavior, such as that seen in the public goods game (PGG), and whether multi-agent systems can exhibit ``unbounded actions'' seen outside the lab in real world scenarios. We find that multi-agent LLM systems successfully replicate human behavior from lab experiments of the public goods game with three experimental treatments - priming, transparency, and varying endowments. Beyond replicating existing experiments, we find that multi-agent LLM systems can replicate the expected human behavior when combining experimental treatments, even if no previous study combined those specific treatments. Lastly, we find that multi-agent systems can exhibit a rich set of unbounded actions that people do in the real world outside of the lab -- such as collaborating and even cheating. In sum, these studies are steps towards a future where LLMs can be used to inform policy decisions that encourage people to act in a prosocial manner.
📅 2025-02-18
LLM-as-a-Judge, which generates chain-of-thought (CoT) judgments, has become a widely adopted auto-evaluation method. However, its reliability is compromised by the CoT reasoning's inability to capture comprehensive and deeper details, often leading to incomplete outcomes. Existing methods mainly rely on majority voting or criteria expansion, which is insufficient to address the limitation in CoT. We propose Crowd-based Comparative Evaluation, which introduces additional crowd responses to compare with the candidate responses, thereby exposing deeper and more comprehensive details within the candidate responses. This process effectively guides LLM-as-a-Judge to provide a more detailed CoT judgment. Extensive experiments demonstrate that our approach enhances evaluation reliability, achieving an average accuracy gain of 6.7% across five benchmarks. Moreover, our method produces higher-quality CoTs that facilitate judge distillation and exhibit superior performance in rejection sampling for supervised fine-tuning (SFT), referred to as crowd rejection sampling, thereby enabling more efficient SFT. Our analysis confirms that CoTs generated by ours are more comprehensive and of higher quality, and evaluation accuracy improves as inference scales.
📅 2025-02-18
Large Language Models (LLMs) have shown remarkable capabilities as AI agents. However, existing methods for enhancing LLM-agent abilities often lack a focus on data quality, leading to inefficiencies and suboptimal results in both fine-tuning and prompt engineering. To address this issue, we introduce EDGE, a novel approach for identifying informative samples without needing golden answers. We propose the Guideline Effectiveness (GE) metric, which selects challenging samples by measuring the impact of human-provided guidelines in multi-turn interaction tasks. A low GE score indicates that the human expertise required for a sample is missing from the guideline, making the sample more informative. By selecting samples with low GE scores, we can improve the efficiency and outcomes of both prompt engineering and fine-tuning processes for LLMs. Extensive experiments validate the performance of our method. Our method achieves competitive results on the HotpotQA and WebShop and datasets, requiring 75\% and 50\% less data, respectively, while outperforming existing methods. We also provide a fresh perspective on the data quality of LLM-agent fine-tuning.
📅 2025-02-18 | 💬 9 pages, 4 figures
Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL) using process rewards and iterative self-play, without supervised fine-tuning (SFT) as a preliminary step. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications.
📅 2025-02-18
Current Multimodal Sentiment Analysis (MSA) and Emotion Recognition in Conversations (ERC) methods based on pre-trained language models exhibit two primary limitations: 1) Once trained for MSA and ERC tasks, these pre-trained language models lose their original generalized capabilities. 2) They demand considerable computational resources. As the size of pre-trained language models continues to grow, training larger multimodal sentiment analysis models using previous approaches could result in unnecessary computational cost. In response to this challenge, we propose \textbf{M}ultimodal \textbf{S}entiment Analysis and \textbf{E}motion Recognition \textbf{Adapter} (MSE-Adapter), a lightweight and adaptable plugin. This plugin enables a large language model (LLM) to carry out MSA or ERC tasks with minimal computational overhead (only introduces approximately 2.6M to 2.8M trainable parameters upon the 6/7B models), while preserving the intrinsic capabilities of the LLM. In the MSE-Adapter, the Text-Guide-Mixer (TGM) module is introduced to establish explicit connections between non-textual and textual modalities through the Hadamard product. This allows non-textual modalities to better align with textual modalities at the feature level, promoting the generation of higher-quality pseudo tokens. Extensive experiments were conducted on four public English and Chinese datasets using consumer-grade GPUs and open-source LLMs (Qwen-1.8B, ChatGLM3-6B-base, and LLaMA2-7B) as the backbone. The results demonstrate the effectiveness of the proposed plugin. The code will be released on GitHub after a blind review.
📅 2025-02-18 | 💬 13 pages, 7 figures
Multilingual Large Language Models (LLMs) develop cross-lingual abilities despite being trained on limited parallel data. However, they often struggle to generate responses in the intended language, favoring high-resource languages such as English. In this work, we introduce CoCo-CoLa (Correct Concept - Correct Language), a novel metric to evaluate language adherence in multilingual LLMs. Using fine-tuning experiments on a closed-book QA task across seven languages, we analyze how training in one language affects others' performance. Our findings reveal that multilingual models share task knowledge across languages but exhibit biases in the selection of output language. We identify language-specific layers, showing that final layers play a crucial role in determining output language. Accordingly, we propose a partial training strategy that selectively fine-tunes key layers, improving language adherence while significantly reducing computational cost. Our method achieves comparable or superior performance to full fine-tuning, particularly for low-resource languages, offering a more efficient multilingual adaptation.
📅 2025-02-18
Large Language Models (LLMs) exhibit impressive reasoning abilities, yet their reliance on structured step-by-step processing reveals a critical limitation. While human cognition fluidly adapts between intuitive, heuristic (System 1) and analytical, deliberative (System 2) reasoning depending on the context, LLMs lack this dynamic flexibility. This rigidity can lead to brittle and unreliable performance when faced with tasks that deviate from their trained patterns. To address this, we create a dataset of 2,000 samples with valid System 1 and System 2 answers, explicitly align LLMs with these reasoning styles, and evaluate their performance across reasoning benchmarks. Our results reveal an accuracy-efficiency trade-off: System 2-aligned models excel in arithmetic and symbolic reasoning, while System 1-aligned models perform better in commonsense tasks. A mechanistic analysis of model responses shows that System 1 models employ more definitive answers, whereas System 2 models demonstrate greater uncertainty. Interpolating between these extremes produces a monotonic transition in reasoning accuracy, preserving coherence. This work challenges the assumption that step-by-step reasoning is always optimal and highlights the need for adapting reasoning strategies based on task demands.
📅 2025-02-18
The LLM-as-a-Judge paradigm shows promise for evaluating generative content but lacks reliability in reasoning-intensive scenarios, such as programming. Inspired by recent advances in reasoning models and shifts in scaling laws, we pioneer bringing test-time computation into LLM-as-a-Judge, proposing MCTS-Judge, a resource-efficient, System-2 thinking framework for code correctness evaluation. MCTS-Judge leverages Monte Carlo Tree Search (MCTS) to decompose problems into simpler, multi-perspective evaluations. Through a node-selection strategy that combines self-assessment based on historical actions in the current trajectory and the Upper Confidence Bound for Trees based on prior rollouts, MCTS-Judge balances global optimization and refinement of the current trajectory. We further designed a high-precision, unit-test-level reward mechanism to encourage the Large Language Model (LLM) to perform line-by-line analysis. Extensive experiments on three benchmarks and five LLMs demonstrate the effectiveness of MCTS-Judge, which improves the base model's accuracy from 41% to 80%, surpassing the o1-series models with 3x fewer tokens. Further evaluations validate the superiority of its reasoning trajectory in logic, analytics, thoroughness, and overall quality, while revealing the test-time scaling law of the LLM-as-a-Judge paradigm.
📅 2025-02-18 | 💬 11 pages, 2 figures
This paper addresses the challenge of comprehending very long contexts in Large Language Models (LLMs) by proposing a method that emulates Retrieval Augmented Generation (RAG) through specialized prompt engineering and chain-of-thought (CoT) reasoning. While recent LLMs support over 100,000 tokens in a single prompt, simply enlarging context windows has not guaranteed robust multi-hop reasoning when key details are scattered across massive input. Our approach treats the model as both the retriever and the reasoner: it first tags relevant segments within a long passage, then employs a stepwise CoT workflow to integrate these pieces of evidence. This single-pass method thereby reduces reliance on an external retriever, yet maintains focus on crucial segments. We evaluate our approach on selected tasks from BABILong, which interleaves standard bAbI QA problems with large amounts of distractor text. Compared to baseline (no retrieval) and naive RAG pipelines, our approach more accurately handles multi-fact questions such as object location tracking, counting, and indefinite knowledge. Furthermore, we analyze how prompt structure, including the order of question, relevant-text tags, and overall instructions, significantly affects performance. These findings underscore that optimized prompt engineering, combined with guided reasoning, can enhance LLMs' long-context comprehension and serve as a lightweight alternative to traditional retrieval pipelines.
📅 2025-02-18
Organizations often lay down rules or guidelines called Natural Language Access Control Policies (NLACPs) for specifying who gets access to which information and when. However, these cannot be directly used in a target access control model like Attribute-based Access Control (ABAC). Manually translating the NLACP rules into Machine Enforceable Security Policies (MESPs) is both time consuming and resource intensive, rendering it infeasible especially for large organizations. Automated machine translation workflows, on the other hand, require information security officers to be adept at using such processes. To effectively address this problem, we have developed a free web-based publicly accessible tool called LMN (LLMs for generating MESPs from NLACPs) that takes an NLACP as input and converts it into a corresponding MESP. Internally, LMN uses the GPT 3.5 API calls and an appropriately chosen prompt. Extensive experiments with different prompts and performance metrics firmly establish the usefulness of LMN.
📅 2025-02-18
Large language models (LLMs) fine-tuned on multimodal financial data have demonstrated impressive reasoning capabilities in various financial tasks. However, they often struggle with multi-step, goal-oriented scenarios in interactive financial markets, such as trading, where complex agentic approaches are required to improve decision-making. To address this, we propose \textsc{FLAG-Trader}, a unified architecture integrating linguistic processing (via LLMs) with gradient-driven reinforcement learning (RL) policy optimization, in which a partially fine-tuned LLM acts as the policy network, leveraging pre-trained knowledge while adapting to the financial domain through parameter-efficient fine-tuning. Through policy gradient optimization driven by trading rewards, our framework not only enhances LLM performance in trading but also improves results on other financial-domain tasks. We present extensive empirical evidence to validate these enhancements.
📅 2025-02-18
Large language models have high compute, latency, and memory requirements. While specialized accelerators such as GPUs and TPUs typically run these workloads, CPUs are more widely available and consume less energy. Accelerating LLMs with CPUs enables broader AI access at a lower cost and power consumption. This acceleration potential for CPUs is especially relevant during the memory-bound decoding stage of LLM inference, which processes one token at a time and is becoming increasingly utilized with reasoning models. We utilize Advanced Matrix Extensions (AMX) support on the latest Intel CPUs together with unstructured sparsity to achieve a $1.42 \times$ reduction in end-to-end latency compared to the current PyTorch implementation by applying our technique in linear layers. We provide a set of open-source customized sparse kernels that can speed up any PyTorch model by automatically replacing all linear layers with our custom sparse implementation. Furthermore, we demonstrate for the first time the use of unstructured sparsity in the attention computation achieving a $1.14 \times$ speedup over the current systems without compromising accuracy. Code: https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SparAMX
📅 2025-02-18 | 💬 Preprint, 9 pages
Graphs, as a relational data structure, have been widely used for various application scenarios, like molecule design and recommender systems. Recently, large language models (LLMs) are reorganizing in the AI community for their expected reasoning and inference abilities. Making LLMs understand graph-based relational data has great potential, including but not limited to (1) distillate external knowledge base for eliminating hallucination and breaking the context window limit for LLMs' inference during the retrieval augmentation generation process; (2) taking graph data as the input and directly solve the graph-based research tasks like protein design and drug discovery. However, inputting the entire graph data to LLMs is not practical due to its complex topological structure, data size, and the lack of effective and efficient semantic graph representations. A natural question arises: Is there a kind of graph representation that can be described by natural language for LLM's understanding and is also easy to require to serve as the raw input for LLMs? Based on statistical computation, graph laws pre-define a set of parameters (e.g., degree, time, diameter) and identifie their relationships and values by observing the topological distribution of plenty of real-world graph data. We believe this kind of parametric representation of graphs, graph laws, can be a solution for making LLMs understand graph data as the input. In this survey, we first review the previous study of graph laws from multiple perspectives, i.e., macroscope and microscope of graphs, low-order and high-order graphs, static and dynamic graphs, different observation spaces, and newly proposed graph parameters. After we review various real-world applications benefiting from the guidance of graph laws, we conclude the paper with current challenges and future research directions.
📅 2025-02-18 | 💬 Accepted by ACM Transactions on Software Engineering and Methodology
In recent years, large language models (LLMs) have seen rapid advancements, significantly impacting various fields such as computer vision, natural language processing, and software engineering. These LLMs, exemplified by OpenAI's ChatGPT, have revolutionized the way we approach language understanding and generation tasks. However, in contrast to traditional software development practices, LLM development introduces new challenges for AI developers in design, implementation, and deployment. These challenges span different areas (such as prompts, APIs, and plugins), requiring developers to navigate unique methodologies and considerations specific to LLM application development. Despite the profound influence of LLMs, to the best of our knowledge, these challenges have not been thoroughly investigated in previous empirical studies. To fill this gap, we present the first comprehensive study on understanding the challenges faced by LLM developers. Specifically, we crawl and analyze 29,057 relevant questions from a popular OpenAI developer forum. We first examine their popularity and difficulty. After manually analyzing 2,364 sampled questions, we construct a taxonomy of challenges faced by LLM developers. Based on this taxonomy, we summarize a set of findings and actionable implications for LLM-related stakeholders, including developers and providers (especially the OpenAI organization).
📅 2025-02-18
We know from prior work that LLMs encode social biases, and that this manifests in clinical tasks. In this work we adopt tools from mechanistic interpretability to unveil sociodemographic representations and biases within LLMs in the context of healthcare. Specifically, we ask: Can we identify activations within LLMs that encode sociodemographic information (e.g., gender, race)? We find that gender information is highly localized in middle MLP layers and can be reliably manipulated at inference time via patching. Such interventions can surgically alter generated clinical vignettes for specific conditions, and also influence downstream clinical predictions which correlate with gender, e.g., patient risk of depression. We find that representation of patient race is somewhat more distributed, but can also be intervened upon, to a degree. To our knowledge, this is the first application of mechanistic interpretability methods to LLMs for healthcare.
📅 2025-02-18
Intelligent tutoring agents powered by large language models (LLMs) have been increasingly explored to deliver personalized guidance in areas such as language learning and science education. However, their capabilities in guiding users to solve complex real-world tasks remain underexplored. To address this limitation, in this work, we focus on coding tutoring, a challenging problem that requires tutors to proactively guide students toward completing predefined coding tasks. We propose a novel agent workflow, Trace-and-Verify (TRAVER), which combines knowledge tracing to estimate a student's knowledge state and turn-by-turn verification to ensure effective guidance toward task completion. We introduce DICT, an automatic evaluation protocol that assesses tutor agents holistically using controlled student simulation and code generation tests. Extensive experiments reveal the challenges of coding tutoring and demonstrate that TRAVER achieves a significantly higher success rate. Although we use code tutoring as an example in this paper, our results and findings can be extended beyond coding, providing valuable insights into advancing tutoring agents for a variety of tasks.
📅 2025-02-18 | 💬 18 pages
Problem-solving therapy (PST) is a structured psychological approach that helps individuals manage stress and resolve personal issues by guiding them through problem identification, solution brainstorming, decision-making, and outcome evaluation. As mental health care increasingly adopts technologies like chatbots and large language models (LLMs), it is important to thoroughly understand how each session of PST is conducted before attempting to automate it. We developed a comprehensive framework for PST annotation using established PST Core Strategies and a set of novel Facilitative Strategies to analyze a corpus of real-world therapy transcripts to determine which strategies are most prevalent. Using various LLMs and transformer-based models, we found that GPT-4o outperformed all models, achieving the highest accuracy (0.76) in identifying all strategies. To gain deeper insights, we examined how strategies are applied by analyzing Therapeutic Dynamics (autonomy, self-disclosure, and metaphor), and linguistic patterns within our labeled data. Our research highlights LLMs' potential to automate therapy dialogue analysis, offering a scalable tool for mental health interventions. Our framework enhances PST by improving accessibility, effectiveness, and personalized support for therapists.
📅 2025-02-18
Should LLMs generate language that makes them seem human? Human-like language might improve user experience, but might also lead to overreliance and stereotyping. Assessing these potential impacts requires a systematic way to measure human-like tone in LLM outputs. We introduce HumT and SocioT, metrics for human-like tone and other dimensions of social perceptions in text data based on relative probabilities from an LLM. By measuring HumT across preference and usage datasets, we find that users prefer less human-like outputs from LLMs. HumT also offers insights into the impacts of anthropomorphism: human-like LLM outputs are highly correlated with warmth, social closeness, femininity, and low status, which are closely linked to the aforementioned harms. We introduce DumT, a method using HumT to systematically control and reduce the degree of human-like tone while preserving model performance. DumT offers a practical approach for mitigating risks associated with anthropomorphic language generation.
📅 2025-02-18
Knowledge Graphs (KGs) are valuable tools for representing relationships between entities in a structured format. Traditionally, these knowledge bases are queried to extract specific information. However, question-answering (QA) over such KGs poses a challenge due to the intrinsic complexity of natural language compared to the structured format and the size of these graphs. Despite these challenges, the structured nature of KGs can provide a solid foundation for grounding the outputs of Large Language Models (LLMs), offering organizations increased reliability and control. Recent advancements in LLMs have introduced reasoning methods at inference time to improve their performance and maximize their capabilities. In this work, we propose integrating these reasoning strategies with KGs to anchor every step or "thought" of the reasoning chains in KG data. Specifically, we evaluate both agentic and automated search methods across several reasoning strategies, including Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT), using GRBench, a benchmark dataset for graph reasoning with domain-specific graphs. Our experiments demonstrate that this approach consistently outperforms baseline models, highlighting the benefits of grounding LLM reasoning processes in structured KG data.
📅 2025-02-18 | 💬 8 pages, three figures
Large Language Models (LLMs) have shown remarkable capabilities in general domains but often struggle with tasks requiring specialized knowledge. Conventional Retrieval-Augmented Generation (RAG) techniques typically retrieve external information from static knowledge bases, which can be outdated or incomplete, missing fine-grained clinical details essential for accurate medical question answering. In this work, we propose SearchRAG, a novel framework that overcomes these limitations by leveraging real-time search engines. Our method employs synthetic query generation to convert complex medical questions into search-engine-friendly queries and utilizes uncertainty-based knowledge selection to filter and incorporate the most relevant and informative medical knowledge into the LLM's input. Experimental results demonstrate that our method significantly improves response accuracy in medical question answering tasks, particularly for complex questions requiring detailed and up-to-date knowledge.
📅 2025-02-18
In an era of increasingly capable foundation models, job seekers are turning to generative AI tools to enhance their application materials. However, unequal access to and knowledge about generative AI tools can harm both employers and candidates by reducing the accuracy of hiring decisions and giving some candidates an unfair advantage. To address these challenges, we introduce a new variant of the strategic classification framework tailored to manipulations performed using large language models, accommodating varying levels of manipulations and stochastic outcomes. We propose a ``two-ticket'' scheme, where the hiring algorithm applies an additional manipulation to each submitted resume and considers this manipulated version together with the original submitted resume. We establish theoretical guarantees for this scheme, showing improvements for both the fairness and accuracy of hiring decisions when the true positive rate is maximized subject to a no false positives constraint. We further generalize this approach to an $n$-ticket scheme and prove that hiring outcomes converge to a fixed, group-independent decision, eliminating disparities arising from differential LLM access. Finally, we empirically validate our framework and the performance of our two-ticket scheme on real resumes using an open-source resume screening tool.
📅 2025-02-18 | 💬 15 pages
Scaling the effective context length is essential for advancing large language models (LLMs) toward artificial general intelligence (AGI). However, the quadratic increase in computational complexity inherent in traditional attention mechanisms presents a prohibitive overhead. Existing approaches either impose strongly biased structures, such as sink or window attention which are task-specific, or radically modify the attention mechanism into linear approximations, whose performance in complex reasoning tasks remains inadequately explored. In this work, we propose a solution that adheres to the ``less structure'' principle, allowing the model to determine where to attend autonomously, rather than introducing predefined biases. We introduce Mixture of Block Attention (MoBA), an innovative approach that applies the principles of Mixture of Experts (MoE) to the attention mechanism. This novel architecture demonstrates superior performance on long-context tasks while offering a key advantage: the ability to seamlessly transition between full and sparse attention, enhancing efficiency without the risk of compromising performance. MoBA has already been deployed to support Kimi's long-context requests and demonstrates significant advancements in efficient attention computation for LLMs. Our code is available at https://github.com/MoonshotAI/MoBA.
📅 2025-02-18 | 💬 17 pages, 3 fugures
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression owing to its efficiency and low resource requirement. However, current research lacks a in-depth analysis of the superior and applicable scenarios of each PTQ strategy. In addition, existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth. To mitigate these confusions, we provide a novel benchmark for LLMs PTQ in this paper. Firstly, in order to support our benchmark, we propose a comprehensive taxonomy for existing mainstream methods by scrutinizing their computational strategies (e.g., optimization-based, compensation-based, etc.). Then, we conduct extensive experiments with the baseline within each class, covering models with various sizes (7B-70B), bitwidths, training levels (LLaMA1/2/3/3.1), architectures (Mixtral, DeepSeekMoE and Mamba) and modality (LLaVA1.5 and VILA1.5) on a wide range of evaluation metrics.Through comparative analysis on the results, we summarize the superior of each PTQ strategy and modelsize-bitwidth trade-off considering the performance. For example, our benchmark reveals that compensation-based technique demonstrates outstanding cross-architecture robustness and extremely low-bit PTQ for ultra large models should be reexamined. Finally, we further accordingly claim that a practical combination of compensation and other PTQ strategy can achieve SOTA various robustness. We believe that our benchmark will provide valuable recommendations for the deployment of LLMs and future research on PTQ approaches.
📅 2025-02-18
Recent advances in large language models (LLMs) have shown that they can answer questions requiring complex reasoning. However, their ability to identify and respond to text containing logical fallacies or deliberately misleading premises remains less studied. To address this gap, we introduce RuozhiBench, a bilingual dataset comprising 677 carefully curated questions that contain various forms of deceptive reasoning, meticulously crafted through extensive human effort and expert review. In a comprehensive evaluation of 17 LLMs from 5 Series over RuozhiBench using both open-ended and two-choice formats, we conduct extensive analyses on evaluation protocols and result patterns. Despite their high scores on conventional benchmarks, these models showed limited ability to detect and reason correctly about logical fallacies, with even the best-performing model, Claude-3-haiku, achieving only 62% accuracy compared to the human of more than 90%.
📅 2025-02-18 | 💬 9 pages, 7 figures, submitted to ACL 2025 (ARR February 2025 cycle)
Gender-inclusive language is often used with the aim of ensuring that all individuals, regardless of gender, can be associated with certain concepts. While psycholinguistic studies have examined its effects in relation to human cognition, it remains unclear how Large Language Models (LLMs) process gender-inclusive language. Given that commercial LLMs are gaining an increasingly strong foothold in everyday applications, it is crucial to examine whether LLMs in fact interpret gender-inclusive language neutrally, because the language they generate has the potential to influence the language of their users. This study examines whether LLM-generated coreferent terms align with a given gender expression or reflect model biases. Adapting psycholinguistic methods from French to English and German, we find that in English, LLMs generally maintain the antecedent's gender but exhibit underlying masculine bias. In German, this bias is much stronger, overriding all tested gender-neutralization strategies.
📅 2025-02-18
Understanding and predicting the properties of inorganic materials is crucial for accelerating advancements in materials science and driving applications in energy, electronics, and beyond. Integrating material structure data with language-based information through multi-modal large language models (LLMs) offers great potential to support these efforts by enhancing human-AI interaction. However, a key challenge lies in integrating atomic structures at full resolution into LLMs. In this work, we introduce MatterChat, a versatile structure-aware multi-modal LLM that unifies material structural data and textual inputs into a single cohesive model. MatterChat employs a bridging module to effectively align a pretrained machine learning interatomic potential with a pretrained LLM, reducing training costs and enhancing flexibility. Our results demonstrate that MatterChat significantly improves performance in material property prediction and human-AI interaction, surpassing general-purpose LLMs such as GPT-4. We also demonstrate its usefulness in applications such as more advanced scientific reasoning and step-by-step material synthesis.
📅 2025-02-18
Jailbreaking techniques trick Large Language Models (LLMs) into producing restricted outputs, posing a serious threat. One line of defense is to use another LLM as a Judge to evaluate the harmfulness of generated text. However, we reveal that these Judge LLMs are vulnerable to token segmentation bias, an issue that arises when delimiters alter the tokenization process, splitting words into smaller sub-tokens. This disrupts the embeddings of the entire sequence, reducing detection accuracy and allowing harmful content to be misclassified as safe. In this paper, we introduce Emoji Attack, a novel strategy that amplifies existing jailbreak prompts by exploiting token segmentation bias. Our method leverages in-context learning to systematically insert emojis into text before it is evaluated by a Judge LLM, inducing embedding distortions that significantly lower the likelihood of detecting unsafe content. Unlike traditional delimiters, emojis also introduce semantic ambiguity, making them particularly effective in this attack. Through experiments on state-of-the-art Judge LLMs, we demonstrate that Emoji Attack substantially reduces the "unsafe" prediction rate, bypassing existing safeguards.
📅 2025-02-18 | 💬 NAACL'25 Findings, Code - https://github.com/ivaxi0s/CausalGraph2LLM
Causality is essential in scientific research, enabling researchers to interpret true relationships between variables. These causal relationships are often represented by causal graphs, which are directed acyclic graphs. With the recent advancements in Large Language Models (LLMs), there is an increasing interest in exploring their capabilities in causal reasoning and their potential use to hypothesize causal graphs. These tasks necessitate the LLMs to encode the causal graph effectively for subsequent downstream tasks. In this paper, we introduce CausalGraph2LLM, a comprehensive benchmark comprising over 700k queries across diverse causal graph settings to evaluate the causal reasoning capabilities of LLMs. We categorize the causal queries into two types: graph-level and node-level queries. We benchmark both open-sourced and propriety models for our study. Our findings reveal that while LLMs show promise in this domain, they are highly sensitive to the encoding used. Even capable models like GPT-4 and Gemini-1.5 exhibit sensitivity to encoding, with deviations of about $60\%$. We further demonstrate this sensitivity for downstream causal intervention tasks. Moreover, we observe that LLMs can often display biases when presented with contextual information about a causal graph, potentially stemming from their parametric memory.
📅 2025-02-18
The rapid growth of mobile applications has escalated Android malware threats. Although there are numerous detection methods, they often struggle with evolving attacks, dataset biases, and limited explainability. Large Language Models (LLMs) offer a promising alternative with their zero-shot inference and reasoning capabilities. However, applying LLMs to Android malware detection presents two key challenges: (1)the extensive support code in Android applications, often spanning thousands of classes, exceeds LLMs' context limits and obscures malicious behavior within benign functionality; (2)the structural complexity and interdependencies of Android applications surpass LLMs' sequence-based reasoning, fragmenting code analysis and hindering malicious intent inference. To address these challenges, we propose LAMD, a practical context-driven framework to enable LLM-based Android malware detection. LAMD integrates key context extraction to isolate security-critical code regions and construct program structures, then applies tier-wise code reasoning to analyze application behavior progressively, from low-level instructions to high-level semantics, providing final prediction and explanation. A well-designed factual consistency verification mechanism is equipped to mitigate LLM hallucinations from the first tier. Evaluation in real-world settings demonstrates LAMD's effectiveness over conventional detectors, establishing a feasible basis for LLM-driven malware analysis in dynamic threat landscapes.
📅 2025-02-18 | 💬 1. We have updated the results for DeepSeek-R1, and all of our original conclusions remain valid. 2. Our proposed Tip approach remains effective in Best-of-N scenarios (e.g., self-consistency and Laconic Decoding) when built on DeepSeek-R1
Large language models (LLMs) such as OpenAI's o1 have demonstrated remarkable abilities in complex reasoning tasks by scaling test-time compute and exhibiting human-like deep thinking. However, we identify a phenomenon we term underthinking, where o1-like LLMs frequently switch between different reasoning thoughts without sufficiently exploring promising paths to reach a correct solution. This behavior leads to inadequate depth of reasoning and decreased performance, particularly on challenging mathematical problems. To systematically analyze this issue, we conduct experiments on three challenging test sets and two representative open-source o1-like models, revealing that frequent thought switching correlates with incorrect responses. We introduce a novel metric to quantify underthinking by measuring token efficiency in incorrect answers. To address underthinking, we propose a decoding strategy with thought switching penalty TIP that discourages premature transitions between thoughts, encouraging deeper exploration of each reasoning path. Experimental results demonstrate that our approach improves accuracy across challenging datasets without requiring model fine-tuning. Our findings contribute to understanding reasoning inefficiencies in o1-like LLMs and offer a practical solution to enhance their problem-solving capabilities.
📅 2025-02-18 | 💬 32 pages, 10 figures
Since the adoption of large language models (LLMs) for text evaluation has become increasingly prevalent in the field of natural language processing (NLP), a series of existing works attempt to optimize the prompts for LLM evaluators to improve their alignment with human judgment. However, their efforts are limited to optimizing individual factors of evaluation prompts, such as evaluation criteria or output formats, neglecting the combinatorial impact of multiple factors, which leads to insufficient optimization of the evaluation pipeline. Nevertheless, identifying well-behaved prompting strategies for adjusting multiple factors requires extensive enumeration. To this end, we comprehensively integrate 8 key factors for evaluation prompts and propose a novel automatic prompting strategy optimization method called Heuristic Prompting Strategy Search (HPSS). Inspired by the genetic algorithm, HPSS conducts an iterative search to find well-behaved prompting strategies for LLM evaluators. A heuristic function is employed to guide the search process, enhancing the performance of our algorithm. Extensive experiments across four evaluation tasks demonstrate the effectiveness of HPSS, consistently outperforming both human-designed evaluation prompts and existing automatic prompt optimization methods.
📅 2025-02-18 | 💬 Presented at NeLaMKRR@KR, 2024 (arXiv:2410.05339)
Peer review is an essential process to determine the quality of papers submitted to scientific conferences or journals. However, it is subjective and prone to biases. Several studies have been conducted to apply techniques from NLP to support peer review, but they are based on black-box techniques and their outputs are difficult to interpret and trust. In this paper, we propose a novel pipeline to support and understand the reviewing and decision-making processes of peer review: the PeerArg system combining LLMs with methods from knowledge representation. PeerArg takes in input a set of reviews for a paper and outputs the paper acceptance prediction. We evaluate the performance of the PeerArg pipeline on three different datasets, in comparison with a novel end-2-end LLM that uses few-shot learning to predict paper acceptance given reviews. The results indicate that the end-2-end LLM is capable of predicting paper acceptance from reviews, but a variant of the PeerArg pipeline outperforms this LLM.