Skip to the content.

llm - 2025_06

Home / Papers / llm

Papers

📅 2025-06-02 | 💬 Accepted to ACL Findings 2025
Recent Large Language Models (LLMs) have demonstrated impressive translation performance without requiring fine-tuning on additional parallel corpora. However, they still face significant challenges in certain scenarios, particularly when translating low-resource languages. A common approach to address this issue is to provide external knowledge, such as few-shot examples, to assist LLMs in translating specific source sentences. However, this method is fundamentally limited by the quality or quantity of relevant sources, which cannot always be guaranteed. To reduce LLMs' reliance on external sources, we propose BridG MT, a method that combines Sentence Bridging, which generates a sequence of sentences as a bridge that gradually transition from easy-to-translate to more difficult, and Gradual MT, which sequentially translates these sentences using earlier translations as few-shot examples for subsequent ones. Experiments conducted on four LLMs across seven languages demonstrate that our method effectively enhances translation performance, even outperforming translation methods that rely on a large number of few-shot examples.
📅 2025-06-02 | 💬 ACL 2025
Large Language Model-based Multi-Agent Systems (LLM-MAS) have revolutionized complex problem-solving capability by enabling sophisticated agent collaboration through message-based communications. While the communication framework is crucial for agent coordination, it also introduces a critical yet unexplored security vulnerability. In this work, we introduce Agent-in-the-Middle (AiTM), a novel attack that exploits the fundamental communication mechanisms in LLM-MAS by intercepting and manipulating inter-agent messages. Unlike existing attacks that compromise individual agents, AiTM demonstrates how an adversary can compromise entire multi-agent systems by only manipulating the messages passing between agents. To enable the attack under the challenges of limited control and role-restricted communication format, we develop an LLM-powered adversarial agent with a reflection mechanism that generates contextually-aware malicious instructions. Our comprehensive evaluation across various frameworks, communication structures, and real-world applications demonstrates that LLM-MAS is vulnerable to communication-based attacks, highlighting the need for robust security measures in multi-agent systems.
📅 2025-06-02
Reinforcement Learning (RL) has become the most effective post-training approach for improving the capabilities of Large Language Models (LLMs). In practice, because of the high demands on latency and memory, it is particularly challenging to develop an efficient RL framework that reliably manages policy models with hundreds to thousands of billions of parameters. In this paper, we present LlamaRL, a fully distributed, asynchronous RL framework optimized for efficient training of large-scale LLMs with various model sizes (8B, 70B, and 405B parameters) on GPU clusters ranging from a handful to thousands of devices. LlamaRL introduces a streamlined, single-controller architecture built entirely on native PyTorch, enabling modularity, ease of use, and seamless scalability to thousands of GPUs. We also provide a theoretical analysis of LlamaRL's efficiency, including a formal proof that its asynchronous design leads to strict RL speed-up. Empirically during the Llama 3 post-training, by leveraging best practices such as colocated model offloading, asynchronous off-policy training, and distributed direct memory access for weight synchronization, LlamaRL achieves significant efficiency gains -- up to 10.7x speed-up compared to DeepSpeed-Chat-like systems on a 405B-parameter policy model. Furthermore, the efficiency advantage continues to grow with increasing model scale, demonstrating the framework's suitability for future large-scale RL training.
📅 2025-06-02
Data standardization is a crucial part of the data science life cycle. While tools like Pandas offer robust functionalities, their complexity and the manual effort required for customizing code to diverse column types pose significant challenges. Although large language models (LLMs) like ChatGPT have shown promise in automating this process through natural language understanding and code generation, it still demands expert-level programming knowledge and continuous interaction for prompt refinement. To solve these challenges, our key idea is to propose a Python library with declarative, unified APIs for standardizing different column types, simplifying the LLM's code generation with concise API calls. We first propose Dataprep.Clean, a component of the Dataprep Python Library, significantly reduces the coding complexity by enabling the standardization of specific column types with a single line of code. Then, we introduce the CleanAgent framework integrating Dataprep.Clean and LLM-based agents to automate the data standardization process. With CleanAgent, data scientists only need to provide their requirements once, allowing for a hands-free process. To demonstrate the practical utility of CleanAgent, we developed a user-friendly web application, allowing users to interact with it using real-world datasets.
📅 2025-06-02
Reasoning is critical for large language models (LLMs) to excel in a wide range of tasks. While methods like Chain-of-Thought (CoT) reasoning and enhance LLM performance by decomposing problems into intermediate steps, they also incur significant overhead in token usage, leading to increased costs. We find that the reasoning process of current LLMs is unnecessarily lengthy and it can be compressed by including a reasonable token budget in the prompt, but the choice of token budget plays a crucial role in the actual compression effectiveness. We then propose a token-budget-aware LLM reasoning framework that dynamically adjusts the number of reasoning tokens based on the reasoning complexity of each problem. Experiments show that our method effectively reduces token costs in CoT reasoning with only a slight performance reduction, offering a practical solution to balance efficiency and accuracy in LLM reasoning. Code: https://github.com/GeniusHTX/TALE
📅 2025-06-02 | 💬 28 pages, 13 figures
This paper reveals that many state-of-the-art large language models (LLMs) lack hierarchical knowledge about our visual world, unaware of even well-established biology taxonomies. This shortcoming makes LLMs a bottleneck for vision LLMs' hierarchical visual understanding (e.g., recognizing Anemone Fish but not Vertebrate). We arrive at these findings using about one million four-choice visual question answering (VQA) tasks constructed from six taxonomies and four image datasets. Interestingly, finetuning a vision LLM using our VQA tasks reaffirms LLMs' bottleneck effect to some extent because the VQA tasks improve the LLM's hierarchical consistency more than the vision LLM's. We conjecture that one cannot make vision LLMs understand visual concepts fully hierarchical until LLMs possess corresponding taxonomy knowledge.
📅 2025-06-02
Reasoning is critical for large language models (LLMs) to excel in a wide range of tasks. While methods like Chain-of-Thought (CoT) reasoning and enhance LLM performance by decomposing problems into intermediate steps, they also incur significant overhead in token usage, leading to increased costs. We find that the reasoning process of current LLMs is unnecessarily lengthy and it can be compressed by including a reasonable token budget in the prompt, but the choice of token budget plays a crucial role in the actual compression effectiveness. We then propose a token-budget-aware LLM reasoning framework that dynamically adjusts the number of reasoning tokens based on the reasoning complexity of each problem. Experiments show that our method effectively reduces token costs in CoT reasoning with only a slight performance reduction, offering a practical solution to balance efficiency and accuracy in LLM reasoning. Code: https://github.com/GeniusHTX/TALE
📅 2025-06-01 | 💬 Accepted to ACL 2025 Findings
Large Language Models (LLMs) have demonstrated impressive performances in tasks related to coreference resolution. However, previous studies mostly assessed LLM performance on coreference resolution with nouns and third person pronouns. This study evaluates LLM performance on coreference resolution with indexical like I, you, here and tomorrow, which come with unique challenges due to their linguistic properties. We present the first study examining how LLMs interpret indexicals in English, releasing the English Indexical Dataset with 1600 multiple-choice questions. We evaluate pioneering LLMs, including GPT-4o, Claude 3.5 Sonnet, Gemini 1.5 Pro, and DeepSeek V3. Our results reveal that LLMs exhibit an impressive performance with some indexicals (I), while struggling with others (you, here, tomorrow), and that syntactic cues (e.g. quotation) contribute to LLM performance with some indexicals, while they reduce performance with others. Code and data are available at: https://github.com/metehanoguzz/LLMs-Indexicals-English.
📅 2025-06-01 | 💬 8 pages, 3 figures, 2 tables
Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) are reshaping how AI systems extract and organize information from unstructured text. A key challenge is designing AI methods that can incrementally extract, structure, and validate information while preserving hierarchical and contextual relationships. We introduce CDMizer, a template-driven, LLM, and RAG-based framework for structured text transformation. By leveraging depth-based retrieval and hierarchical generation, CDMizer ensures a controlled, modular process that aligns generated outputs with predefined schema. Its template-driven approach guarantees syntactic correctness, schema adherence, and improved scalability, addressing key limitations of direct generation methods. Additionally, we propose an LLM-powered evaluation framework to assess the completeness and accuracy of structured representations. Demonstrated in the transformation of Over-the-Counter (OTC) financial derivative contracts into the Common Domain Model (CDM), CDMizer establishes a scalable foundation for AI-driven document understanding, structured synthesis, and automated validation in broader contexts.
📅 2025-06-01
Function-calling has enabled large language models (LLMs) to act as tool-using agents, but injecting thousands of tool schemas into the prompt is costly and error-prone. We introduce MCP-Zero, a proactive agent framework that lets the LLM itself decide when and which external tools to retrieve, thereby assembling a task-specific toolchain from scratch. The framework is built upon three components: (1) Proactive Tool Request, where the model emits a structured $\left<\operatorname{tool\_assistant}\right>$ block that explicitly specifies the desired server and task; (2) Hierarchical Vector Routing, a coarse-to-fine retrieval algorithm that first selects candidate servers and then ranks tools within each server based on the semantic similarity; (3) Iterative Proactive Invocation, enabling multi-round, cross-domain toolchain construction with minimal context overhead, and allowing the model to iteratively revise its request when the returned tools are insufficient. To evaluate our approach we also compile MCP-tools, a retrieval dataset comprising 308 MCP servers and 2,797 tools extracted from the official Model-Context-Protocol repository and normalized into a unified JSON schema. Experiments show that MCP-Zero (i) effectively addresses the context overhead problem of existing methods and accurately selects the correct tool from a pool of nearly 3,000 candidates (248.1k tokens); (ii) reduces token consumption by 98\% on the APIbank while maintaining high accuracy; and (iii) supports multi-turn tool invocation with consistent accuracy across rounds. The code and dataset will be released soon.
📅 2025-06-01 | 💬 25 pages, 18 figures, NeurIPS formatting style
Previous benchmarks on prompt injection in large language models (LLMs) have primarily focused on generic tasks and attacks, offering limited insights into more complex threats like data exfiltration. This paper examines how prompt injection can cause tool-calling agents to leak personal data observed during task execution. Using a fictitious banking agent, we develop data flow-based attacks and integrate them into AgentDojo, a recent benchmark for agentic security. To enhance its scope, we also create a richer synthetic dataset of human-AI banking conversations. In 16 user tasks from AgentDojo, LLMs show a 15-50 percentage point drop in utility under attack, with average attack success rates (ASR) around 20 percent; some defenses reduce ASR to zero. Most LLMs, even when successfully tricked by the attack, avoid leaking highly sensitive data like passwords, likely due to safety alignments, but they remain vulnerable to disclosing other personal data. The likelihood of password leakage increases when a password is requested along with one or two additional personal details. In an extended evaluation across 48 tasks, the average ASR is around 15 percent, with no built-in AgentDojo defense fully preventing leakage. Tasks involving data extraction or authorization workflows, which closely resemble the structure of exfiltration attacks, exhibit the highest ASRs, highlighting the interaction between task type, agent performance, and defense efficacy.
📅 2025-06-01
Accurate evaluation of large language models (LLMs) is crucial for understanding their capabilities and guiding their development. However, current evaluations often inconsistently reflect the actual capacities of these models. In this paper, we demonstrate that one of many contributing factors to this \textit{evaluation crisis} is the oversight of unseen knowledge -- information encoded by LLMs but not directly observed or not yet observed during evaluations. We introduce KnowSum, a statistical framework designed to provide a more comprehensive assessment by quantifying the unseen knowledge for a class of evaluation tasks. KnowSum estimates the unobserved portion by extrapolating from the appearance frequencies of observed knowledge instances. We demonstrate the effectiveness and utility of KnowSum across three critical applications: estimating total knowledge, evaluating information retrieval effectiveness, and measuring output diversity. Our experiments reveal that a substantial volume of knowledge is omitted when relying solely on observed LLM performance. Importantly, KnowSum yields significantly different comparative rankings for several common LLMs based on their internal knowledge.
📅 2025-06-01 | 💬 Preprint version of "Taming LLMs with Gradient Grouping" (ACL'2025). The code will be available at https://github.com/ScalingOpt/SGG
Training large language models (LLMs) poses challenges due to their massive scale and heterogeneous architectures. While adaptive optimizers like AdamW help address gradient variations, they still struggle with efficient and effective parameter-wise learning rate estimation, resulting in training instability, slow convergence, and poor compatibility with parameter-efficient fine-tuning (PEFT) techniques. This work introduces Scaling with Gradient Grouping (SGG), an optimizer wrapper that improves adaptive learning rate estimation by dynamic grouping and group-specific scaling. SGG first groups gradient statistics in each layer into clusters and then applies cluster-specific scaling to calibrate learning rates for each parameter, thus imposing collective group-wise constraints while maintaining precise per-parameter adaptation. Experiments on diverse (M)LLM benchmarks show that SGG integrates seamlessly with existing optimizers, and offers consistent gains and faster convergence over baselines, with various model sizes. Its stability across varying batch sizes and learning rates establishes SGG as a robust choice for LLM optimization.
📅 2025-06-01 | 💬 ACL 2025 Main
Large language models (LLMs) have demonstrated exceptional performance across a wide range of natural language tasks. However, selecting the optimal LLM to respond to a user query often necessitates a delicate balance between performance and cost. While powerful models deliver better results, they come at a high cost, whereas smaller models are more cost-effective but less capable. To address this trade-off, we propose IRT-Router, a multi-LLM routing framework that efficiently routes user queries to the most suitable LLM. Inspired by Item Response Theory (IRT), a psychological measurement methodology, IRT-Router explicitly models the relationship between LLM capabilities and user query attributes. This not only enables accurate prediction of response performance but also provides interpretable insights, such as LLM abilities and query difficulty. Additionally, we design an online query warm-up technique based on semantic similarity, further enhancing the online generalization capability of IRT-Router. Extensive experiments on 20 LLMs and 12 datasets demonstrate that IRT-Router outperforms most baseline methods in terms of effectiveness and interpretability. Its superior performance in cold-start scenarios further confirms the reliability and practicality of IRT-Router in real-world applications. Code is available at https://github.com/Mercidaiha/IRT-Router.
📅 2025-06-01
Fine-tuning large language models (LLMs) improves performance on domain-specific tasks but can lead to overfitting, making them unreliable on out-of-distribution (OoD) queries. We propose LoRA-BAM - a method that adds OoD detection monitors to the LoRA layer using boxed abstraction to filter questions beyond the model's competence. Feature vectors from the fine-tuning data are extracted via the LLM and clustered. Clusters are enclosed in boxes; a question is flagged as OoD if its feature vector falls outside all boxes. To improve interpretability and robustness, we introduce a regularization loss during fine-tuning that encourages paraphrased questions to stay close in the feature space, and the enlargement of the decision boundary is based on the feature variance within a cluster. Our method complements existing defenses by providing lightweight and interpretable OoD detection.
📅 2025-06-01 | 💬 Accepted for CompLing-2025 conference
Diary analysis presents challenges, particularly in extracting meaningful information from large corpora, where traditional methods often fail to deliver satisfactory results. This study introduces a novel method based on Large Language Models (LLMs) to identify and cluster the various purposes of diary writing. By "purposes," we refer to the intentions behind diary writing, such as documenting life events, self-reflection, or practicing language skills. Our approach is applied to Soviet-era diaries (1922-1929) from the Prozhito digital archive, a rich collection of personal narratives. We evaluate different proprietary and open-source LLMs, finding that GPT-4o and o1-mini achieve the best performance, while a template-based baseline is significantly less effective. Additionally, we analyze the retrieved purposes based on gender, age of the authors, and the year of writing. Furthermore, we examine the types of errors made by the models, providing a deeper understanding of their limitations and potential areas for improvement in future research.
📅 2025-06-01
The Leadership in Energy and Environmental Design (LEED) certification process is characterized by labor-intensive requirements for data handling, simulation, and documentation. This paper presents an automated platform designed to streamline key aspects of LEED certification. The platform integrates a PySide6-based user interface, a review Manager for process orchestration, and multiple analysis engines for credit compliance, energy modeling via EnergyPlus, and location-based evaluation. Key components include an OpenCV-based preprocessing pipeline for document analysis and a report generation module powered by the Gemma3 large language model with a retrieval-augmented generation framework. Implementation techniques - including computer vision for document analysis, structured LLM prompt design, and RAG-based report generation - are detailed. Initial results from pilot project deployment show improvements in efficiency and accuracy compared to traditional manual workflows, achieving 82% automation coverage and up to 70% reduction in documentation time. The platform demonstrates practical scalability for green building certification automation.
📅 2025-06-01 | 💬 9 pages, 3 figures, 3 tables. Experimental code and results are publicly available at https://anonymous.4open.science/r/Graph_RL-BF08/readme.md
Previous research has sought to enhance the graph reasoning capabilities of LLMs by supervised fine-tuning on synthetic graph data. While these led to specialized LLMs better at solving graph algorithm problems, we don't need LLMs for shortest path: we need generalization from synthetic graph data to real-world tasks with implicit graph structures. In this work, we propose to unlock generalizable learning of graph synthetic data with reinforcement learning. We first design solution-based and process-based rewards for synthetic graph problems: instead of rigid memorizing response patterns in direct fine-tuning, we posit that RL would help LLMs grasp the essentials underlying graph reasoning and alleviate overfitting. We employ RL algorithms such as GRPO and DPO, aligning both off-the-shelf LLMs and LLMs fine-tuned on synthetic graph data. We then compare them against existing settings on both in-domain synthetic tasks and out-of-domain real-world tasks with implicit graph structures such as multi-hop QA, structured planning, and more. Extensive experiments demonstrate that our RL recipe leads to statistically significant improvement on 5 datasets, with an average gain of 12.9\% over baseline settings. Further analysis reveals that process-based rewards consistently outperform solution-based rewards, mixing synthetic and real-world task data yields potential gains, while compositionality and explainable intermediate steps remains a critical challenge even after RL.
📅 2025-06-01
This paper critically re-evaluates LLMs' role in causal discovery and argues against their direct involvement in determining causal relationships. We demonstrate that LLMs' autoregressive, correlation-driven modeling inherently lacks the theoretical grounding for causal reasoning and introduces unreliability when used as priors in causal discovery algorithms. Through empirical studies, we expose the limitations of existing LLM-based methods and reveal that deliberate prompt engineering (e.g., injecting ground-truth knowledge) could overstate their performance, helping to explain the consistently favorable results reported in much of the current literature. Based on these findings, we strictly confined LLMs' role to a non-decisional auxiliary capacity: LLMs should not participate in determining the existence or directionality of causal relationships, but can assist the search process for causal graphs (e.g., LLM-based heuristic search). Experiments across various settings confirm that, by strictly isolating LLMs from causal decision-making, LLM-guided heuristic search can accelerate the convergence and outperform both traditional and LLM-based methods in causal structure learning. We conclude with a call for the community to shift focus from naively applying LLMs to developing specialized models and training method that respect the core principles of causal discovery.
📅 2025-06-01 | 💬 19 pages, 16 figures; accepted to Findings of ACL 2025
Large language models (LLMs) are trained on extensive datasets that encapsulate substantial world knowledge. However, their outputs often include confidently stated inaccuracies. Earlier works suggest that LLMs encode truthfulness as a distinct linear feature, termed the "truth direction", which can classify truthfulness reliably. We address several open questions about the truth direction: (i) whether LLMs universally exhibit consistent truth directions; (ii) whether sophisticated probing techniques are necessary to identify truth directions; and (iii) how the truth direction generalizes across diverse contexts. Our findings reveal that not all LLMs exhibit consistent truth directions, with stronger representations observed in more capable models, particularly in the context of logical negation. Additionally, we demonstrate that truthfulness probes trained on declarative atomic statements can generalize effectively to logical transformations, question-answering tasks, in-context learning, and external knowledge sources. Finally, we explore the practical application of truthfulness probes in selective question-answering, illustrating their potential to improve user trust in LLM outputs. These results advance our understanding of truth directions and provide new insights into the internal representations of LLM beliefs. Our code is public at https://github.com/colored-dye/truthfulness_probe_generalization
📅 2025-06-01
The reasoning capabilities of large language models (LLMs) have significantly advanced their performance by enabling in-depth understanding of diverse tasks. With growing interest in applying LLMs to the time series domain, this has proven nontrivial, as evidenced by the limited efficacy of straightforwardly adapting text-domain reasoning techniques. Although recent work has shown promise in several time series tasks, further leveraging advancements in LLM reasoning remains under-explored for time series classification (TSC) tasks, despite their prevalence and significance in many real-world applications. In this paper, we propose ReasonTSC, a novel framework designed to effectively leverage LLM reasoning for time series classification through both a multi-turn reasoning and a fused decision-making strategy tailored to TSC. Rather than straightforwardly applying existing reasoning techniques or relying solely on LLMs' built-in reasoning capabilities, ReasonTSC first steers the model to think over the essential characteristics of time series data. Next, it integrates predictions and confidence scores from plug-in classifiers, e.g., domain-specific time series models, as in-context examples. Finally, ReasonTSC guides the LLM through a structured reasoning process: it evaluates the initial assessment, backtracks to consider alternative hypotheses, and compares their merits before arriving at a final classification. Extensive experiments and systematic ablation studies demonstrate that ReasonTSC consistently outperforms both existing time series reasoning baselines and plug-in models, and is even capable of identifying and correcting plug-in models' false predictions.
📅 2025-06-01 | 💬 21 pages, 8 figures
As large language models (LLMs) grow in power and influence, ensuring their safety and preventing harmful output becomes critical. Automated red teaming serves as a tool to detect security vulnerabilities in LLMs without manual labor. However, most existing methods struggle to balance the effectiveness and diversity of red-team generated attack prompts. To address this challenge, we propose \ourapproach, a novel automated red teaming training framework that utilizes reinforcement learning to explore and generate more effective attack prompts while balancing their diversity. Specifically, it consists of three training stages: (1) Cold Start: The red team model is supervised and fine-tuned on a jailbreak dataset obtained through imitation learning. (2) Warm-up Exploration: The model is trained in jailbreak instruction following and exploration, using diversity and consistency as reward signals. (3) Enhanced Jailbreak: Progressive jailbreak rewards are introduced to gradually enhance the jailbreak performance of the red-team model. Extensive experiments on a variety of LLMs show that \ourapproach effectively balances the diversity and effectiveness of jailbreak prompts compared to existing methods. Our work significantly improves the efficiency of red team exploration and provides a new perspective on automated red teaming.
📅 2025-06-01 | 💬 16 pages, 10 figures
This paper presents FlashNorm, which is an exact but faster implementation of RMSNorm followed by linear layers. RMSNorm is used by many LLMs such as Llama, Mistral, and OpenELM. FlashNorm also speeds up Layer Normalization and its recently proposed replacement Dynamic Tanh (DyT) arXiv:2503.10622. FlashNorm also reduces the number of parameter tensors by simply merging the normalization weights with the weights of the next linear layer. See https://github.com/OpenMachine-ai/transformer-tricks for code and more transformer tricks.
📅 2025-06-01 | 💬 19 pages, 11 figures
Assessing the programming capabilities of Large Language Models (LLMs) is crucial for their effective use in software engineering. Current evaluations, however, predominantly measure the accuracy of generated code on static benchmarks, neglecting the critical aspect of model robustness during programming tasks. While adversarial attacks offer insights on model robustness, their effectiveness is limited and evaluation could be constrained. Current adversarial attack methods for robustness evaluation yield inconsistent results, struggling to provide a unified evaluation across different LLMs. We introduce EVALOOP, a novel assessment framework that evaluate the robustness from a self-consistency perspective, i.e., leveraging the natural duality inherent in popular software engineering tasks, e.g., code generation and code summarization. EVALOOP initiates a self-contained feedback loop: an LLM generates output (e.g., code) from an input (e.g., natural language specification), and then use the generated output as the input to produce a new output (e.g., summarizes that code into a new specification). EVALOOP repeats the process to assess the effectiveness of EVALOOP in each loop. This cyclical strategy intrinsically evaluates robustness without rely on any external attack setups, providing a unified metric to evaluate LLMs' robustness in programming. We evaluate 16 prominent LLMs (e.g., GPT-4.1, O4-mini) on EVALOOP and found that EVALOOP typically induces a 5.01%-19.31% absolute drop in pass@1 performance within ten loops. Intriguingly, robustness does not always align with initial performance (i.e., one-time query); for instance, GPT-3.5-Turbo, despite superior initial code generation compared to DeepSeek-V2, demonstrated lower robustness over repeated evaluation loop.
📅 2025-06-01
We present a theoretical framework showing that popular LLM alignment methods, including RLHF and its variants, can be understood as divergence estimators between aligned (safe or preferred) and unaligned (harmful or less preferred) distributions. This perspective explains the emergence of separation in the latent space between safe and harmful prompts after alignment. As an application of our general divergence framework, we propose KLDO, a novel KL divergence-based alignment method, and empirically validate its effectiveness. We further show that using compliance-refusal datasets, rather than standard preference-based datasets, leads to stronger separation and improved safety alignment. Finally, to quantify the separation effect, we propose a distance-based metric in the prompt representation space, which also acts as a statistically significant indicator for model safety.
📅 2025-06-01
Fact-checking is a potentially useful application of Large Language Models (LLMs) to combat the growing dissemination of disinformation. However, the performance of LLMs varies across geographic regions. In this paper, we evaluate the factual accuracy of open and private models across a diverse set of regions and scenarios. Using a dataset containing 600 fact-checked statements balanced across six global regions we examine three experimental setups of fact-checking a statement: (1) when just the statement is available, (2) when an LLM-based agent with Wikipedia access is utilized, and (3) as a best case scenario when a Retrieval-Augmented Generation (RAG) system provided with the official fact check is employed. Our findings reveal that regardless of the scenario and LLM used, including GPT-4, Claude Sonnet, and LLaMA, statements from the Global North perform substantially better than those from the Global South. Furthermore, this gap is broadened for the more realistic case of a Wikipedia agent-based system, highlighting that overly general knowledge bases have a limited ability to address region-specific nuances. These results underscore the urgent need for better dataset balancing and robust retrieval strategies to enhance LLM fact-checking capabilities, particularly in geographically diverse contexts.
📅 2025-06-01 | 💬 ACL 2025, 16 pages, 5 figures
Language models excel at following instructions but often struggle with the collaborative aspects of conversation that humans naturally employ. This limitation in grounding -- the process by which conversation participants establish mutual understanding -- can lead to outcomes ranging from frustrated users to serious consequences in high-stakes scenarios. To systematically study grounding challenges in human-LLM interactions, we analyze logs from three human-assistant datasets: WildChat, MultiWOZ, and Bing Chat. We develop a taxonomy of grounding acts and build models to annotate and forecast grounding behavior. Our findings reveal significant differences in human-human and human-LLM grounding: LLMs were three times less likely to initiate clarification and sixteen times less likely to provide follow-up requests than humans. Additionally, we find that early grounding failures predict later interaction breakdowns. Building on these insights, we introduce Rifts, a benchmark derived from publicly available LLM interaction data containing situations where LLMs fail to initiate grounding. We note that current frontier models perform poorly on Rifts, highlighting the need to reconsider how we train and prompt LLMs for human interaction. To this end, we develop a preliminary intervention aimed at mitigating grounding failures.
📅 2025-06-01 | 💬 ACL Findings 2025
English-centric large language models (LLMs) often show strong multilingual capabilities. However, their multilingual performance remains unclear and is under-evaluated for many other languages. Most benchmarks for multilinguality focus on classic NLP tasks or cover a minimal number of languages. We introduce MEXA, a method for assessing the multilingual capabilities of pre-trained English-centric LLMs using parallel sentences, which are available for more languages than existing downstream tasks. MEXA leverages that English-centric LLMs use English as a pivot language in their intermediate layers. MEXA computes the alignment between English and non-English languages using parallel sentences to evaluate the transfer of language understanding from English to other languages. This alignment can be used to estimate model performance in different languages. We conduct controlled experiments using various parallel datasets (FLORES-200 and Bible), models (Llama family, Gemma family, Mistral, and OLMo), and established downstream tasks (Belebele, m-MMLU, and m-ARC). We explore different methods to compute embeddings in decoder-only models. Our results show that MEXA, in its default settings, achieves an average Pearson correlation of 0.90 between its predicted scores and actual task performance across languages. This suggests that MEXA is a reliable method for estimating the multilingual capabilities of English-centric LLMs, providing a clearer understanding of their multilingual potential and the inner workings of LLMs. Leaderboard: https://cis-lmu-mexa.hf.space, Code: https://github.com/cisnlp/MEXA.
📅 2025-06-01 | 💬 22 pages, 15 figures
LLM hallucination, where unfaithful text is generated, presents a critical challenge for LLMs' practical applications. Current detection methods often resort to external knowledge, LLM fine-tuning, or supervised training with large hallucination-labeled datasets. Moreover, these approaches do not distinguish between different types of hallucinations, which is crucial for enhancing detection performance. To address such limitations, we introduce hallucination probing, a new task that classifies LLM-generated text into three categories: aligned, misaligned, and fabricated. Driven by our novel discovery that perturbing key entities in prompts affects LLM's generation of these three types of text differently, we propose SHINE, a novel hallucination probing method that does not require external knowledge, supervised training, or LLM fine-tuning. SHINE is effective in hallucination probing across three modern LLMs, and achieves state-of-the-art performance in hallucination detection, outperforming seven competing methods across four datasets and four LLMs, underscoring the importance of probing for accurate detection.
📅 2025-06-01
Analogical reasoning is a unique ability of humans to address unfamiliar challenges by transferring strategies from relevant past experiences. One key finding in psychology is that compared with irrelevant past experiences, recalling relevant ones can help humans better handle new tasks. Coincidentally, the NLP community has also recently found that self-generating relevant examples in the context can help large language models (LLMs) better solve a given problem than hand-crafted prompts. However, it is yet not clear whether relevance is the key factor eliciting such capability, i.e., can LLMs benefit more from self-generated relevant examples than irrelevant ones? In this work, we systematically explore whether LLMs can truly perform analogical reasoning on a diverse set of reasoning tasks. With extensive experiments and analysis, we show that self-generated random examples can surprisingly achieve comparable or even better performance on certain tasks, e.g., 4% performance boost on GSM8K with random biological examples. We find that the accuracy of self-generated examples is the key factor and subsequently design two novel methods with improved performance and significantly reduced inference costs. Overall, we aim to advance a deeper understanding of LLM analogical reasoning and hope this work stimulates further research in the design of self-generated contexts.
📅 2025-06-01
Large Language Models (LLMs) have shown remarkable advancements in specialized fields such as finance, law, and medicine. However, in cybersecurity, we have noticed a lack of open-source datasets, with a particular lack of high-quality cybersecurity pretraining corpora, even though much research indicates that LLMs acquire their knowledge during pretraining. To address this, we present a comprehensive suite of datasets covering all major training stages, including pretraining, instruction fine-tuning, and reasoning distillation with cybersecurity-specific self-reflection data. Extensive ablation studies demonstrate their effectiveness on public cybersecurity benchmarks. In particular, continual pre-training on our dataset yields a 15.88% improvement in the aggregate score, while reasoning distillation leads to a 10% gain in security certification (CISSP). We will release all datasets and trained cybersecurity LLMs under the ODC-BY and MIT licenses to encourage further research in the community. For access to all datasets and model weights, please refer to https://huggingface.co/collections/trendmicro-ailab/primus-67b1fd27052b802b4af9d243.
📅 2025-06-01 | 💬 Please refer to the paper list at: https://github.com/weAIDB/awesome-data-llm
The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.
📅 2025-06-01 | 💬 Accepted to ACL2025 Main
Many challenging reasoning tasks require not just rapid, intuitive responses, but a more deliberate, multi-step approach. Recent progress in large language models (LLMs) highlights an important shift from the "System 1" way of quick reactions to the "System 2" style of reflection-and-correction problem solving. However, current benchmarks heavily rely on the final-answer accuracy, leaving much of a model's intermediate reasoning steps unexamined. This fails to assess the model's ability to reflect and rectify mistakes within the reasoning process. To bridge this gap, we introduce FINEREASON, a logic-puzzle benchmark for fine-grained evaluation of LLMs' reasoning capabilities. Each puzzle can be decomposed into atomic steps, making it ideal for rigorous validation of intermediate correctness. Building on this, we introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move. To support broader research, we also provide a puzzle training set aimed at enhancing performance on general mathematical tasks. We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
📅 2025-06-01
We introduce LLM-as-an-Interviewer, a novel paradigm for evaluating large language models (LLMs). This approach leverages multi-turn interactions where the LLM interviewer actively provides feedback on responses and poses follow-up questions to the evaluated LLM. At the start of the interview, the LLM interviewer dynamically modifies datasets to generate initial questions, mitigating data contamination. We apply the LLM-as-an-Interviewer framework to evaluate six models on the MATH and DepthQA tasks. Our results show that the framework effectively provides insights into LLM performance, including the quality of initial responses, adaptability to feedback, and ability to address follow-up queries like clarification or additional knowledge requests. The framework also addresses key limitations of conventional methods like LLM-as-a-Judge, including verbosity bias and inconsistency across runs. Finally, we propose the Interview Report, which aggregates insights from the interview process, providing examples and a comprehensive analysis of the LLM's strengths and weaknesses. This report offers a detailed snapshot of the model's real-world applicability. The code for our framework is publicly available at https://github.com/interview-eval/.
📅 2025-06-01 | 💬 Accepted by ICML2025 as Poster
Post-training compression reduces the computational and memory costs of large language models (LLMs), enabling resource-efficient deployment. However, existing compression benchmarks only focus on language modeling (e.g., perplexity) and natural language understanding tasks (e.g., GLUE accuracy), ignoring the agentic capabilities - workflow, tool use/function call, long-context understanding and real-world application. We introduce the Agent Compression Benchmark (ACBench), the first comprehensive benchmark for evaluating how compression impacts LLMs' agentic abilities. ACBench spans (1) 12 tasks across 4 capabilities (e.g., WorfBench for workflow generation, Needle-in-Haystack for long-context retrieval), (2) quantization (GPTQ, AWQ) and pruning (Wanda, SparseGPT), and (3) 15 models, including small (Gemma-2B), standard (Qwen2.5 7B-32B), and distilled reasoning LLMs (DeepSeek-R1-Distill). Our experiments reveal compression tradeoffs: 4-bit quantization preserves workflow generation and tool use (1%-3% drop) but degrades real-world application accuracy by 10%-15%. We introduce ERank, Top-k Ranking Correlation and Energy to systematize analysis. ACBench provides actionable insights for optimizing LLM compression in agentic scenarios. The code can be found in https://github.com/pprp/ACBench.
📅 2025-06-01 | 💬 Accepted to ACL 2025 Findings. Code available at https://github.com/RutaTang/HyGenar
Grammar plays a critical role in natural language processing and text/code generation by enabling the definition of syntax, the creation of parsers, and guiding structured outputs. Although large language models (LLMs) demonstrate impressive capabilities across domains, their ability to infer and generate grammars has not yet been thoroughly explored. In this paper, we aim to study and improve the ability of LLMs for few-shot grammar generation, where grammars are inferred from sets of a small number of positive and negative examples and generated in Backus-Naur Form. To explore this, we introduced a novel dataset comprising 540 structured grammar generation challenges, devised 6 metrics, and evaluated 8 various LLMs against it. Our findings reveal that existing LLMs perform sub-optimally in grammar generation. To address this, we propose an LLM-driven hybrid genetic algorithm, namely HyGenar, to optimize grammar generation. HyGenar achieves substantial improvements in both the syntactic and semantic correctness of generated grammars across LLMs.
📅 2025-06-01 | 💬 2025 ACL Findings
Personalizing Large Language Models (LLMs) has become a critical step in facilitating their widespread application to enhance individual life experiences. In pursuit of personalization, distilling key preference information from an individual's historical data as instructional preference context to customize LLM generation has emerged as a promising direction. However, these methods face a fundamental limitation by overlooking the inter-user comparative analysis, which is essential for identifying the inter-user differences that truly shape preferences. To address this limitation, we propose Difference-aware Personalization Learning (DPL), a novel approach that emphasizes extracting inter-user differences to enhance LLM personalization. DPL strategically selects representative users for comparison and establishes a structured standard to extract meaningful, task-relevant differences for customizing LLM generation. Extensive experiments on real-world datasets demonstrate that DPL significantly enhances LLM personalization. We release our code at https://github.com/SnowCharmQ/DPL.
📅 2025-06-01
Large language model (LLM) agents have emerged as a promising solution to automate the workflow of machine learning, but most existing methods share a common limitation: they attempt to optimize entire pipelines in a single step before evaluation, making it difficult to attribute improvements to specific changes. This lack of granularity leads to unstable optimization and slower convergence, limiting their effectiveness. To address this, we introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design inspired by how human ML experts iteratively refine models, focusing on one component at a time rather than making sweeping changes all at once. By systematically updating individual components based on real training feedback, Iterative Refinement improves overall model performance. We also provide some theoretical edvience of the superior properties of this Iterative Refinement. Further, we implement this strategy in IMPROVE, an end-to-end LLM agent framework for automating and optimizing object classification pipelines. Through extensive evaluations across datasets of varying sizes and domains, we demonstrate that Iterative Refinement enables IMPROVE to consistently achieve better performance over existing zero-shot LLM-based approaches.
📅 2025-06-01 | 💬 9 pages, ACL 2025
Large Language Models (LLMs) are increasingly deployed in real-world applications that demand complex reasoning. To track progress, robust benchmarks are required to evaluate their capabilities beyond superficial pattern recognition. However, current LLM reasoning benchmarks often face challenges such as insufficient interpretability, performance saturation or data contamination. To address these challenges, we introduce GAMEBoT, a gaming arena designed for rigorous and transparent assessment of LLM reasoning capabilities. GAMEBoT decomposes complex reasoning in games into predefined modular subproblems. This decomposition allows us to design a suite of Chain-of-Thought (CoT) prompts that leverage domain knowledge to guide LLMs in addressing these subproblems before action selection. Furthermore, we develop a suite of rule-based algorithms to generate ground truth for these subproblems, enabling rigorous validation of the LLMs' intermediate reasoning steps. This approach facilitates evaluation of both the quality of final actions and the accuracy of the underlying reasoning process. GAMEBoT also naturally alleviates the risk of data contamination through dynamic games and head-to-head LLM competitions. We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics. Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts. Project page: https://visual-ai.github.io/gamebot
📅 2025-06-01 | 💬 ACL 2025; project website is available at https://zjunlp.github.io/project/CKnowEdit code and dataset are available at https://github.com/zjunlp/EasyEdit
Chinese, as a linguistic system rich in depth and complexity, is characterized by distinctive elements such as ancient poetry, proverbs, idioms, and other cultural constructs. However, current Large Language Models (LLMs) face limitations in these specialized domains, highlighting the need for the development of comprehensive datasets that can assess, continuously update, and progressively improve these culturally-grounded linguistic competencies through targeted training optimizations. To address this gap, we introduce CKnowEdit, the first-ever Chinese knowledge editing dataset designed to correct linguistic, factual, and logical errors in LLMs. We collect seven types of knowledge from a wide range of sources, including classical texts, idioms, and content from Baidu Tieba Ruozhiba, taking into account the unique polyphony, antithesis, and logical structures inherent in the Chinese language. By analyzing this dataset, we highlight the challenges current LLMs face in mastering Chinese. Furthermore, our evaluation of state-of-the-art knowledge editing techniques reveals opportunities to advance the correction of Chinese knowledge. Code and dataset are available at https://github.com/zjunlp/EasyEdit.
📅 2025-06-01 | 💬 ACL 2025 Findings
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.
📅 2025-06-01 | 💬 Time series forecasting using LLMs
Time series forecasting remains a challenging task, particularly in the context of complex multiscale temporal patterns. This study presents LLM-Mixer, a framework that improves forecasting accuracy through the combination of multiscale time-series decomposition with pre-trained LLMs (Large Language Models). LLM-Mixer captures both short-term fluctuations and long-term trends by decomposing the data into multiple temporal resolutions and processing them with a frozen LLM, guided by a textual prompt specifically designed for time-series data. Extensive experiments conducted on multivariate and univariate datasets demonstrate that LLM-Mixer achieves competitive performance, outperforming recent state-of-the-art models across various forecasting horizons. This work highlights the potential of combining multiscale analysis and LLMs for effective and scalable time-series forecasting.
📅 2025-06-01 | 💬 ACL 2025 Camera
The rapid advancement of large language models (LLMs) has shown remarkable progress in complex reasoning tasks. However, a significant disparity exists between benchmark performances and real-world applications. We attribute this gap primarily to current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, especially in complex reasoning tasks where both accuracy and consistency are essential. In this paper, we introduce G-Pass@$k$, a novel evaluation metric that continuously assesses model performance across multiple sampling attempts, quantifying both the model's performance potential and its stability. Through extensive experiments on various public and newly constructed benchmarks, we employ G-Pass@$k$ in conjunction with state-of-the-art large language models to provide comprehensive insights into their potential capabilities and operational consistency. Our findings reveal a significant opportunity to enhance the realistic reasoning abilities of LLMs, underscoring the necessity for more robust evaluation metrics.
📅 2025-06-01 | 💬 Accepted by ACL 2025 main, 18 pages, 8 figures, 6 tables
Fine-tuning large language models (LLMs) on task-specific data is essential for their effective deployment. As dataset sizes grow, efficiently selecting optimal subsets for training becomes crucial to balancing performance and computational costs. Traditional data selection methods often require fine-tuning a scoring model on the target dataset, which is time-consuming and resource-intensive, or rely on heuristics that fail to fully leverage the model's predictive capabilities. To address these challenges, we propose Data Whisperer, an efficient, training-free, attention-based method that leverages few-shot in-context learning with the model to be fine-tuned. Comprehensive evaluations were conducted on both raw and synthetic datasets across diverse tasks and models. Notably, Data Whisperer achieves superior performance compared to the full GSM8K dataset on the Llama-3-8B-Instruct model, using just 10% of the data, and outperforms existing methods with a 3.1-point improvement and a 7.4$\times$ speedup. The code is available at https://github.com/gszfwsb/Data-Whisperer.
📅 2025-06-01 | 💬 ACL 2025 main conference
Despite the remarkable successes of large language models (LLMs), the underlying Transformer architecture has inherent limitations in handling complex reasoning tasks. Chain-of-thought (CoT) prompting has emerged as a practical workaround, but most CoT-based methods rely on a single, generic prompt such as "think step by step", with no task-specific adaptation. These approaches expect the model to discover an effective reasoning path on its own, forcing it to search through a vast prompt space. In contrast, several studies have explored task-specific prompt designs to boost performance. However, these designs are typically developed through trial and error, lacking theoretical grounding. As a result, prompt engineering remains largely ad hoc and unguided. In this paper, we provide a theoretical framework that explains why some prompts succeed while others fail. We show that prompts function as selectors, extracting task-relevant information from the model's full hidden state during CoT reasoning. Each prompt defines a unique trajectory through the answer space, and the choice of trajectory is crucial for task performance and future navigation within the space. We analyze the complexity of finding optimal prompts and characterize the size of the prompt space for a given task. Our theory reveals principles behind effective prompt design and shows that naive CoT-using self-guided prompts like "think step by step"-can severely hinder performance. Through experiments, we show that optimal prompt search can lead to more than a 50% improvement on reasoning tasks, providing a theoretical foundation for prompt engineering.
📅 2025-06-01 | 💬 ACL 2025
The paper explores the performance of LLMs in the context of multi-dimensional analytic writing assessments, i.e. their ability to provide both scores and comments based on multiple assessment criteria. Using a corpus of literature reviews written by L2 graduate students and assessed by human experts against 9 analytic criteria, we prompt several popular LLMs to perform the same task under various conditions. To evaluate the quality of feedback comments, we apply a novel feedback comment quality evaluation framework. This framework is interpretable, cost-efficient, scalable, and reproducible, compared to existing methods that rely on manual judgments. We find that LLMs can generate reasonably good and generally reliable multi-dimensional analytic assessments. We release our corpus and code for reproducibility.
📅 2025-06-01
One trending application of LLM (large language model) is to use it for content moderation in online platforms. Most current studies on this application have focused on the metric of accuracy -- the extent to which LLMs make correct decisions about content. This article argues that accuracy is insufficient and misleading because it fails to grasp the distinction between easy cases and hard cases, as well as the inevitable trade-offs in achieving higher accuracy. Closer examination reveals that content moderation is a constitutive part of platform governance, the key of which is to gain and enhance legitimacy. Instead of making moderation decisions correct, the chief goal of LLMs is to make them legitimate. In this regard, this article proposes a paradigm shift from the single benchmark of accuracy towards a legitimacy-based framework for evaluating the performance of LLM moderators. The framework suggests that for easy cases, the key is to ensure accuracy, speed, and transparency, while for hard cases, what matters is reasoned justification and user participation. Examined under this framework, LLMs' real potential in moderation is not accuracy improvement. Rather, LLMs can better contribute in four other aspects: to conduct screening of hard cases from easy cases, to provide quality explanations for moderation decisions, to assist human reviewers in getting more contextual information, and to facilitate user participation in a more interactive way. To realize these contributions, this article proposes a workflow for incorporating LLMs into the content moderation system. Using normative theories from law and social sciences to critically assess the new technological application, this article seeks to redefine LLMs' role in content moderation and redirect relevant research in this field.
📅 2025-06-01 | 💬 Preprint; 27 pages, 12 figures, 10 tables; Project Page at https://zeying-gong.github.io/projects/ascent
Object-Goal Navigation (OGN) remains challenging in real-world, multi-floor environments and under open-vocabulary object descriptions. We observe that most episodes in widely used benchmarks such as HM3D and MP3D involve multi-floor buildings, with many requiring explicit floor transitions. However, existing methods are often limited to single-floor settings or predefined object categories. To address these limitations, we tackle two key challenges: (1) efficient cross-level planning and (2) zero-shot object-goal navigation (ZS-OGN), where agents must interpret novel object descriptions without prior exposure. We propose ASCENT, a framework that combines a Multi-Floor Spatial Abstraction module for hierarchical semantic mapping and a Coarse-to-Fine Frontier Reasoning module leveraging Large Language Models (LLMs) for context-aware exploration, without requiring additional training on new object semantics or locomotion data. Our method outperforms state-of-the-art ZS-OGN approaches on HM3D and MP3D benchmarks while enabling efficient multi-floor navigation. We further validate its practicality through real-world deployment on a quadruped robot, achieving successful object exploration across unseen floors.
📅 2025-06-01 | 💬 11 pages, 3 figures
Large Language Models (LLMs), such as the GPT series, have driven significant industrial applications, leading to economic and societal transformations. However, a comprehensive understanding of their real-world applications remains limited. To address this, we introduce REALM, a dataset of over 94,000 LLM use cases collected from Reddit and news articles. REALM captures two key dimensions: the diverse applications of LLMs and the demographics of their users. It categorizes LLM applications and explores how users' occupations relate to the types of applications they use. By integrating real-world data, REALM offers insights into LLM adoption across different domains, providing a foundation for future research on their evolving societal roles.
📅 2025-06-01 | 💬 ACL 2025
Multiple choice question answering (MCQA) is popular for LLM evaluation due to its simplicity and human-like testing, but we argue for its reform. We first reveal flaws in MCQA's format, as it struggles to: 1) test generation/subjectivity; 2) match LLM use cases; and 3) fully test knowledge. We instead advocate for generative formats based on human testing, where LLMs construct and explain answers, better capturing user needs and knowledge while remaining easy to score. We then show even when MCQA is a useful format, its datasets suffer from: leakage; unanswerability; shortcuts; and saturation. In each issue, we give fixes from education, like rubrics to guide MCQ writing; scoring methods to bridle guessing; and Item Response Theory to build harder MCQs. Lastly, we discuss LLM errors in MCQA, robustness, biases, and unfaithful explanations, showing how our prior solutions better measure or address these issues. While we do not need to desert MCQA, we encourage more efforts in refining the task based on educational testing, advancing evaluations.
📅 2025-06-01 | 💬 18 pages
Language is often used strategically, particularly in high-stakes, adversarial settings, yet most work on pragmatics and LLMs centers on cooperativity. This leaves a gap in systematic understanding of non-cooperative discourse. To address this, we introduce CoBRA (Cooperation-Breach Response Assessment), along with three interpretable metrics -- Benefit at Turn (BaT), Penalty at Turn (PaT), and Normalized Relative Benefit at Turn (NRBaT) -- to quantify the perceived strategic effects of discourse moves. We also present CHARM, an annotated dataset of real courtroom cross-examinations, to demonstrate the framework's effectiveness. Using these tools, we evaluate a range of LLMs and show that LLMs generally exhibit limited pragmatic understanding of strategic language. While model size shows an increase in performance on our metrics, reasoning ability does not help and largely hurts, introducing overcomplication and internal confusion.
📅 2025-06-01
Large Language Models (LLMs) struggle with culturally-specific reasoning tasks, particularly in low-resource languages, hindering their global applicability. Addressing this gap is crucial for equitable AI deployment. We introduce Culturally-Grounded Chain-of-Thought (CG-CoT), a novel prompting strategy that combines dense vector retrieval of cultural context with explicit reasoning sequences. Our extensive experiments on Yoruba proverb interpretation demonstrate that CG-CoT provides significantly higher culturally-aligned accuracy and depth than traditional prompting methods, validated through both automated metrics and LLM-based evaluations. Notably, we uncover stark disparities between token-level translation metrics like BLEU and human-judged cultural relevance, suggesting a rethinking of evaluation approaches for low-resource NLP.
📅 2025-06-01
Ternary large language models (LLMs), which utilize ternary precision weights and 8-bit activations, have demonstrated competitive performance while significantly reducing the high computational and memory requirements of full-precision LLMs. The energy efficiency and performance of Ternary LLMs can be further improved by deploying them on ternary computing-in-memory (TCiM) accelerators, thereby alleviating the von-Neumann bottleneck. However, TCiM accelerators are prone to memory stuck-at faults (SAFs) leading to degradation in the model accuracy. This is particularly severe for LLMs due to their low weight sparsity. To boost the SAF tolerance of TCiM accelerators, we propose ReTern that is based on (i) fault-aware sign transformations (FAST) and (ii) TCiM bit-cell reprogramming exploiting their natural redundancy. The key idea is to utilize FAST to minimize computations errors due to SAFs in +1/-1 weights, while the natural bit-cell redundancy is exploited to target SAFs in 0 weights (zero-fix). Our experiments on BitNet b1.58 700M and 3B ternary LLMs show that our technique furnishes significant fault tolerance, notably 35% reduction in perplexity on the Wikitext dataset in the presence of faults. These benefits come at the cost of < 3%, < 7%, and < 1% energy, latency and area overheads respectively.
📅 2025-06-01
Large Language Models (LLMs) are widely used across various scenarios due to their exceptional reasoning capabilities and natural language understanding. While LLMs demonstrate strong performance in tasks involving mathematics and coding, their effectiveness diminishes significantly when applied to chemistry-related problems. Chemistry problems typically involve long and complex reasoning steps, which contain specific terminology, including specialized symbol systems and complex nomenclature conventions. These characteristics often cause general LLMs to experience hallucinations during the reasoning process due to their lack of specific knowledge. However, existing methods are struggling to effectively leverage chemical expertise and formulas. Moreover, current uncertainty estimation methods, designed to mitigate potential reasoning errors, are unable to precisely identify specific steps or key knowledge. In this work, we propose a novel framework called ChemAU, which incorporates our adaptive uncertainty estimation method that applies different uncertainty values based on the position of reasoning steps within the whole reasoning chain. Leveraging this method, ChemAU identifies gaps in chemistry knowledge and precisely supplements chemical expertise with the specialized domain model, thereby correcting and updating the previously flawed reasoning chain. Our experiments with three popular LLMs across three chemistry datasets demonstrate that ChemAU significantly enhances both reasoning accuracy and uncertainty estimation.
📅 2025-06-01 | 💬 Accepted to ACL 2025
Large Language Model (LLM) Uncertainty Estimation (UE) methods have become a crucial tool for detecting hallucinations in recent years. While numerous UE methods have been proposed, most existing studies evaluate them in isolated short-form QA settings using threshold-independent metrics such as AUROC or PRR. However, real-world deployment of UE methods introduces several challenges. In this work, we systematically examine four key aspects of deploying UE methods in practical settings. Specifically, we assess (1) the sensitivity of UE methods to decision threshold selection, (2) their robustness to query transformations such as typos, adversarial prompts, and prior chat history, (3) their applicability to long-form generation, and (4) strategies for handling multiple UE scores for a single query. Our evaluations on 19 UE methods reveal that most of them are highly sensitive to threshold selection when there is a distribution shift in the calibration dataset. While these methods generally exhibit robustness against previous chat history and typos, they are significantly vulnerable to adversarial prompts. Additionally, while existing UE methods can be adapted for long-form generation through various strategies, there remains considerable room for improvement. Lastly, ensembling multiple UE scores at test time provides a notable performance boost, which highlights its potential as a practical improvement strategy. Code is available at: https://github.com/duygunuryldz/uncertainty_in_the_wild.
📅 2025-06-01
The pervasive deployment of large language models (LLMs) in conversational AI systems has revolutionized information access, yet their propensity for generating factually unsupported or hallucinated responses remains a critical impediment to trustworthiness and widespread adoption. This paper introduces Reinforced Unanswerability Learning (RUL), a novel hybrid training paradigm designed to imbue LLMs with the intrinsic capability to accurately detect unanswerable questions and generate reliably appropriate responses. Unlike conventional approaches that rely on external classifiers or simple prompting, RUL integrates a discriminative unanswerability prediction head with the LLM's generative core, guided by a multi-stage learning strategy. This includes supervised fine-tuning on a novel, richly annotated dataset, Enhanced-CAsT-Answerability (ECA), which features hierarchical answerability labels and ground-truth refusal responses. Crucially, RUL incorporates a subsequent reinforcement learning with human feedback (RLHF) phase to refine the nuance, helpfulness, and informativeness of refusal responses. Extensive experiments demonstrate RUL's superior performance, achieving significantly higher accuracy in unanswerability detection across sentence, paragraph, and ranking levels, and substantially increasing the generation of appropriate refusals for unanswerable queries, alongside strong performance on answerable questions. Human evaluations further corroborate RUL's effectiveness, highlighting a marked improvement in perceived helpfulness and trustworthiness, ultimately paving the way for more reliable and user-centric conversational AI.
📅 2025-06-01
We introduce LLM-as-an-Interviewer, a novel paradigm for evaluating large language models (LLMs). This approach leverages multi-turn interactions where the LLM interviewer actively provides feedback on responses and poses follow-up questions to the evaluated LLM. At the start of the interview, the LLM interviewer dynamically modifies datasets to generate initial questions, mitigating data contamination. We apply the LLM-as-an-Interviewer framework to evaluate six models on the MATH and DepthQA tasks. Our results show that the framework effectively provides insights into LLM performance, including the quality of initial responses, adaptability to feedback, and ability to address follow-up queries like clarification or additional knowledge requests. The framework also addresses key limitations of conventional methods like LLM-as-a-Judge, including verbosity bias and inconsistency across runs. Finally, we propose the Interview Report, which aggregates insights from the interview process, providing examples and a comprehensive analysis of the LLM's strengths and weaknesses. This report offers a detailed snapshot of the model's real-world applicability. The code for our framework is publicly available at https://github.com/interview-eval/.
📅 2025-06-01 | 💬 Please refer to the paper list at: https://github.com/weAIDB/awesome-data-llm
The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.
📅 2025-06-01 | 💬 Time series forecasting using LLMs
Time series forecasting remains a challenging task, particularly in the context of complex multiscale temporal patterns. This study presents LLM-Mixer, a framework that improves forecasting accuracy through the combination of multiscale time-series decomposition with pre-trained LLMs (Large Language Models). LLM-Mixer captures both short-term fluctuations and long-term trends by decomposing the data into multiple temporal resolutions and processing them with a frozen LLM, guided by a textual prompt specifically designed for time-series data. Extensive experiments conducted on multivariate and univariate datasets demonstrate that LLM-Mixer achieves competitive performance, outperforming recent state-of-the-art models across various forecasting horizons. This work highlights the potential of combining multiscale analysis and LLMs for effective and scalable time-series forecasting.